
Prosody-Based Automatic Detection of Punctuation and Interruption
Events in the ICSI Meeting Recorder Corpus

Don Baron

Research Project

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, in partial satisfaction of the

requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Nelson Morgan
Research Advisor

May 26, 2002

* * * * * * *

Dr. Elizabeth Shriberg
Second Reader

(Date)



Acknowledgements

Throughout the course of this work, I have been lucky enough to work with some

extremely bright and generous people at the International Computer Science Institute,

without whom this project (and many others) would not be possible.  In no particular

order, many thanks go out to Thilo Pfau, for the work on his speech/non speech detector;

Jane Edwards, for her tireless work towards transcription perfection; and Adam Janin,

who helped me tremendously in learning Perl and the meeting recorder infrastructure.

Barbara Peskin and Chuck Wooters have been excellent project leaders, and Morgan's

navigation helped this ship set sail. Annotators Sonali Bhagat, Ashley Krupski, and Raj

Dhillon have provided both pristine dialog act annotations and an endlessly good time in

the office. Last, but certainly not least, Liz Shriberg and Andreas Stolcke deserve my

deepest gratitude for their patience, time, and constant willingness to help me with this

project and report. Without their guidance and support my databases would be empty, my

models would perform at chance, and my experience at ICSI would certainly not be the

same.



Table of Contents

Chapter 1. Introduction ...............................................................................................1
1.1 The importance of meetings ..............................................................................1
1.2 The importance of prosody ..............................................................................1
1.3 Overview and scope of this project ...................................................................2
1.4 Tasks .................................................................................................................3

1.4.1 Task 1 .....................................................................................................4
1.4.2 Task 2 .....................................................................................................5
1.4.3 Task 3 .....................................................................................................5
1.4.4 Task 4 .....................................................................................................6
1.4.5 Task 5 .....................................................................................................6

1.5 Outline of chapters .........................................................................................7
Chapter 2. Methods .....................................................................................................8

2.1 Meeting recordings ..........................................................................................8
2.2 Data and segmentation ....................................................................................9

2.2.1 Data and train/test partition .........................................................................9
2.2.2 Data presegmentation ............................................................................10
2.2.3 Transcripts ..............................................................................................11

2.3 Word alignments ..............................................................................................14
2.3.1 Forced alignments ..................................................................................14
2.3.2 Recognition-based alignments .................................................................14
2.3.3 Alignment files ........................................................................................15

2.4 F0 extraction and stylization ............................................................................16
2.4.1 Pitch normalizations ............................................................................17
2.4.2 Pitch stylization ........................................................................................18

2.5 Language Model ..............................................................................................20
2.6 Prosodic models ..............................................................................................22

2.6.1 Features for prosodic classifiers ...........................................................22
2.6.2 Pause and vowel duration features ...........................................................24
2.6.3 F0 features ..............................................................................................25
2.6.4 Speaking rate features ............................................................................28
2.6.5 Energy features ........................................................................................28
2.6.6 Nonprosodic features ............................................................................29
2.6.7 Overlap features ........................................................................................30
2.6.8 Lexical features ........................................................................................31
2.6.9 Contextual features ..................................................................................31
2.6.10 Prosodic trees ........................................................................................32

2.7 Model combination ........................................................................................34
Chapter 3. ASR results and observations on overlap ................................................36

3.1 ASR results ....................................................................................................36
3.2 Observations on overlap ..................................................................................40

Chapter 4. Results ....................................................................................................43
4.1 Task descriptions ..............................................................................................44

4.1.1 Task 1: Predicting sentence boundaries (s-ns) ..........................................45
4.1.2 Task 2: Predicting disfluencies and sentence boundaries (s-di-n) .............46
4.1.3 Task 3: Distinguishing declarative sentences from questions (s-q) .......46



4.1.4 Task 4: Predicting Jump-In points ...........................................................48
4.1.5 Task 5: Predicting Jump-In words ...........................................................49

4.2 Task 1 results ...................................................................................................50
4.2.1 All feature regions ..................................................................................50
4.2.2 Online experiments .................................................................................54

4.3 Task 2 results ....................................................................................................57
4.3.1 All feature regions ..................................................................................58
4.3.2 Online experiments ............................................................................63
4.3.3 Speaker specific results .......................................................................65

4.4 Task 3 results ....................................................................................................68
4.4.1 All feature regions ..................................................................................69
4.4.2 Previous only features ............................................................................72

4.5 Task 4 results ....................................................................................................75
4.6 Task 5 results ....................................................................................................80
4.7 Cross task comparisons and overall discussions ................................................82

Chapter 5. Conclusion ..............................................................................................84
References ...............................................................................................................87
Appendix: Feature Descriptions ............................................................................89



1. Introduction

1.1 The importance of meetings

In recent years, speech researchers have taken a greater interest in the automatic

processing of natural multi−person meetings. Meetings constitute a ubiquitous form of

human communication, and present unique research challenges (A. Waibel et al., 1998,

N. Morgan et al., 2001). While better word recognition is an important goal in much of

this work, interest is also shifting toward higher−level tasks, such as information

extraction and summarization. 

For such tasks to succeed, information currently not in speech recognition output,

such as punctuation, disfluencies and overlap markings must be available. Figure 1.1

illustrates the importance of these markings. The first line of the figure show a potential

word stream, as derived from a speech recognizer from a far field microphone, while the

last lines contain the same words but includes punctuation and turn taking markings.

Readability and understanding increase dramatically in the latter case, showing that while

extremely important, words alone do not paint the whole picture in conversation

understanding.

 

Without Structure:
did you know that yeah i went to the beach oh today really was it crowded no 

With Structure:
A:                        I went to the beach today                   No.

B:                Yeah.                     Oh really?  Was it  Crowded?   

C: Did you know that? 

Figure 1.1 A word stream with and without punctuation and turn taking annotations. Overlapped words
are in boldface and clearly indicate where speakers interact with one another. 

 

1.2 The importance of prosody

In order to develop successful automatic classifiers for these tasks, features

associated with such events and that can be extracted automatically must be utilized.

While words themselves play a role in indicating certain punctuation and dialog events,
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many of the cues used to predict semantic and pragmatic structures are characteristics

beyond word identities alone. Prosody, or the timing, pitch, and energy patterns of

speech, has been observed to be related to such events as punctuation and turn−taking (E.

Couper−Kuhlen and M. Selting, 1996).  Furthermore, since prosodic features are, by

definition, independent of word identity, one can expect that they may offer robustness to

automatic speech recognition errors for machine processing of meetings. 

1.3 Overview and scope of this project 

 In this study prosodic features such as pitch, speaking rate, energy, and pause

durations are automatically extracted and modeled for the purpose of classifying a variety

of punctuation and dialog events. In past work  (E. Shriberg, et al., 2000, E. Shriberg, A.

Stolcke, D. Baron 2001, J. Buckow, et al., 1999),  prosodic features have been shown to

be extremely useful in punctuation, disfluency, and interruption event classification. This

report focuses on extending the use of prosody to the domain of natural meetings using a

collection recorded at the International Computer Science Institute (ICSI).   This corpus

presents new challenges, because speakers are familiar with one another, have access to

other cues such as gesture, are not typically constrained to one topic as they are in

corpora such as Broadcast News or Switchboard, and because of the high degree of

speaker overlap and presence of multiple speakers. 

This study uses automatically derived prosodic features, including  stylized pitch,

pause durations and energy statistics, based on both forced alignments and recognized

words, to build a prosodic classifier for various events of interest. An analysis of

performance degradations in the ASR−based feature set is included and provides some

useful observations regarding the feasibility of a fully automatic system in the presence

of word errors.  The value of "online" classifiers, which have no access to future features

and would therefore be used in real time systems, is assessed and compared to the case of

the full feature set. This comparison is relevant for ongoing research (Y. Matsusaka, et

al., 2001)  where robotic conversational agents participate in meetings and interact with

human participants. In order for such a machine to function well, it must master the
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prediction of pragmatic and semantic events. 

Where applicable, results are compared to a language model classifier, which

provides a measure of the usefulness of words alone in our classification tasks. Finally,

the performance of a combined prosodic and language classifier is assessed. These event

classification systems allow for feature analysis across tasks that provide important

insights on the usefulness of various cues in both human and machine prediction. 

