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Abstract
We examine the distribution of overlapping speech in different corpora of
natural multi-party conversations, including two types of meetings, and
two corpora of telephone conversations. Analyses are based on forced
alignment and speech recognition using an identical recognizer across
tasks. Three results are discussed. First, all corpora show high overall
rates of overlap, with similar rates for meetings and telephone conver-
sations. Second, speech recognition performance in non-overlapped re-
gions of meetings is no worse than that in single-channel telephone con-
versations, while recognition in overlap regions degrades considerably.
Finally, interrupt locations are associated with endpoints of word-level
events in a speaker’s turn, including backchannels, discourse markers,
and disfluencies. Results suggest that overlap is an important inherent
characteristic of conversational speech that should not be ignored; on
the contrary, it should be jointly modeled with acoustic and language
model information in machine processing of conversation.

1. Introduction
Recent interest in automatic recognition and understanding of
multi-party conversation such as meetings [10, 7] raises new
problems related to highly frequent speaker overlap. Such
overlap has serious consequences for processing models at
all levels—from speech recognition to understanding to dialog
modeling. Overlap has long been noted as a characteristic of
natural conversation, particularly by researchers in conversation
analysis and related fields (e.g., [4]). Little attention, however,
has been paid to the phenomenon in work on automatic speech
processing. For example, speech researchers have processed
Switchboard [3] data by considering only one channel at a time.
Dialog work on the same corpus has considered both channels,
but imposed a strict linear ordering on speaker turns based on
start times [5].

This paper provides an investigation into overlap character-
istics of large databases of multi-party conversational speech,
based on automatic time alignments. Data are drawn from a cor-
pus of real meeting data, collected at the International Computer
Science Institute (ICSI), as well as from two large corpora of
telephone conversations. The study is admittedly crude in na-
ture, compared with studies of hand-labeled data in conversation
analysis. Nevertheless, because of the large scale of the data
analyzed, and the potential for automatic processing using our
simple categories, we hope that the general results will help to
raise “overlap awareness” for the processing of conversational
speech by machine.

2. Method
2.1. Speech data and transcriptions

We processed and analyzed data from three sources. Multi-party
meetings were collected as part of the ICSI Meeting Project [7].
We drew data from two series of real-life group meetings, iden-

Table 1: Types and amounts of data used in the study: Meeting
Recorder meetings (MR), Robustness meetings (ROB), CallHome En-
glish (CH), and Switchboard (SWB). Speech duration includes over-
lapped speech multiple times. The notion of speech “spurt” is defined
in Section 2.4.

Meetings Phone convs.
MR ROB CH SWB

Meetings/Convs. 5 3 100 2437
Speech duration 7.7h 4.8h 16.6h 315h
Transcribed words 60,403 32,384 202,766 3,051,068
Speech spurts 5,688 4,100 23,693 298,825

tified as “Meeting Recorder” (MR) and “Robustness” (ROB),
with 4 to 8 participants each. Participants had been recorded
on a variety of microphones, including close-talking and far-
field types. For the present study we used data only from head-
mounted and lapel microphones. For comparison we also used
data from two corpora of two-person telephone conversations.
The Switchboard (SWB) corpus [3] contains strangers talking
about assigned topics, whereas the CallHome English (CH) cor-
pus involves conversations between family members and friends.
We used the retranscribed and resegmented version of Switch-
board from [1]. The amount of data from each source is sum-
marized in Table 1. (The Meeting Project has already collected
an order-of-magnitude more data than we were able to use, the
limiting factor here being the availability of transcriptions.)

2.2. Speech segmentation

Individual channel recordings were partitioned into “segments”
of speech, based on a “mixed” signal (addition of the individual
channel data, after overall energy equalization by channel). Seg-
ment boundary times were determined either by an automatic
segmentation of the mixed signal followed by hand-correction,
or by hand-segmentation alone. For the automatic case, the data
were segmented with a speech/nonspeech detector consisting of
an extension of an approach using an ergodic hidden Markov
model (HMM). Currently, for simplicity and to debug the var-
ious processing steps, these segments are synchronous across
channels.

2.3. Automatic speech recognition and alignment

The recognizer used in experiments was a subset of the March
2000 SRI large-vocabulary conversational speech recognition
(LVCSR) system [9]. The system performs vocal-tract length
normalization, feature normalization, and phone-loop-based
speaker adaptation using all the speech collected on each chan-
nel (i.e., from one speaker, modulo crosstalk), and a bigram lan-
guage model of about 30,000 words, trained from Switchboard,



CallHome, and Broadcast News data. As an expedient, we omit-
ted more elaborate acoustic and language modeling which yield
about a 20% relative error rate reduction on Hub-5 data. No-
tably, both the acoustic models and the language model of the
recognizer were identical to those used in the Hub-5 domain (the
acoustic front end downsamples the wide-band signal to tele-
phone bandwidth). This allows us to compare results directly
across corpora.

