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ABSTRACT

We have recently developed a statistical model of speech
that focuses statistical modeling power on phonetic transi-

tions. These are the perceptually-dominant and information-

rich portions of the speech signal, which may also be the
parts of the speech signal with a better chance to with-
stand adverse acoustical conditions. We describe here
some of the concepts, along with some preliminary ex-
periments on digit recognition. These experiments show
that the new models, when used in combination with our
more standard models, can significantly improve perfor-
mance in the presence of noise.

1. BACKGROUND

In [5] we reported the development of a statistical model of
speech that incorporates some simple temporal properties
of speech perception. The primary goal of this theoretical
development was to avoid a number of current constrain-
ing assumptions for statistical speech recognition systems,
particularly the model of speech as a sequence of station-
ary segments consisting of uncorrelated acoustic vectors.
In the new model, speech was viewed from the perceiving
side as a sequence of Auditory Events (Avents), which
are elementary decisions that occur at some point when
the spectrum and amplitude are rapidly changing (as in
[3]). Avents are presumed to occur about once per phone
boundary, and thus are modeled as being separated by rel-
atively stationary periods (ca. 50-150 ms). The statistical
model uses these Avents as fundamental building blocks
for words and utterances, separated by states correspond-
ing to the more stationary regions. In order to focus the
statistical power on the rapidly-changing portions of the
time series, all of the stationary regions are tied to the
same non-Avent class. Markov-like recognition models
use Avents as time-asynchronous observations. Discrimi-
nant models are trained to distinguish among all classes
(including the non-Avent class). In the full embedded pro-
cedure, the training data is automatically aligned using
dynamic programming, and the discriminant system (e.g.,
a neural network) is trained on the new segmentation.
These two steps are iterated, as discussed in [2], and are
guaranteed to converge to a local minimum of the proba-
bility of error (on the training set). This process should
focus modeling power on the perceptually-dominant and
information-rich portions of the speech signal, which may
also be the parts of the speech signal with a better chance
to withstand adverse acoustical conditions. We named
this new framework the Stochastic Perceptual Auditory-

event-based (Avent) Model, or SPAM.

Figure 1 shows a SPAM for the word “six”. Note that
all of the states with self-loops are unlabeled, representing
non-Avent frames. The intervening states last only for one
frame, and correspond to particular Avents.

We refer the reader to [5] for theoretical background
on this approach. SPAM recognition is based on a com-
putation of global posteriors based on the following local
acoustic probabilities:
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where ¢} refers to Avent gx occurring at time n, go refers
to the non-Avent state, n — A(n) corresponds to the pre-
vious time index for which an Avent had been perceived,
(i.e., the last time index n — A(n) for which a qZ_A(n)
was perceived with k # 0), and Xsfg is a sub-sequence
of acoustic vectors that is local to the current vector z,,
extending d frames into the past and ¢ frames into the
future. In principle, this probability can be estimated
by a neural network trained with targets associated with
Avent labels (or Avent probabilities, as in [1]), and with
inputs representing the previous Avent, the time back to
that Avent, and a local window of acoustic vectors. For
the purposes of this paper, we have only implemented the
system with acoustic inputs, so that we are actually eval-
uating
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2. EXPERIMENTAL METHODS

Theoretical work has continued in the form of new train-
ing procedures for transition-based systems, and is re-
ported elsewhere (see [1]). This summary is, however, in-
tended to report work in progress in incorporating SPAMs
in a word recognition system, namely one for classifying
digits and simple control words spoken in isolation over
the telephone. The data base, originally recorded at Bell-
core, is one that we have used in the past for experimen-
tation with new front ends, and due to the variability of
hand sets and speaker pronunciation over the telephone
is reasonably difficult despite its limited vocabulary. Our
current best score on this test set for jackknifed tests
is about 1.4% error with our best phone-based system,
which consists of a neural network to estimate probabili-
ties for a context-independent hidden Markov model with
a single density per phone.

In a series of experiments that we performed over the
last few months, we replaced phones as the basic units
with Avents, and we trained multilayer perceptrons to



Figure 1: SPAM for the digit “six”.

discriminate between these units. While we tried several
slight variants for the choice of Avent categories, we ended
up with diphone-like units, that is one class per possible
pair of phones that occurred in the lexicon of zero through
nine, plus “oh”, “no”, and “yes”. This was a total of 24
phones, and 45 diphone-like units. Note that the units dif-
fered from diphones in that a single frame was designated
as the Avent frame (and modeled by a single state with
no self-loop), and all others around each transition were
labeled as non-Avents. This may seem counterintuitive,
since the choice of the Avent frame was often arbitrary
(although it came from the results of embedded Viterbi
segmentations for a phone-based system). However, we
viewed it as a reasonable first attempt. In later systems
we intend to train frames with continuous probabilities of
being a state transition as learned by the REMAP proce-
dure [1].