1.4 Tasks 

This section gives a high−level description of the five classification tasks
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Figure 1.2: Excerpt from a meeting illustrating overlaps, punctuation boundaries, jump−in points,
jump−in words, and stylized F0 contours for two speakers (female = top, male=bottom). Spurts, or
regions of speech with no more than 0.5s of silence, are delimited by vertical lines enclosing words.
Circled tags mark punctuation events, including <S> (sentence boundary), <INC> (incomplete sentence)
and <Q> questions. Overlap events are indicated by square boxes. A jump−in point for one speaker
corresponds to a jump−in word for the other and vice versa. Note than jump−in words are always spurt−
initial, as defined in the text.



explored in this study.  (The reader is referred to Section 4.1 for a more detailed

description of the tasks.)  Figure 1.2 shows a stretch of speech and is referred to below in

the descriptions of the tasks.  Table 1.1 offers a brief description of the tasks, including

the number of event classes and whether the classes are structural units (such as sentences

and disfluencies)  or dialog and speaker interaction related. Punctuation based classifiers

greatly increase the readability of a word stream, while the dialog and interaction tasks

provide useful information about meeting flow and participant behavior. 

Name Description # classes

s−ns sentence/non−sentence 2

Punctuation s−di−n   
sentence/disfluency/neither

3

Punctuation and

Dialog Act

s−q Question/declarative
sentence

2

Interaction Jump−In Points Word boundary a point of
interruption for a bg

speaker?

2

Jump−In Words First word of spurt in
silence or someone else’s

speech?

2

Table 1.1: Description of 5 tasks discussed in this chapter, along with number of classes for each task

1.4.1 Task 1

Task 1 aims to distinguish sentence boundaries from fluent (non−sentence end)

word boundaries  (E. Shriberg, et al., 2000, Shriberg et al. 2001),  In order to simplify

the class groupings, disfluencies, fluent boundaries, and incomplete sentences are all

grouped into one class, despite the fact that there are inherent prosodic differences among

these groups. Similarly, question ends and declarative sentence ends are also grouped

together. The latter two events are denoted by the circled <S> and <Q> markings,

respectively, in Figure 1.1.  The following example illustrates the word boundary labels

for this task. 
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 do    you   −     i     know .   what  was     that  ? 
   <ns>  <ns>     <ns>      <s>      <ns>    <ns>       <s>



For Task , 1 the effects of using recognized words are examined, as is performance

degradation when the classifier has access only to past features (features occurring before

the label boundary). 

1.4.2 Task 2

Task 2 is also a punctuation classification task, but where each word boundary is

classified as a  sentence−end, disfluency, or fluent boundary. This is similar to Task 1, 

but disfluencies and incomplete sentences are considered in a separate class, as shown in

the figure below:

The introduction of a separate disfluency class is of interest since there are different

inherent prosodic characteristics between tokens in this class and those in the <n> class.

As in Task 1, the role of word errors, along with the "online" feature set performance is

examined.  In addition, speaker specific data sets are used to train models, to examine

how smaller, but more prosodically and lexically consistent data sets fare, as compared to

the full speaker data set. 

1.4.3 Task 3

In Task 3, sentence ends are classified as either question or declarative sentence

ends as shown below:

Note that since only sentence ends are considered, language model performance is not
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 do    you   −     i     know .   what  was     that  ? 
   EXC   EXC      EXC     <P>       EXC    EXC       <Q>

EXC = Excluded, Q = Question, P = Period

 do    you   −     i     know .   what  was     that  ? 
   <n>   <d>      <n>      <s>       <n>    <n>       <s>



included in this case, since the LM used in this report requires the inclusion of all

datapoints (word boundaries). The goal here is to find out whether there are inherent

prosodic differences between question and sentence ends. 

1.4.4 Task 4  

Task 4 and 5 are more exploratory and deal with interactive conversational events

such as overlap and speaker interruption. In Task 4 the following question is asked:

"given the prosodic features of a foreground speaker, can classifiers predict where a

background speaker will interrupt?" Points of interruption, as seen in Figure 1.1,  are

called "Jump−In Points" and an example is shown below. 

Note the inherent uncertainty involved in this classification task:  decision trees

attempt to predict prosodically advantageous points of interruptions with no knowledge

at all about whether the background speaker wanted to interrupt at other places but did

not.

1.4.5 Task 5 
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Label:     1   EXC EXC   0  EXC EXC 
FG:                 when was this?  oh  i’m sorry
BG: well  the other day i was working 

          
    FG: Foreground, BG: Background
1:Jump In Word, 0: Not a Jump−In word
EXC: Excluded Word (not classified)

Label:    0     0           0      1        0  0      0
FG:   did   you   remember   the  score   of    the   game
BG:                                   wait    a     second 

FG: Foreground, BG: Background 
1 = Jump−In Point, 0 = No Jump−In Point



Finally, Task 5 analyzes spurt initial words (the events corresponding to Jump−In

Points), where a spurt is defined as a region of speech with no more than 0.5s of silence.

These spurt initial words are classified as starting in silence or starting in another

speaker’s speech. The latter case is considered a Jump−In Word and is illustrated below:

As in Task 3, since not all datapoints are included in this task, a language model is not

used in determining a word−only baseline metric. 

1.5 Outline of Chapters

This report is organized as follows: Chapter 2 discusses the steps that were

required in building and organizing the prosodic and lexical databases used in the tasks

described above. Specifically, automatic speech presegmentation, human annotation,

pitch extraction and stylization,  and feature descriptions are included, along with a

discussion of the prosodic and language model classifiers. Chapter 3 presents ASR results

and observations on the nature of overlaps in the Meeting Recorder corpus. Chapter 4

reports the results and discussions of the five tasks, with comparisons across tasks and

conditions. Finally, Chapter 5 concludes the study and offers some ideas for future work.
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Label:     1   EXC EXC   0  EXC EXC 
FG:                 when was this?  oh  i’m sorry
BG: well  the other day i was working 

          
    FG: Foreground, BG: Background
1:Jump In Word, 0: Not a Jump−In word
EXC: Excluded Word (not classified)



2.  Methods 

2.1  Meeting recordings

The  tasks and experiments described in this thesis use the ICSI Meeting

Recorder corpus (Morgan, et al., 2001)  as the data set. This corpus currently contains

meetings recorded at ICSI  and may in the future include meetings from other sites

including the University of Washington, Columbia University and SRI. 

Meetings were recorded from February 2000 and continue to be recorded as this

report is being written. The target of 100 hours of recording should be completed by

summer, 2002.  ICSI meetings were conducted in an on−site conference room, which

was equipped with various types of microphones, including close talking head−mounted

mics, table−top microphones for far−field work, and inexpensive microphones attached

to a mock PDA.  Considering the number of open research questions within the meeting

context, the different microphone types allow for analysis in both near−field and far−

field domains.  

As described in (ICSI MR web page, 2001),  the audio signals were fed to an A/D

that was connected to a workstation in the back of the room. This workstation displayed

microphone levels on the screen and allowed the meeting operator to adjust gains where

appropriate, providing one setting per channel at meeting onset. 

Before their first session, meeting participants were required to fill out a form that

asks a number of questions, including speaker name, gender, degree of nativeness in

American English,  and age.  These statistics were committed to a centralized database to

allow partitioning of speakers by these various features. Once a speaker is in the

database, he or she has a unique speaker tag which is embedded in the file names of

utterance level audio segments. As explained below, statistics like gender, name, and the

native/non−native distinction, are extremely important because many experiments,

including ASR, interruption prediction, and punctuation modeling, are correlated with

some or all of these factors.  

Each meeting generates a "KEY" file which contains information about speaker

participants, microphone gains, dates and times of recording, and any other information

8



deemed relevant (i.e., poor recording on a channel). 

2.2  Data and segmentation

2.2.1 Data and train/test partition

This research focusses on three meeting types, as they have the most data. These

meeting types are the Bmr, Bro  and Bed meeting sets. Table 2.1 describes the amount of

data used in this study for each meeting type. The Bmr set is composed of 13 meetings

about the Meeting Recorder project itself. These recordings usually involve between four

to eight speakers, most of whom are native speakers and familiar with one another,

creating a  speaking environment rich in overlaps, interruptions, disfluencies and other

conversational events of interest. The Bro meetings are recorded discussions on

recognizer front end issues and tend to have more of a seminar style, with one active

speaker holding the floor for a majority of time. The Bed meetings, which are comprised

of various topics in ICSI’s Artificial Intelligence group, fall somewhere in between the

Bmr and Bro types, in terms of speaker distribution.  These contrasting styles provide for

a different landscape in terms of speaker interaction and interruptions.  A more detailed

discussion on the pervasiveness of overlaps across meeting types is found in Chapter 3.