The same system without speaker adaptation was used for
forced-aligning the reference transcripts to the acoustic meet-
ing data from each speaker’s channel, thereby giving us the
approximate locations of the foreground speech on each chan-
nel. We hand-checked a sample of the segments resulting from
forced alignment, and estimated the combined word error rate
due to faulty hand-transcriptions and/or automatic alignment to
be about 7% for meeting data. Since each speech region ana-
lyzed for overlap must contain at least one word, this figure also
gives us a (generous) upper bound on the error in the overlap
measures discussed in the next section. Switchboard transcrip-
tions and segmentations should have a very low error rate, as
they underwent extensive quality control procedures [1], but the
accuracy of CallHome transcripts is not known at this point (al-
though we expect it to be better than meeting data).

Initially, we expected that crosstalk between microphones
could be reduced or eliminated by a simple adaptive filter track-
ing the cross-coupling between speakers as recorded by their
own head-mounted microphones and picked up on the other
channels. A colleague [2] investigated using a Block Least
Squares algorithm [11] to estimate the coupling and cancel the
crosstalk; however, the problem was more complex than we ex-
pected. The head movements of either the speaker or the listener
(i.e., the crosstalk pickup microphone) result in very significant
changes in the required cancellation filter. It appears that in a
meeting environment significant movements are both fast and
frequent. Informal observation suggests that they often closely
follow the start of a new speaker (as listeners turn to face that
speaker), thereby making it very hard to cancel at least the first
portion of these intrusions. Our group is continuing to study this
problem in the hope of generating “purer” recordings of individ-
ual speakers.

2.4. Overlap measures

We considered speech from each foreground talker, in turn. For
that talker, we defined “overlapped” words as words spoken
while one or more other talkers were also speaking during some
portion of the word. Overall overlap rates were weighted aver-
ages of these foreground-speaker measures. We also computed a
rate based on “spurt” units, where spurts were defined asspeech
regions uninterrupted by pauses longer than 500 ms. Rates of
overlapping spurts were computed in a manner similar to that for
overlapping words; spurts were considered overlapped if back-
ground speech was present at any time during the spurt. These
measures are illustrated in Figure 1. We also created versions of
these measures in which backchannels (such as “uh-huh”) were
excluded, i.e., effectively treated as non-speech regions.

The word transcripts were also annotated (by a combination
of hand-labeling and automatic methods) to indicate “hidden”
locations of interest, including sentence boundaries and disflu-
ency boundaries, and special word types such as filled pauses,
coordinating conjunctions, and discourse markers that are used
to manage interaction in conversation [6]. Such locations are
hidden from the point of view of the speech recognizer, which
outputs only a word stream, but are potentially automatically de-

Table 2:Relative frequencies of overlapped speech in different corpora.
Frequencies are given as percentages of overlapped words (in plainface)
and “spurts” (in italics).

Meetings Phone convs.
Backchannels MR ROB CH SWB
Included

words 17.0 8.8 11.7 12.0
spurts 54.4 31.4 53.0 54.4

Excluded
words 14.1 5.6 7.9 7.8
spurts 46.4 21.0 38.8 38.9

tectable using a combination of lexical and prosodic information
[8].

3. Results and Discussion
3.1. Overall rates of overlap across corpora

Table 2 summarizes rates of word and spurt overlaps across
corpora. Comparing meetings to two-party telephone conver-
sations, we see that meetings are not special in terms of over-
lap. Telephone conversations fall somewhere in between the two
meeting types, with MR meetings containing more overlaps than
phone conversations, and ROB meetings containing fewer. Fur-
thermore, overlap is an issue for modeling conversations even in
the corpora the speech community has been using; their perva-
siveness has so far been hidden by the fact that current systems
typically process Switchboard and CallHome as isolated individ-
ual channels. All the rates we found are also significantly higher
than what has been reported by researchers in conversation anal-
ysis (less than 5% according to [6, p. 296], although method-
ological differences may account for some of the discrepancy).

Second, Switchboard and CallHome are very similar to each
other on all measures, even though it has been conjectured that
there is more overlap in CallHome. This conjecture has been
based on the assumption that there are more overlaps among
friends and people one is familiar with, than among strangers.
CallHome contains family and friends on free real-world phone
calls with time limits, so one could expect overlaps to maximize
use of the time. In Switchboard, on the other hand, strangers
with no set task were asked to talk for a certain length of time.
Furthermore, it is not the case that Switchboard overlaps are not
just due to polite backchanneling, since the rates with backchan-
nels removed are still nearly identical for the two corpora.