As noted above, for the experiments reported in this
paper we did not learn a conditional dependence between
the previous Avent or the time between a current frame
and the previous Avent, although these terms are pro-
posed in the SPAM theory [5]. Therefore the training is
quite comparable to the approach used in our standard
hybrid HMM /neural network approach, except that our
units are Avents, which means that most frames will be
hypothesized to correspond to a class that will be tied
over all phonetic units. In practice, because of the diffi-
culty of learning Avents when most frames are not labeled
as such, we actually trained two networks separately: one
to distinguish between Avents and non-Avents, and the
other to distinguish between Avents. The former net was
not trained on all frames, but rather on an equal number
of Avent and non-Avent frames. Thus this net was not
trained to give the true posterior probability of having
an Avent, but rather an approximation that appeared to
give us a better overall performance than a network that
was trained on all the frames. The other network was
trained in the usual fashion (i.e., using all frames with
categories to be classified, resulting in a posterior estima-
tor), except that it only learned to generate probabilities
for frames pre-classified as Avents. Each net was a multi-
layer perceptron with a single hidden layer containing 100
sigmoidal units. The input for each was 9 feature vectors
(the current frame and 4 from the immediate past and
future).

We mention in passing that the network training was
done in stages to provide a bias based on a greater number
of frames: first, the phone network was used to initialize a
net trained to recognize onset frames that were labeled by
the context-independent phone class. This latter net was
then used to initialize the net that discriminated between
Avents which for the purposes of this experiment can be
viewed as left-context-dependent phonetic onsets.

A second net was trained for phone discrimination
according to our established hybrid procedure [2], using
200 hidden units and the same input features and train-
ing data. We gave this network the apparent advantage

| noise condition | phones | Avents | Combined |

clean 1.8% 3.6% 1.6%
noisy 10.9% 10.6% 7.7%

Table 1: Error rates, isolated digits plus “oh”, “no”, and
“yes”, recorded over public-switched telephone network;
noisy case includes artificially added car noise for a 10 dB

SNR.

of having twice the number of hidden units because we
wanted to have a comparable number of overall parame-
ters with the two techniques, and for the SPAM case the
size of Avent/non-Avent discriminator was close to that of
the Avent classification net (since most parameters were
in the input-to-hidden connections).

In order to explore robustness to additive noise, we
also experimented with adding automobile noise recorded
over a cellular telephone, yielding a final SNR of 10 dB
(in terms of average power ratio). Features used were
JRASTA-PLP-8 cepstral coefficients 1-8, and their tem-
poral derivatives, and the derivative only for the 0th coef-
ficient (log energy). This is a feature set that was designed
for robustness to additive and convolutional noise, but
which sometimes increases error for “clean” or matching
train and test conditions. We have hypothesized in the
past that this increased error was at least partially due
to the stationarity assumptions that were built in to the

phone-based HMMs.

3. RESULTS AND DISCUSSION

The results on a test set (distinct from an another part
of the corpus that we used for development) are shown in
Table 1.

As shown in Table 1, the phone-based system, which
has been optimized for a number of years, has about half
the error rate of the new approach for the clean digits.
However, for the noisy case, the performance of the two
systems was comparable. Note that each hypothesized
state path for a word typically had only about 5 frames
that used distances (negative log probabilities) from a pre-
sumed Avent, as opposed to the state paths for a phone-
based system that would be using class probabilities for
each of the roughly 50 frames in a word.

Examination of the confusion matrices of both the
phone-based system (Table 2) and the Avent-based sys-
tem (Table 3) showed that the errors and the types of er-
rors that each system made were nearly orthogonal. We
conjecture that this reflects the difference in the prop-
erties of the two recognition systems. For example, the
phone-based recognition system seems to have more dif-
ficulty differentiating between “no”, "oh” and ”zero” in
the presence of noise than the Avent-based system.

The apparent independence of the strengths and weak-



nesses of each system led us to experiment with blend-
ing the two systems. As this was an isolated word task,
the likelihood could be calculated (with the Viterbi al-
gorithm) for the most probable path through every word
model. The word model likelihoods could then be rescored
by combining these word probabilities for the two ap-
proaches. This is equivalent to what is now commonly
done to rescore an N-best list for continuous speech recog-
nition (BB&N ref), except that in the isolated word task
N can consist of all possible hypotheses. Combination is
done in the log domain, and the scaling factor for the
Avent-based system was determined through experimen-
tation on a development set. Within the range that we
tried, the best scaling for the SPAM probabilities was
found to be a value of 10. We note in passing that this
number is roughly equal to the average number of phone
emission probabilities used for every Avent probability.
(The other frames are scored as non-Avents, and as such
do not discriminate).