                      Meeting Type

Bed Bmr Bro Total

Number of Meetings 7 13 12 32

Total Speech Duration 7.0 h 13.7 h 11.2 h 31.9 h

Transcribed Words 67,546 145,150 94,261 306,957

Speech Spurts 8,254 15,414 11,821 35,989

Table 2.1 Data Collected. Speech spurts are regions of speech interrupted by pauses of no greater than
500 ms. 

The full data set was partitioned into train and test sets, where the test set had

approximately 18% of the total meeting time.  In partitioning, one must be careful not to
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include the same data in both sets. To avoid this problem, individual meetings were not

allowed to be split up across the train/test sets, because if overlap speech existed, for

example, background speech in the train set may be in the foreground of a train test, and

the prosodic models trees may be inadvertently trained on this test case. While meetings

were not split across the test and train boundary, some speakers appear in both sets. This

unavoidable since so many speakers appear in multiple meetings.  This is also a perfectly

reasonable scenario in a real−word application, where meetings will involve a mix of

recurring and unknown participants. 

2.2.2 Data presegmentation

Once a meeting was recorded, a speech/non−speech detector (T. Pfau, et al.,

2001)  segmented each channel into regions of interest. This presegmentation technique

employs a hidden Markov model (HMM) that  has two main frame−level states, one for

speech and one for non−speech frames along with a number of intermediate states that

impose speech to non−speech (and vice versa)  time constraints. In addition to this

structure, the presegmenter also does additional post−processing of numerous features

(energy, zerocrossings, loudness) that accounts for significant detection of a speaker’s

cross talk on a different channel − an important issue when recording multiple speakers

in close proximity of one another.  The result is "segments" which are short , ideally

utterance−level waveforms that are surrounded by some user−defined amount of silence.

In our experiments this value was set to 500ms, which is the same value used in

Switchboard acoustic segmentation. 

After segments have been defined, the meeting was either handed off to human

transcribers for creation of a manual transcript, or run through an automatic speech

recognizer (ASR) for an automatic version of the transcript. Originally, it was intended

that the segment boundaries over which ASR was to be run would not be hand−adjusted

at all, thereby providing a purely automatic database. After numerous experiments,

however, it was decided that non−annotated segmentations were not accurate enough to

feed to the speech recognizer, and that ASR segments would also  be hand adjusted so as

to maximize word recognition (and thereby prosodic feature) performance.  In many

ways, such a system is preferred because the purpose of this research is to assess the
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usefulness of prosodic features,  not the segmentation. There is reason to believe that an

accurate presegmentation would be available in the future. Thus, by using hand−adjusted

(assumed to be ground truth) segment boundaries, poor performance in classification

tasks can be isolated to feature extraction and/or processing, rather than to some other

step which is not an essential part of this research. 

Figure 2.1  illustrates how word times are extrapolated in both the ASR and the manual

transcription cases. 

2.2.3 Transcripts 

In order to utilize prosodic features at the word level, reliable word boundaries

are necessary for delineating where words start and end. In the ASR databases, word
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Figure 2.1: Word time extrapolation. Meetings are
recorded and then either manual or automatic

transcripts are generated. In the manual case, forced
alignments are used to create word times.



times were retrieved from the backtraces of recognition results, but for manual

transcripts, forced alignments were used to generate these word boundaries. Once

listeners had completed creating transcripts, a number of steps were taken to prepare the

forced alignment. First, transcripts were separated into channel specific reference files.

The transcripts themselves have the following form: 

<Sync chan="3" time="498.566"/>

N: Yeah, then we’re *completely gone. That’s

− 

<Sync chan="3" time="500.694"/>

{VOC laugh}

<Sync chan="4" time="497.290"/>

J: uh, no problem. I mean, I’m not saying

accents. I’m say− I’m saying fluency. Well,

yeah.

<Sync chan="3" time="502.540"/>

..

<Sync chan="4" time="502.540"/>

..

<Sync chan="1" time="505.198"/>

A: Well, I think that, um ..

Since the above form includes all channels in one file, some processing is

required in order to make word reference files on a per channel basis. Transcript parsing

yielded files which are much more amenable to our processing steps: 

Bmr006_me013−s1−w1−3_0486240_0494059 [laugh]  Oh<EXC> You’re not  talking about

foreign language at all<PER> You’re just

talking about <D>  [laugh] 

Bmr006_me013−s1−w1−3_0494059_0498566 EMPTY

Bmr006_me013−s1−w1−3_0498566_0502540 Yeah<COM> then we’re completely gone<PER>

That’s <D>  [laugh]

Bmr006_me013−s1−w1−3_0502540_0502920 EMPTY

Bmr006_me013−s1−w1−3_0502920_0505209 The <D> the habits are already burnt

in<PER> But <D> 
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Bmr006_me013−s1−w1−3_0505209_0512320 EMPTY

Bmr006_me013−s1−w1−3_0512320_0512826 Yeah<PER> 

 

Example waveid:

Bmr006_mn005−s1−w1−2_4232466_4233142

Bmr | 006 | m | n | 005 | s1 | w1 | 2 | 4232466 | 4233142

             
Example Category Values Notes

Bmr Meeting Type B**  meetings recorded at ICSI
W** meetings recorded at UW
S** meetings recorded at SRI
I** meetings  recorded at IBM
N** meetings recorded  at NIST

006 Meeting Number 001−999
m Gender m/f male/female
n Native American

English Speaker?
e/n english/non−native

005 Speaker Number 001−999
s1 Microphone Type s1

 
Sony handheld mic WRT−

807A 
s2 Sony headset mic ECM−

310BMP
c1 Crown headset mic CM 311

A/E
l1 Sony lapel (lavalier) ECM−

77BMP
p1 Plantronics monaural headset

mic
a1 Andrea monaural headset mic

NC−50
w1 Connection Type w1/j1 wired jack 

s1/s2  Wireless Sony
transmitter/receivers

2 Channel Number 0,1,2,3,4,5,8,9,A,B
4232466 Start Time in ms 0000000−9999999
4233142 End Time in ms 0000000−9999999

Table 2.2 Segment filename explanation
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This file is a two column field, with the left column indicating the segmented filename

and the right column corresponding to the words in that filename. Table 2.2 describes the

different fields within the segment file names. These filename attributes allow for unique

filenames across different meetings across different possible sites and  contain important

channel−specific information such as speaker, microphone type, and whether the speaker

is a native American English speaker.

2.3  Word Alignments

2.3.1 Forced alignments

All the reference files for a particular meeting were concatenated together and

each line sent to the recognizer, which attempted to find word boundaries for that

segment’s transcription, within the audio file provided. The forced alignments were

created using the alignment option of the SRI Hub 5 recognizer (A. Stolcke, et al., 2000),

which employs vocal−tract length normalization and feature normalization on a per−

channel basis. The alignment attempts to match words from the transcript to the acoustic

signal by finding the most likely sequence and duration of phones in each word, based on

the SRI dictionary. Any words which were not present in the dictionary (i.e., technical

terms, proper nouns, foreign words) are reported as "out of vocabulary", were entered

manually into the dictionary, and forced alignments were recalculated. 

2.3.2 Recognition−based alignments

A much more difficult but interesting task is to extrapolate these time boundaries

from automatic recognition results and compute features from there. As mentioned the

use of hand−adjusted segment boundaries, makes this step not completely automatic, but

it is assumed that perfect segmentations will be available in the future. For recognition,

the same recognizer (SRI  March 2000 Hub 5)  that was used in alignments was used

here, with the addition of phone−loop speaker adaptation on each conversation channel,

excluding areas with crosstalk.  In addition, a bigram language model (LM) of about

30,000 words was used. The LM was trained on Switchboard, CallHome, and Broadcast
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News data. These three corpora provide a wide array of speech contexts: Broadcast News

is read news programming, which is a very different style to spontaneous conversations,

but Switchboard and CallHome provide a large body of  phone conversations that are

extremely helpful in modeling word usage and turn taking endemic to multi−party

conversations such as meetings.  