Third, we see a sizable difference in overlap rates depending
on meeting type. The MR and ROB meetings were chosen from
the set of meeting types collected at ICSI because they represent
two very different types of social interaction. In the first, there
is a fairly open exchange between many of the participants; in
the second, one speaker directs the flow of the meeting. In MR
meetings, high rates of overall words come from 3 to 5 main
participants per meeting, whereas in the ROB meetings, 56% of
the total words are attributable to the main speaker (thus there is
less opportunity for overlap).

3.2. Overlap and ASR

In the absence of effective signal cross-cancellation—which, as
mentioned earlier, is a nontrivial problem in meeting settings—
background speech can degrade ASR performance significantly.
Background speech in regions where the foreground speaker
is silent will be recognized as foreground speech, generating a
large number of insertion errors.



Foreground speaker: (pause)<spurtA> So that’s the scoop.</spurtA> (pause)<spurtB> Let’s move on.</spurtB>
Background speaker 1: <ba>Uh-huh.</ba>Great!
Background speaker 2: <dm>Well,</dm> I’m not sure

Figure 1: Illustration of the word and spurt overlap classification scheme. Overlap rates for words and spurts are computed relative to speech from
the foreground speaker. In the figure, word beginnings are spatially aligned to indicate synchrony in time. In this example, the overlapped foreground
words are: “that’s the scoop”. SpurtA is overlapped, while spurtB is not. Backchannels are indicated by a<ba> tag, discourse markers by<dm>.
With backchannels excluded from the overlap computation, “scoop” remains as the only overlapped foreground word.

Table 3:Recognition performance in various conditions of overlapping
speech, percent word error rate. Word counts reflect the foreground ref-
erence transcripts only, excluding background speech.

Overlap condition Headset Lapel Total #Words
Non-overlap segs. 41.7 38.7 41.3 36,532
Overlap segs. 50.4 70.4 53.4 38,524
Non-overlap+overlap 46.1 57.4 47.5 75,056
Foreground speech 42.5 43.3 42.6 75,056
No-background speech 45.0 47.6 45.3 64,508

To analyze the effect of overlapped speech we split the
test set into regions containing non-overlapped and overlapped
speech, and into speakers using head-mounted close-talking mi-
crophones versus those wearing lapel microphones. The latter
are much more prone to pick up other speakers and were thus ex-
pected to exacerbate the effects of overlaps. Non-native speakers
were excluded from the study to ensure comparability with ASR
performance on well-known corpora, in particular so we could
compare results with Switchboard recognition.

There were four overlap test conditions. “Non-overlap seg-
ments” includes segments of speech with only the foreground
speaker talking (as per the hand-segmentations described ear-
lier). “Overlap segments” comprise all segments containing
speech from more than one speaker (not necessarily overlapping
over the entire duration of the segment). “Foreground speech”
includes all speech by the foreground speaker, excluding re-
gions with only background speech. “No-background speech”
includes all regions with only foreground speech and no back-
ground speech, i.e., all the “non-overlap segments” plus portions
of the “overlap segments” free of background speech. The extent
of foreground speech in overlap segments was determined auto-
matically using forced alignments of the reference transcripts,
and is thus somewhat prone to errors. We added 50 ms around
automatically determined foreground speech regions, but note
that this could also allow extra background speech into the test
regions.

Table 3 summarizes the results in all test conditions. As
shown, there is indeed a significant increase in error rate in seg-
ments containing overlapping speech (+12% absolute). The in-
crease is especially marked (+32%) on lapel microphones, in-
dicating that crosstalk is to blame for the degradation. Fur-
thermore, if the scoring only considers speech regions tightly
bounded around the foreground speech, the error rate is almost
that of the non-overlapping segments. We can infer from this
result that the high error rate in the overlap segments stems
from recognized background speech, not from the foreground
speech being harder to recognize. This is confirmed by the “non-
overlapping” result, where we scored only over regions without
background speech, without a further improvement in accuracy.

A breakdown of the word recognition errors by type (into
substitutions, deletions, and insertions) further confirms that seg-
ments containing background speech, especially with lapel mi-
crophones, suffer from excessive insertions, as shown in Fig-
ure 2. Inspection of recognition output shows that these inser-

Substitutions Deletions Insertions
Error Type

0

10

20

30

40

50
Meetings: headset, no overlap

Meetings: headset, overlap

Meetings: lapel, no overlap

Meetings: lapel, overlap

Switchboard

CallHome

Figure 2:Comparison of recognition error types across overlap condi-
tions, microphone types, and corpora.

tions do indeed correspond to the background speakers’ utter-
ances. Figure 2 also provides a comparison with Switchboard
and CallHome recognition accuracy, using the same recognition
system, and measured on subsets of the 2001 and 2000 Hub-5
LVCSR development test sets, respectively. Remarkably, recog-
nition performance using Hub-5 acoustic and language models
(and telephone-band-limited meeting recordings) is on par with
accuracy on matched Hub-5 data, if we exclude background
speech regions. It is quite possible that background speech has
subtle effects on the speech production of the foreground speaker
(cf. the Lombard effect in noisy conditions), but at least at cur-
rent error rates this does not seem to affect ASR performance.