The third column of Table 1 (“Combined”) gives the
resulting score for the jackknifed test sets (over a total of
2600 test words and 200 speakers). The combination does
not seem to have a strong effect for the clean case, but
at least it does not hurt. On the other hand, there is a
strong improvement for the noisy case; roughly 30% of the
errors were eliminated by incorporating the preliminary
SPAM in this way. Assuming a normal approximation to
a binomial distribution for the errors, this is significant
at p < .01. Table 4 shows the confusion matrix for this
system.

Of course, the combined system uses twice the num-
ber of parameters as either system alone. To verify that
the improvement in word error was not merely due to
the larger number of parameters in the merged system,
we trained a phone-based system using a neural network
with twice the number of parameters. The resulting scores
did not differ significantly from the scores from the smaller
phone-based system, either for clean or noisy speech. Thus,
we conclude that SPAM, even in its current limited form,
seems to provide some further noise robustness when used
in combination with a phone-based hybrid HMM/ANN

system.

4. FUTURE WORK

There are a number of experiments that we plan to do
to extend this result. It might well be that the improve-
ments we see can only occur when SPAM approaches are
combined with traditional ones, since the use of multiple
maps from acoustics to words is likely to improve robust-
ness as well. Nonetheless, we are just beginning to de-
velop SPAM methodology. As noted earlier, we have yet
to incorporate dependence on the previous Avent or on
the time back to it, though the theory suggests that both
are required. We have not yet experimented with Avent
net sizes, and our choice of Avent categories was only the
most obvious (essentially biphone classes). We had dif-
ficulty with training the Avent/non-Avent network, and
were forced to subsample the data, leading to probabilities
that were skewed from the true posteriors we wished to
estimate. This problem could be greatly reduced using re-
sults from REMAP research [1], since many frames would
have some nonzero probability of being an Avent. Finally,
as yet we have not incorporated any new signal processing
that might be helpful in estimating Avent probabilities;
we are currently relying on RASTA-PLP. This certainly

does already emphasize transitions, as noted previously,
but we believe that more work can be done at the front
end as well.

5. CONCLUSIONS

Robustness to additive noise is a difficult problem for cur-
rent speech recognition systems. In some cases good mod-
els can be developed for the interfering noise, but more
generally it would be desirable to build systems that were
inherently resistant to degradation from unknown addi-
tive non-speech sounds. Both systems that were reported
here, i.e., phone-based and Avent-based, used J-RASTA
processing [4], which in fact gave us significant robustness
to the added noise due to its emphasis on transitional
information. An earlier experiment using log-RASTA,
which was less well-suited to the noisy situation, showed
over three times the error rate. However, reducing the
error further by front end signal processing alone may be
quite difficult. In fact, while in principal the emphasis
on spectral change can reduce the impact of constant or
slowly-varying noise, it seems likely that modification of
the statistical models to match this emphasis is impor-
tant. This experiment is our first result that seems to
confirm this expectation.
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| no | ves | ZETO | oh | nine | eight | seven | Six | five | four | three | two | one |

no 125 9 19 14 4 2 20 1 4 2
yes 188 1 1 5 4 1
ZEero 14 181 5
oh 1 158 5 10 10 15 1
nine 1 1 154 12 1 18 1 5
eight 1 1 196 1 1
seven 1 188 9 1 1
six 3 1 196
five 6 2 188 1 3
four 1 1 1 1 194 2
three 1 1 8 1 181 3 1
two 1 17 2 3 1 1 175
one 1 1 3 1 194

Table 2: Confusion matrix from phone-based system, with 10db SNR. True words at left, recognized words at top.

| no | ves | Z€ero | oh | nine | eight | seven | six | five | four | three | two | one |

no 180 3 3 4 3 1 5 1
yes 7 186 1 1 1 1 2 1
ZEro 9 9 175 1 4 2

oh 6 172 2 5 9 4 1 1
nine 27 1 3 157 1 1 3 2 2
eight 2 1 182 1 3 11
seven 5 3 181 5 2 1 2

six 2 7 3 185 2 1

five 9 12 173 2 4
four 2 1 193 4
three 3 1 1 6 1 1 176 10 1
two 3 3 1 7 2 3 1 180

one 3 3 6 3 1 184

Table 3: Confusion matrix from Avent-based system, with 10db SNR. True words at left, recognized words at top.

| no | ves | Z€ero | oh | nine | eight | seven | six | five | four | three | two | one |

no 168 4 4 7 4 2 5 1 1 3 1
yes 1 193 2 2 1 1
ZEeTO 2 12 185 1

oh 3 168 5 5 9 9 1
nine 6 1 172 5 7 5 1 3

eight 1 1 194 1
seven 1 2 189 5 1 2

siX 3 2 194 1
five 1 6 1 187 1 4
four 1 1 1 194 3

three 1 1 6 1 183 5 1

two 1 1 11 1 2 1 1 182

one 1 2 1 5 191

Table 4: Confusion matrix from combined SPAM-phone system, with 10db SNR. True words at left, recognized words at top.