Note that the recognizer was not tuned specifically to the meeting corpus. This

was mainly to allow comparisons across these varying corpora. Certain front end

features, such as downsampling to 8KHz (to telephone bandwidths from the original

16KHz sampling rate)  remain in the recognizer, though preliminary experiments showed

negligible performance loss due to this downsampling. ASR results are reported in

Chapter 3. 

2.3.3 Alignment files

Word boundaries were automatically generated when ASR was performed on a

meeting−channel side. The alignments (either from ASR or the forced alignments) were

further processed into a more useful database file. These alignment files take the

following form: 

Bmr006 c3 habits 3 8 503.43 0.38 hh:8_ae:8_b:6_ax:6_t:4_s:6 

Bmr006 c3 are 4 8 503.81 0.09 er:9 

Bmr006 c3 already 5 8 503.9 0.22 ao:3_l:3_r:3_eh:3_dx:3_iy:

Bmr006 c3 burnt 6 8 504.12 0.3 b:9_er:11_n:3_t:7 

Bmr006 c3 in 7 8 504.42 0.21 ih:11_n:10  

The first two fields indicate the conversation (meeting and channel), then the word is

listed, along with the word position in its segment, the total number of words in a

segment, the start time of the word (in seconds), and the word duration. The latter two

features described are used to line up pitch values to pitch features. The last field shown

above is a concatenation of all phones in a particular word, along with the frame length

of that particular phone. Phone features were later separated into vowel/non−vowel

phones and vowel phones were then used to give a first order approximation to speaking
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rate.

2.4 F0 extraction and stylization

 One main goal of this work is to automatically extract robust and useful prosodic

features which will be used in classification experiments. To accomplish this goal, pitch

features must be extracted from the audio files and then lined up with the word times.

Then word−level feature values can be calculated, based on the time boundaries

provided. 

In creating pitch contours for our data set, several important steps were taken.

First, it was necessary to extract raw F0 values from the audio signal. A number of

techniques are available for pitch detection (B. Secrest and G. Doddington, 1983, W.

Hess, 1983), but the ESPS get_f0 package (Entropic, 1993) was used in this work for

convenience.  This package, based on (D. Talkin, 1995)  uses the normalized cross

correlation function (NCCF) which is more robust to fast F0 variations than a simple

autocorrelation function (ACF). The NCCF function is defined as: 

φi,k=
∑j=m

m+nB1
s j s j+k

em em+k

Where m is the sample number for frame i and n is the length of the analysis window.

The normalization factor e is defined as: 

e j=∑l=j

j+nB1
s l

2

Both ACF and NCCF correlate adjacent samples within a potential vocal frequency range

as they look for potential periodicity, but the former is more able to discern rapidly

changing F0 values, and is therefore used in this study. 

Before this correlation function is computed at each frame, get_f0 first

downsamples the audio data signal and finds areas of high correlation in this coarse
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version of the signal. Then more careful analysis is employed near the areas of interest,

producing a final high resolution NCCF signal. Once this is completed, dynamic

programming is used to determine the best F0 value and voicing state (voiced/unvoiced)

based on various combinations of local and contextual artifacts.  F0 features were

extracted from each speech segment and are saved out for further processing.

Alternatively, pitch values over an entire channel could have been computed, but this

would be significantly more data than required, because many speakers have relatively

few areas of speech on their channels. 

2.4.1 Pitch normalizations

Although this pitch estimation technique is fairly robust, it is, like other pitch

trackers, prone to octave errors. Along with this potential source for error, get_f0

does not provide the user with any sense of relative pitch rise for a particular speaker. If,

for example, a female speaker has a pitch value at some frame of say, 500 Hertz, this has

a different meaning than if a male speaker had the same frame level pitch value. Pitch

normalization is necessary to account for both of these concerns.

The first goal of this step was to identify the lowest, or baseline, pitch value for a

particular speaker operating in normal (rather than halving or doubling) mode. To

determine this baseline pitch value, all of the F0 values from a speaker’s channel are

accumulated and fitted to a log−tied normal (LTM) model, as shown in Figure 2.2. 
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Figure 2.2: Log−Tied Model for pitch detection. Area H represents
observations of pitch halving, while area D represents pitch

doubling events. Line BL indicate the Baseline for correct pitch
detection.



This model presupposes that there are three distinct means in the F0 distribution.

The center mean represents the most common non−halved, non−doubled pitch value,

with a normal distribution in log domain. Area H in Figure 2.2  represents pitch values

which have been halved as a result of tracking error from the get_f0 routine or vocal

fry (a "creaky" voice condition when only the front part of the speakers’ vocal cords are

vibrating) , whereas area D represents the doubled region.  All real world pitch trackers

are subject to a certain amount of inherent doubling/halving, despite attempts at

removing such errors via post processing and dynamic programming. Nonetheless, it is

important to account for errors, and this LTM model uses an expectation maximization

(EM) algorithm to find the correct mean and extrapolates means under the halving (

log(u/2) ) and doubling ( log(2u) ) regimes.  

Once this EM algorithm is completed, LTM parameters such as mean and

variance, were returned to the user. From these values,  an important baseline metric that

is crucial in understanding relative pitch rises and falls is inferred. In Figure 2.2, the pitch

value BL indicates the point at which the probability of an accurate pitch is equal to the

probability of halving. In our processing and feature extraction, this was taken to be the

lowest non−halved pitch value, or baseline F0 value −− the point from which all pitch

rises and falls are to be measured. 

2.4.2 Pitch stylization

After the distribution of pitch values has been modeled, the frame level F0 values

are to be stylized to remove microintonations along with noisy pitch values and errors

from halving/doubling as done in (K. Sonmez, 1998). In addition, a linearization of the

data would be ideal, because line fits would provide a suitable and tractable method of

interpreting tonal contours, shapes, and ultimately, slopes.  Each segment was run

through the pitch tracker, and frame level raw pitch features were again determined.

These features were then compared to the LTM model and halving/doubling posterior

probabilities are computed. Those frames which had halving or doubling posteriors

greater than the posterior probability of "normal" speech were automatically excluded

from prosodic feature calculation, as they are unreliable due to either poor pitch tracking

or the aforementioned vocal fry phenomenon.  
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Following the computation of halving/doubling posteriors, median filtering was

applied to the raw pitch values. Median filtering is a non−linear filtering step which is

similar to  low pass filtering (LPF) in the sense that slight variations in the signal are

removed, but unlike a low pass filter, median filtering still preserves the integrity of

"edges", or sudden transitions to a new level in the signal. The median filter looks at five

samples and rather than averaging them like an LPF system, chooses the value which

falls in between the other two. Five samples were chosen as this value allowed for a nice

tradeoff between smoothing and edge preservation.  A comparison between the result of

low pass filtering and median filtering can be seen in Figure 2.3. Because median

filtering requires three samples for successful processing, the first and last two frame

values in a segment’s pitch file were discarded, but this loss is insignificant since

segments generally tend to be significantly larger than these 40ms of pitch values near

the segment boundaries.  

 A piecewise linear fit  (PWL) algorithm based on (K. Sonmez, 1998)  was used to

create line estimates for the median−filtered F0 values. As mentioned above, these

estimates are extremely useful for error correction and in quantifying tonal trends. On a
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Figure 2.3: A comparison between low pass filtering (LPF) and median filtering.
Median filtering attains smoothing while preserving edges. This operation also
removes outlying frames; sample 4 above is removed after median filtering, but
averaged in the case of the LPF. 
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particular voiced region, the PWL algorithm attempted to fit  lines by minimizing the

following mean square error (MSE) criteria:

where f(t) is the linearized pitch estimate and g(t) are the raw F0 values, and Xk and Yk

are the node locations . After the algorithm picked these best fit nodes, the resultant pitch

contour is the summation across all of these nodes for the voiced region in question:  

Figure 2.4 shows a stylized pitch contour and its original raw F0 pattern.

2.5 Language model
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Figure 2.4: Raw and stylized pitch contours for a  stretch of speech



In order to determine the relative gain of using prosodic features in the various

classification tasks, it is important to provide a baseline performance metric over which

one can assess the value of the system. One way to tell how a prosodic feature based

system performs is to compare it to a system which only uses language model (LM)

features. Such a system would consider certain events, such as punctuation, as hidden

events , while transcribed (assumed true) or ASR gotten words are treated as

observations.  Figure 2.5 illustrates this idea. 