Another important conclusion is that Switchboard seems to
be representative of the acoustic-phonetic and stylistic proper-
ties of conversational speech even in other settings, including
meetings, making it a good target for continued research in large-
vocabulary recognition. This leaves us hopeful that with increas-
ing amounts of matched meeting data for training, considerably
better meeting recognition will be obtained, provided effective
foreground speech detection can be achieved.

3.3. Locations of overlap

We also examined the location of “interrupts” in the meeting
data. We define interrupts aswithin-sentence locations in the
speech of the current speaker at the time points at which an-
other speaker begins a sentence. Interrupts are thus defined to
occur only at within-sentence locations in the foreground speech.
The majority of interrupts (72.9%) occur at spurt boundaries, as
might be expected, since spurts are defined to be followed by
pauses. However, the remaining 27% of interrupts—a fairly high
number—occur within spurts, when speakers are talking contin-
uously. This suggests that it is not sufficient to allow speaker
change only at pause boundaries: over one quarter of interrupt-
ing sentence onsets would be lost that way.

To further examine where interrupts occur, we looked at
their distribution with respect to the location of certain com-
mon events, including backchannels (e.g., “uh-huh”), coordinat-
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Figure 3: Distribution of events overall (white bars) and at interrup-
tion points (black bars). ‘S” = sentence onset, “ba” = backchannel,
“cc” = coordinating conjunction, “dm” = discourse marker, “fp” = filled
pause, “D” = repetition, repair or false start boundary. For the lower-case
events, no “/” = start of event, “/” = end of event.

ing conjunctions (e.g., “and”), discourse markers (e.g., “well”),
filled pauses (“uh” and “um”), and interruption points in disflu-
encies (e.g., repetitions, repairs, and false starts). In the case
of sentence and disfluency boundaries, there is only one event
location; in the case of the other events, we recorded both the
location preceding the event, and that following the event. Note
that events are not mutually exclusive, for example:

<S> <dm> well </dm> <fp> uh </fp> i
<D> i think that’s great</S>

The start-event tags are associated with utterance onsets, since
many of these elements (discourse markers, filled pauses, coor-
dinating conjunctions) are used to start or hold a turn. Points
right after these elements (i.e., the end-markers for the same
cases) are typically locations in which the speaker has obtained
the floor, but may pause before continuing. Disfluency bound-
aries (<D>) are also in this category. We might expect that at
such locations, it would be somewhat rude to interrupt. How-
ever, this is not what we found.

Figure 3 shows the distribution of events at interrupt loca-
tions, and compares the event distribution to the overall distribu-
tion, i.e., over all locations at which an interrupt could occur. A
clear pattern in the figure is that while interrupts are dispreferred
at the onsets of the events, there is a strong tendency to inter-
rupt right after the same events, even though the speaker may
still be “holding the floor” from a strictly lexical analysis. Be-
cause overlaps are highly associated with hidden events, an over-
all model of speaker segmentation and overlap detection could
benefit from an integrated approach. Since the main preference
for overlap locations coincides with theendsof such events, it
is reasonable to propose that online event detection could bene-
fit overlap detection by continuously updating speech boundary
locations for the probability of speech onset from a new speaker.

4. Conclusions
We have studied overlap in four different styles of conversational
speech data. Results show that both meetings and telephone con-
versations have high rates of overlap, suggesting that overlap is
an inherent characteristic that should not be ignored in computa-
tional models of conversation. Results on word error rates using
the same speech recognition system across tasks, reveal that in
regions of no overlap, recognition performance for real meetings
is similar to that for telephone conversations. Speakers must

therefore be using fairly consistent pronunciation patterns in
meetings and telephone conversations—implying that progress
on recognition of telephone speech should benefit recognition of
meeting speech, and vice versa. Recognition of meetings does
suffer from overlaps, even on close-talking microphone data.
The errors are in the form of insertions, which should be partially
addressable by cross-cancellation techniques, but which present
an important challenge for further research. Finally, interrupts
do not occur in random locations, but rather are associated with
hidden events (such as disfluencies and discourse markers) in the
foreground speech. The interrupts tend to start after such events,
suggesting an integrated acoustic/language model for speaker
segmentation in natural conversation.
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