The purpose of the LM is, as mentioned above, to determine the usefulness of the

prosodic features alone. In other words, this language model will be used for a

classification task to see how certain events are tied to the words themselves. For

example, consider, a simple two class punctuation task, where the only class choices are

period/no period. In this case the LM will train on a large amount of words and will most

likely never come across the word "I" followed by a period, since it is very rare for this

word to end a well−formed sentence. Conversely, a forward observation (when allowed)

of the word "I"  is a strong indication that a sentence boundary exists before this

observation, since "I" is frequently used to start sentences. After learning this, the LM

will output a very low posterior probability for a sentence−ending punctuation mark (i.e.,

"." , "?", etc.)  if the word "I" is seen as a test case, and performance should be relative

high, based on word knowledge alone. But other words are not as obvious, and it is these

cases for which the prosodic modeling is useful.  

The LM for punctuation is a hidden−event N−gram model of the type used in

(Shriberg, et al., 2000). Word and boundary type sequences are modeled by a backoff
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Figure 2.5: Words are observations to the LM which attempts to predict
hidden events such as punctuation



trigram model, trained in a supervised fashion from annotated training data. (Higher−

order N−grams did not perform better, due to lack of sufficient training data.) In testing,

the N−gram is interpreted as a hidden Markov model in which the boundary types are

treated as hidden states, and the words as observations. The forward−backward algorithm

for HMMs is used to recover the best boundary types as well as their posterior

probabilities.

The hidden−event  LM (A. Stolcke, et al., 1998) used in predicting

sentence boundaries and disfluencies comes in two variants.  In one case, all events,

including the unmarked word boundary type, are modeled by special tags occurring

between words.  The second variant does not represent unmarked boundaries by tags, and

models them implicitly by the absence of a tag.  The latter type of LM captures more

words in the scope of an N−gram, and was found to work better in experiments were

both past and future words were used to predict events (forward−backward computation).

However, in "past−only" prediction, the LM that represents the unmarked case with an

explicit tag was found to give better results; the "implicit unmarked" LM never predicts a

marked event (sentence boundary or disfluency) in that case.  This could be a subtle

side−effect of the way probabilities are smoothed by back−off in the LM, and needs

further investigation.

The LM was used in Tasks 1,2, and 4, as these are the tasks that do not exclude

any data. Tasks 3,5 only look at a non−contiguous subset of words, and were therefore

not compatible with our LM which expects a continuous stream of words.

2.6 Prosodic models

2.6.1 Features for prosodic classifiers

  The processing steps discussed in Section 2.6 yielded stylized pitch values for all

the regions of interest on a particular channel. In order to extract useful features for each

word, it was necessary to line up the word boundaries with this frame level pitch file, and

pull out the appropriate values for each word. Figure 2.6 graphically explains this step of

lining up word boundaries with computed pitch values. A script systematically selected
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all the frames that fell within a word’s start and end times and stored these pitch values in

a large database, along with the word and time boundaries. Once frame level pitch

samples had been separated into the appropriate word bins, pitch values are considered

on a word by word basis, thereby creating a word−level feature granularity. 

Feature extraction regions

Along with features for the current word, the prosodic classifier also had access to

previous and future word features, along with prior and future boundary features. A toy

example is shown below, where the word "you" precedes the current word "bet" and the

period following "bet" resides in the forward boundary: 

Tasks 1,2,3 and 4 examine the effectiveness of an on−line classifier (which has only

previous feature information) and only use the features to the left and including the

current word.  Feature names include a prefix (F_, C_, P_) to indicate relative position to

the current word, a base (i.e., PAU_DIR), and a possible suffix (_R, _Z, _N) to indicate
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Figure 2.6: Stylized F0 values (in Hz) are matched up with word boundaries. In the case illustrated here,
the words "Channel" and "One" are treated as time bins and are given allocated their frame−level pitch

values (stylized and raw) according to their time boundaries



the normalization method, where necessary. 

What follows is a description of the methods and rationale behind the extraction

of a number of different types of features. Before calculating these features one

intuitively has an idea of the relative importance of the features, either from prior

experiments or theoretical studies, but ultimately the decision tree classifier (to be

described below) will use a number of iterative algorithms to decide on how useful these

features are in various classification tasks. With this idea in mind, many features are

computed, some of which may be considered less useful than others, and allow the

learning algorithm to sort through the possible combinations, rather than betting against

any particular features a priori.

2.6.2 Pause and vowel duration features

Pause and vowel duration features are both extremely useful sets of features.

Pauses indicate breaks in prosodic continuity that may indicate boundaries between

sentences. Vowel durations are also important as they provide a way to measure speaking

rate, which is very useful since speakers’ words generally start fast and words near

semantic boundaries, such as sentence ends,  are often drawn out. As Chapter 4 will

show, these feature sets are crucial in various tasks. 

Vowel durations (VOWEL) were taken from forced alignment or ASR outputs

and normalized by Switchboard vowel statistics. Vowel durations were chosen over

phone durations because they are more directly contribute to speaking rate than

consonants and they are likely to be more robust against  mistakes from ASR.  Vowel

and vowel−triphone (TRIVOWEL)  durations were normalized against Switchboard

statistics because there was much more data in this corpus, although future MR statistics

can be computed, and results can be expected to improve. For this project  we use raw

vowel duration,  a normalized version based on ratio of value to mean (_N), and a z−

score (_Z), which also incorporates second order statistics in normalization. 

 As mentioned above, pause duration features (PAU_DIR) can be very good

indicators of events such as sentence ends. If, for example, F_PAU_DIR, the time

between the current word and the next word is very large, there is a good chance that this
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boundary should have a period, question mark, or other sentence−ending label. Because

of this reason, this feature was used extremely often when forward features are available.

As Chapter 4 will show, this feature was also very important in predicting times at which

the current speaker is interrupted; there is often a large delay between the current word

and next word when this event occurs, especially if the speaker decides to abandon his

sentence.  

2.6.3 F0 features

F0 feature were calculated over a variety of different frame ranges for words,

windows, and  segments. These features provide the decision trees with a plethora of

tonal information for each word. Pitch movements are also very good indicators of

events such as sentence ends, as speakers generally start utterances in a high pitch range

and drop low as their words come to an end. These features are also used to examine if

speakers create certain prosodically favorable situations for other speakers to jump in

(Task 3) and whether those who do jump in altered their prosodic word characteristics

from the case when starting an utterance in silence (Task 4). 

Local range features:

These features computed the minimum, maximum, mean (MIN, MAX, MEAN)

and last (LAST)  F0 values for each word position, excluding values which are unvoiced

(no F0) or halved or doubled. They were then normalized by the baseline F0 values

computed in the LTM model using a linear difference (DIFF) , log difference

(LOGDIFF), and log ratio (LOGRATIO).   Prosodically, these numbers provide a picture

of the overall position of the word with respect to the computed baseline. In order to

provide some measure of robustness of against poor word boundaries or short words

which may not have data samples over which to calculate the above F0 features, also

calculated are  MAX/MEAN/MIN values for a window of F0 values which begins at the

last frame of a word and stretches backwards N frames, where N={10,20,50,80,100}. If

the last F0 value was undefined, the last F0 value from the window was chosen. This

window can stretch past the current word and into the previous word if no good values
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are available. Figure 2.7 indicates the regions over which these two sets of features

operate. Note that in this case, LAST is not defined for the word, and the last value for

the 20 frame window is below the baseline (assumed to be halved), so a longer window

is necessary (50, 80 or 100) to capture the last F0 value. 

The stylized raw pitch values lend themselves to direct pitch slope calculations,

since the fitting algorithm uses line fits. The last slope in a word (LAST_SLOPE) and in

the window (LAST_SLOPE_WINDOW) are used as features that indicate prosodic

change locally. 

Global range features

In order to provide for a supra−word context by which one could measure pitch

movement in an utterance, segment−level pitch statistics similar to those computed
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Figure 2.7: F0 feature ranges and baseline normalizations for the word
"congratulations". Note that the the region between frames 50 and60 is below the
baseline and will be considered as halved pitch data, and therefore discarded.
Because of this, the 20 frame window shown above will not have any useful values,
and a larger window is necessary to encapsulate the prosodic information towards
the end of this word. 



between word boundaries were also computed. Namely, MIN/MEAN/MAX F0 values

were computed over an entire segment and then compared to the local range features

discussed above. These segment level F0 feature values provided a context which is more

local than the channel−wide baseline values. In other words, prosodic differences

between local values such as the mean word F0 value and the mean segment F0 can give

an indication of how far a word strays from the average pitch in a segment.  Segmental

F0 values were themselves normalized by baseline F0 values in the same manner as the

word feature in discussed above. 

Local pitch movements

In addition to the slope features, which quantify interword change, it is also

useful to measure the amount of change between words. For this purpose we calculated

the differences (log difference and log ratio) of multiple features across word boundaries.

A multitude of differences across word boundaries can be computed. The main features

which were of interest for this project include the difference between the current word’s

last slope or F0 and the next word’s first slope or F0 (CF_DIFF_LASTSLOPE_F−

FIRSTSLOPE or CF_DIFF_LASTPWLWORD_F−FIRSTPWLWORD)  or the

difference between the current word’s first slope or F0 and the previous word’s last slope

or F0 (PC_F0K_DIFF_P−LASTSLOPE_C−FIRSTSLOPE or PC_F0K_DIFF_P−

LASTPWLWORD_C−FIRSTPWLWORD). 

Distance features

Distance features are related to those from the global range set in that they give

an indication of how a speaker’s prosodic information is changing with respect to the

segment min or max. Instead of normalizing the current word’s F0 values by those of the

segment, distance features measure the time between the start of the current word and the

min (C_DIST_SEGPWLMINLOC_WORDSTART) and max

(C_DIST_SEGPWLMAXLOC_WORDSTART) of the segment. These time differences

help describe how close the current work are to the prosodic peaks and valleys of the
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segment.   

Octave error features

As mentioned above, the pitch tracker does not always perform within the normal

pitch range of a speaker. All pitch trackers are sensitive to noise along with harmonic

errors that result in doubling or halving of the true pitch. In addition, speakers may go

into vocal fry (i.e., "creaky voice"), a phenomenon which may correlate with our

boundaries of interest. For these reasons, the percentage of frames which are in halving

and doubling mode for a given word were included in our feature set.  

2.6.4  Speaking rate features

Speaking rate is an important facet of prosodic analysis. Certainly speakers

experience rate changes over their utterances, usually starting quickly and drawing out

their utterance’s final words. Because of this, it is important to have some measure of

speaking rate. In this study, we measured how fast a word is uttered by counting the

numbers of vowels from the start of a spurt to the end of the current word and dividing

that number by the total time from the beginning of the utterance to the end of the word,

excluding pauses. These vowel averages were then reset at spurt onsets. 

2.6.5 Energy features

Similarly, speakers tend to start utterances loudly and taper off with time. Energy

features were used to encapsulate a speaker’s loudness. The get_f0 package computes

frame level RMS energy values, and from these values the min and max RMS values

over an entire word were computed. Two sets of energy features were computed −− those

over the voiced frames and also minima and maxima for all the frames. These values

were normalized by channel−wide RMS means that account for microphone gain,

inherent speaker loudness, or other variables.  Normalizations were computed in three

ways: raw, ratio to mean for that channel, and z−score based on the mean and standard
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deviation over that channel.  The set of energy features used in this study were derived

from close talking microphones, but it is not completely clear how nearby speakers

affected local energy statistics. Preprocessing of the RMS values via an energy separation

technique could improve the quality of these features significantly, but that aspect was

not investigated here. 

2.6.6 Nonprosodic features

Punctuation features (target classes):

These features are our target classes, and thus "hidden" in testing, but their role in model

training makes reliable annotation of these events critical. Because of this, hand labelers

carefully annotated the entire collection of 32 meeting transcripts accordingly. Table 2.3

describes the punctuation marks added or edited by the annotators. 

Punctuation
Mark

Meaning Example

. End of complete sentence Yeah, and use that.

== End of incomplete sentence Yeah but ==  

Q End of complete question What are we collecting here?

Q== End of incomplete question Is that what you’re ?==

− Disfluency Yeah, I’m − I’m not quite sure
what I’m talking about.

D== Disfluency ends incomplete
sentence

We were th− D==

Table 2.3: Punctuation added and edited by annotators(S. Bhagat et al, 2002) 

In the case of automatically derived words, punctuation from real transcripts was

merged with words obtained from ASR. This was done by first aligning hypothesized

and reference words using a distance metric based on phonetic similarity, a method that

can deal with fairly high word error rates. Event labels for sentence boundaries and

disfluencies were then transferred to corresponding locations in the hypothesized word
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string, and served as reference labels for event scoring in ASR output. 

2.6.7 Overlap features

Overlap features were provided to trees in tasks that are not trying to predict

overlap−related classes themselves. Overlaps were marked automatically via a number of

processing steps and then recorded in our database. In order to mark overlaps completely,

a round robin approach was taken, where each speaker was considered the foreground

speaker against the background speech of all the rest of the speakers, as in Figure 2.8. A 

Turn 1 Turn 2 Turn 3

Speaker 1 Foreground Background Background

Speaker 2 Background Foreground Background

Speaker 3 Background Background Foreground

 Figure 2.8  Overlap processing in the three speaker case. Each speaker has a turn to be the foreground
speaker while the rest of the speakers are considered background speech

script systematically considered each word of a particular speaker and then searched

through the rest of the speakers to check if another word was spoken on a different

channel at some time over the duration of foreground (current) speaker’s word. If any

other speaker(s) talked during a word, the overlap is noted in an intermediate transcript,

and the IN_OVERLAP feature for the interrupting word was set to one. In addition to

this overlap feature, other features indicate when overlaps begin and end as well as how

many speakers are involved in the overlap. These features were used to train

classification trees for several overlap prediction tasks, which will be discussed in more

detail in Chapter 4.  For calculating and marking overlaps it was useful to create speech

segments that are based on acoustic information alone, and are therefore independent of

punctuation events and true word knowledge. With this in mind, overlap rates are also

calculated on a per spurt basis, where a spurt is defined as a region of speech that

contains pauses of no more than 500ms within its boundaries  Chapter 3 discusses in

more detail the nature and pervasiveness of overlaps in the MR corpus and how it

compares to other corpora.
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2.6.8 Lexical features

The prosodic features described above were all computed from raw pitch and energy

features, along with alignments from ASR.  Along with these measurements,  lexical

features were also collected. An important goal in the inclusion of these lexical features

was to automatically isolate and label certain words that belong to conversationally

important categories, such as backchannels, coordinated conjunctions, filled pauses, and

discourse markers. Table 2.4 lists lexical categories and member words. This set of

features was calculated from the transcripts (ASR or manually created) and was useful in

assessing the importance of these categories in our experiments. For example,

backchannels such as "uhhuh" were good indicators of overlap, since backchannels are,

by definition used as conversational feedback . Words were labeled as one of these

features via a simple heuristic designed to capture the most frequent cases. Because this

method uses a word lookup table, it is not always correct. Certain words, such as right,

may be used in contexts other than backchannelling, but overlabelling is a small charge

compared to the manual effort it would take to mark instances of true backchannels.

Future work could involve manual annotations of these events. 

Lexical Categories Entries

Backchannel* yeah, okay, right, uh, oh, uhhuh

Discourse Marker i don’t know, i think, i mean, you know*,
so*

Filled Pause uh, um, mm

Repeat i i i, the the the, i i , the the , etc. 

Coordinated Conjunction* and, but, because

Table 2.4   Lexical Categories and their member words.  Words or categories denoted with a * must
follow a sentence boundary

2.6.9 Contextual features

Finally, a number of features based on a speaker’s identity were recorded as 
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they may correlate with events of interest. For instance, a speaker’s name could be a

useful feature since some speakers are more likely to interrupt while others are more

likely to stay quiet. Similarly, a sociolinguist would argue that gender and cultural

background play prominent roles in overlap and interruption modeling and therefore

gender and a speaker’s English proficiency are recorded as well, despite that in order for

these statistics to be significantly useful, a large amount of speech from males and

females along with both American and non−American speakers would be required. In

addition, a speaker’s degree of American English1 proficiency often very strongly affects

recognition performance (see more detailed results in Chapter 3). Therefore word

boundaries, which were derived either directly from ASR results, or from alignments

which were trained on American English speakers are affected by recognition results.  If

word boundaries are unreliable, then pitch features will also be error−prone, since they

strictly rely on the ability of placing pitch values in word bins. Therefore American

English speaking proficiency is in some way a useful metric to determine the integrity of

these features. 

2.6.10 Prosodic trees

Once all the aforementioned features were tabulated, decision tree classifiers,

were used to train models for varying tasks, as they were in related previous studies

(Shriberg, et al., 2000). The trees considered a number of observed features X and

predicted a an event E , by outputting the posterior probability P(E|X). 

The IND software package (W. Buntine and R. Caruana, 1992), which uses

CART−style decision trees (L. Breiman, et al., 1984) was used in our experiments. The

package analyzed the training data and conducted a variety of tests using the given

feature sets, which in our case are the variety of features discussed above.  In finding

useful features, IND uses cost complexity pruning, a measure of the resubstitution error

estimate of a feature set,  further penalized by the size of the tree. The result was a

1 The distinction between English and American English proficiency is not a trivial one −− as ASR
results indicate. Since these features are self−reported via form questions when a speaker first speaks
at a meeting, some speakers reported that they are native speakers, while their proficiency lies in
British or Indian English, and recognition results strongly indicated this disparity. 
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decision tree with class probabilities at decision nodes and decisions on class membership

at the leaf values, as show in Figure 2.9.  IND is extremely versatile in that it can deal

with missing data, and smoothing and pruning algorithms are available in order to avoid

overfitting on training data. Finally, the ability to easily add and manipulate feature sets

along with the readability of decision trees, make this probabilistic classifier particularly

attractive for use in this study.

 

For many classification tasks, it was useful to downsample the data for a number

of reasons. First, some tasks were highly skewed towards one event. A good example of

this case is a two−class sentence/non−sentence classification task, where posterior

probabilities give the likelihood that the observed word is followed by a sentence−ending

punctuation mark. From preliminary observations, it was noticed that about 90% of

words were not followed by punctuation marks, so training on raw distributions would

have skewed posteriors strongly to the "non−sentence" class. Downsampling also served

as a type of normalization across speaking variations encountered across different
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Figure 2.9: A toy example of a decision tree. Words with F_PAU_DIR >
0.5 s get or Backchannels are classified as sentence boundaries. 



meeting and speakers. In interruption prediction tasks, for example, certain speakers were

more likely to interrupt and to be interrupted, and certain meeting types such as the

"Bmr" set discussed above had more interruptions than other meeting types. Thus

downsampling serves as a type of normalization across these different factors.

2.7 Model combination

We also combined the predictions of a decision tree with the Language Model

HMM to construct a combined classifier, by converting the decision tree probabilities

into additional HMM observation likelihoods Downsampling is relevant in this process as

well, since this operation allows for direct integration of the prosodic model with the

LM, where the class posteriors are directly proportional to the likelihoods. This is shown

as follows (E. Shriberg, R. Bates, A. Stolcke, 1997):

Where P(D) is the probability of a hidden boundary event (i.e., a disfluency or

punctuation mark) , W are observed words and X is the feature array. 

Step (1) above is true, because it is assumed that word probabilities are

independent of their prosodic features conditioned on the event, since none of these

features depend on word identity. The proportionality in (2) holds because when

considering posteriors for event  D, one may drop all the terms which are independent of

this event. Finally we may drop P(D) from Eq. 2  since all the event probabilities are

equal in the downsampled case, and the proportionality is met. 

In experiments where the combination models were used, the LM was used as an

HMM but likelihoods were also computed for the event states using the prosodic decision
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trees. They then were factored into the computation of event posteriors. As results in

Chapter 4 will show, this model combination generally does better than either model on

its own. 
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3.  ASR results and observations on overlap 

This chapter discusses the results of Automatic Speech Recognition (ASR) on the

Meeting Recorder (MR) corpus, along with a number observations on the number and

nature of overlaps in the corpus. While the primary goal of this project does not include

building, tuning, or spending a considerable amount of research time on the advancement

of a MR word recognizer, ASR performance has tremendous implicit importance on the

effectiveness of our various classification tasks, since word time boundaries are derived

either from forced alignments, or from automatic transcripts.  Similarly, overlaps are

undeniably important as far as meeting understanding is concerned; a good model of

overlap and turn taking are of crucial importance if machine participation or

summarization is realized.  

3.1 ASR results

As  stated above, since the main purpose of this research is to automatically

extract prosodic features from meetings and subsequently use these features in numerous

classification tasks, much effort was not put into optimizing a word recognizer.  Also,

because there was not enough meeting data to train recognition models, we default to the

Hub−5 training set. Specifically, the word recognizer used in this project was a stripped

down version of SRI’s large−vocabulary conversational speech recognizer used in the

March 2000 Hub−5 evaluation. As stated above, the system performs vocal−tract length

normalization, feature normalization, and speaker adaptation, using all the speech

collected on each channel (i.e., all speech from one speaker per meetings, excluding

crosstalk). The acoustic model consisted of gender−dependent, bottom−up clustered

(genonic) Gaussian mixtures (V. Digalakis, et al., 1996). The Gaussian means are

adapted by a linear transform so as to maximize the likelihood of a phone−loop model,

an approach that is fast and does not require recognition prior to adaptation. The adapted

models are combined with a bigram language model for decoding. Also, the acoustical

models and the Language Model used in these experiments were identical to those used

in the Hub−5 domain.  Most notably, the front−end assumes a telephone channel and
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downsamples the 16KHz signal to 8KHz accordingly.  The language model contains

about 30,000 words and is trained on a combination of Switchboard, CallHome English,

and Broadcast News data. 

Preliminary results of ASR performance were noted in (N. Morgan, et al., 2001),

but since then recognition experiments have changed significantly. First, the results

previously reported were only conducted on 8 meetings but now our data collection has

expanded significantly and 32 meetings are available. Second, and more importantly, the

segmentation techniques employed in previous recognition experiments used time−

synchronous boundaries across channels, as opposed to current segmentations, which

used different boundaries for each speaker. This change in segmentation techniques is

critically important since, as Figure 3.1 shows, old segmentations created situations

where speech was surrounded by a large amount of silence, especially for short

utterances such as backchannels. This silence has the potential to cause a large amount of

insertions, especially when a nearby speaker is talking and/or when the speaker is

wearing the lapel microphone, which is poorly localized.  Current segmentations used the

HMM presegmentation technique discussed in Chapter 2, and were then modified by

human transcribers where appropriate. Table 3.1 compares the effect of this segmentation

type change for a particular speaker, who used the a lapel microphone in multiple

meetings.
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Figure 3.1: Differences in segmentation types. (a) shows time−synchronous 
segmentations across channels . Note than Channel 2 speech can be heard in silence of

Channel 1, causing insertions and that this problem is avoided in segmentation (b)
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Figure 3.2: Error rate comparisons of lapel/Headset for one speaker

Figure 3.3: ASR rates for native and non−native speakers of more than 20 words
per meeting. 



From the table, it is clear that using channel−specific segment boundaries

strongly decreases the rate of insertions and thereby brings down word error rates as

well. Tighter segment boundaries are therefore used for our recognition and classification

experiments, since best possible automatically generated word−time boundaries are

desired.

Meeting Number of
Words

Substitutions Deletions Insertions WER

Bmr006−c0 1132

1175

33.1

27.5

9.3

17.5

57.7

6.6

100.1

51.6

Bmr007−c0 500

517

35.8

30.8

31.0

19.5

45.0

8.9

94.7

59.2

Bro004−c0 701

742

29.4

28.7

6.7

8.9

30.7

5.8

66.8

43.4

Table 3.1: Comparison of ASR results for channel synchronous and asynchronous segment boundaries
for a speaker wearing the lapel microphone over multiple meetings. New (non−synchronous) results are
in bold.

Table 3.1 indicates how insertion rates are extremely high for speakers using the

lapel microphone with the same segmentation boundaries across channels. Even with

better segmentations, however, performance on the lapel microphone still suffers

tremendously. For this reason, this microphone type was not used in favor of the close

talking microphones in later meetings. Figure 3.2 shows ASR results for a common

speaker who  used both types of microphones in multiple meetings. Lapel performance is

clearly poorer than the mean over all meetings for this speaker. Interestingly,  in this case

the  better segmentations help insertion error rates, but overall lapel performance is still

significantly worse than that of close−talking microphone.

Tighter segmentations are extremely helpful, since they block out other speech in

long regions of silence, but many other factors affect recognition performance across

speakers. In particular, ASR quality degrades substantially when it encounters non−

native American English Speakers, primarily because acoustic models are not  available

for the multitude of variants of American English accents. True to its name, ICSI’s

meetings considered in this work included participants from England, Spain, Germany,

Finland, India, the Czech Republic, Israel, and Belgium, providing a truly complicated
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scenario where training on the variety of international accents is simply infeasible.

Figure 3.3 presents different error rates compared across speakers with native and non−

native American English  background. 

Despite the fact that no models were trained on meeting speaker data,

performance for this system was still relatively high. For native speakers, the overall

WER was 45.2 % , representing about a 5% relative increase over a comparable

recognition system on Hub−5 telephone conversations.  This affirms our use of this

system, and is particularly impressive considering no meeting speech was used to train

the models, and neither the front end nor the language model were adjusted for this data

or the use of a close talking microphone instead of a telephone. To some extent this may

occur because speech in meetings is not too dissimilar to telephone speech, in that at a

very high level, the pronunciation and language in multi−party conversations does not

stray too far from speaking patterns in two−party telephone sessions. This is very

interesting considering the familiarity and use of gesture between meeting participants. 

3.2  Observations on overlap

Observations on the amount and nature of the overlaps in the MR corpus are

reported in this section.  Perhaps the most defining aspect of the corpus is the abundance

of speaker overlap and turn−taking across the meetings. Indeed, the combination of a

casual atmosphere, face to face contact, and speakers’ familiarity with one another

combines for a setting rich in speaker overlap.   In quantifying the relative importance of

overlaps in the MR corpus as compared to other corpora, Table 3.2, based on a similar

table in (E. Shriberg, A. Stolcke, D. Baron., 2001, Observations),  shows percentage of

spurts in overlaps, both including and excluding backchannels for different meeting

types, along with the Call Home and Switchboard corpora.  Backchannels are excluded

as these are not indicative of turn−taking interruptions.  Spurts, as defined in Chapter 2,

are units of speech that uninterrupted by pauses longer than 500ms. 

In terms of overlap, the disparity across meeting types is significant. Some

meetings, such as those belonging to the Bmr group have quite a lot of overlapped words

and spurts, while other meetings, such as the Bro group, are not quite as overlap
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intensive. Bed meetings lie somewhere in between. As compared to the phone

conversation corpora, Bmr meetings have more interruptions per word and per spurt than

CallHome or Switchboard, when including backchannels in calculations.  These results

make sense since the meetings are conducted in a casual manner, with familiar

participants. 

Meetings Phone Conversation

Backchannels Bed Bmr Bro CallHome Switchboard

Included

      words 13.5 21.7 10.5 11.7 12.0

      spurts 44.1 63.2 36.5 53.0 54.4

Excluded

      words 8.43 16.4 6.12 7.9 7.8

      spurts 28.9 31.3 22.5 38.8 38.9

Table 3.2: Relative frequencies of overlapped speech in different corpora. Values are given in
percentages of total number of words (in plainface) and total number of spurts (in italics)

Qualitatively, overlap rate variability across meeting type is fairly clear, as Bro

meetings tend to be more of a seminar style, where one speaker generally leads the

discussion and clearly has more control over the meeting than any other of the
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participants.  In contrast, Bmr meetings tend to be more democratic in nature, without

any clear meeting leader. Figure 3.4 shows percentage of total words, spoken by the top

three speakers in each meeting type. The numbers do not necessarily reflect any

particular speaker’s importance across meeting types, but rather show the distribution of

words across the three main speakers. 

From the figure it is clear that, on average, one speaker generally dominates the

meetings in Bro, while the distribution is fairly even in the Bmr meetings. Bed meetings

fall somewhere in between; while not quite as one−speaker dominated as the Bro

meetings, on average, one speaker has over half the words in any given meeting. These

statistics do not give any explicit information regarding the nature or amount of overlap

in the meetings, but it is useful to know which meetings have more active speakers

contributing  as this inherently affects the potential for overlap. 
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4. Results 

In this Chapter,  a number of experiments conducted on the Meeting Recorder

corpus are examined. The first set of experiments are punctuation oriented and involve

detection of disfluencies and sentence punctuation. The second set of tasks involve dialog

phenomena. These involve the prediction of interruptions and turn taking in various

contexts.  

Where appropriate, a language model is used to provide a baseline metric that

allows us to establish the added value of prosodic features beyond word knowledge

alone. Language models are only included in experiments where all the words are

available. Some experiments, by their definition, exclude many words  and therefore do

not lend themselves easily to LM training, which requires a stream of contiguous words

in order to operate correctly. Similarly, the role of omitting features that look forward in

time (either forward boundary or forward word features) is examined,  since real−time

applications will not have the benefit of future features. Of particular  interest is the

comparison of the LM and the prosodic−feature based decision tree vis a vis this

backward−only model, and the potential degradation because of this feature reduction in

each case. 

The experiments discussed in this section are evaluated using two metrics:

accuracy and efficiency. Accuracy is defined as the percentage of cases in which the class

with the highest posterior probability is correct. This value is a simple percentage which

counts correct descisions and is most often used here to compare variations of the same

experiments, as the prior distributions are the same.  Efficiency, on the other hand, is a

measure of the reduction in class entropy achieved by the classifier relative to the prior

distribution (the raw distribution of the classes in data). Formally the efficiency is

defined as follows:

                                                                           

 

Where p0 denotes the prior distribution, p the estimated posterior distribution, and H is

the entropy. The latter metric is particularly useful because it normalizes the reduction in
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entropy by the entropy of the prior distributions, which allows us to directly compare the

results of multiple experiments regardless of prior class distributions, and by extension,

regardless of the inherent difficulty of task.  An efficiency of 1.0 (100%) implies a

perfect classifier, whereas a zero efficiency characterizes a classifier that does no better

than chance (i.e., posteriors are equal to priors).

4.1 Task descriptions

Results for a number of tasks are reported. Some of these experiments are

extensions of earlier work (M. Mast, et al., 1996, P. Heeman et al., 1997, A. Stolcke, et

al., 1998, Shriberg, et al., 2000) that concentrated on monologue corpora such as

Broadcast News, or telephone conversations from Switchboard or CallHome.  These

tasks can be grouped together as punctuation classification or disfluency modeling

experiments.  The extension of these tasks to the meeting domain is an important goal; as

research on meeting analysis progresses beyond word recognition and towards higher

level understanding, punctuation classification becomes a necessity. The remaining tasks

involve the prediction of dialog events. These tasks use prosodic and lexical cues to

discriminate  turn−taking and interruption events, and are absolutely critical for  high

level understanding tasks.  

Name Description # classes All Words? LM? ASR?

s−ns sentence/non−sentence 2 X X X

Punctuation s−di−n   sentence/disfluency/neither 3 X X X

Punctuation and
Dialog Act

s−q Question/declarative sentence 2 last word in
sentence 

X

Interaction Jump−In
Points

Word boundary a point of
interruption for a bg speaker?

2 X X

Jump−In
Words

First word of spurt in silence or
someone else’s speech?

2 first word in
spurt 

Table 4.1.1: Description of 5 tasks discussed in this chapter, along with data inclusion, number of classes
and ASR/LM invocation

Five tasks are examined. Table 4.1.1 describes the experiments in terms of their
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data usage (is every word examined?), whether ASR experiments are reported, and if an

LM is invoked.  From the table, it is seen that  LM experiments are only run on

experiments that contain all the words. Another observation from Table 4.1 is that ASR

experiments were not conducted on dialog experiments. The difficulty in these cases is

determining how to score and label true interruptions in the ASR domain. For

punctuation one can simply merge punctuation from manual transcripts to ASR words. In

the case of interruptions, finding true cases of overlap are not as easy because it would

require true knowledge about interruptions and simply comparing word times for one

speaker’s ASR words to the other speakers (as done in the manual overlap calculation

discussed in Chapter 2), is not sufficient, since word errors may cause phantom overlaps,

or miss overlaps altogether in the case of word deletions. 

4.1.1  Task 1: Predicting sentence boundaries (s−ns)

This is a two−way classification task where fluent boundaries are distinguished

from sentence ends.  Disfluencies and incomplete sentences are included in the fluent

boundary class, despite possible inherent prosodic differences between these groups.

Similarly, questions are included in the sentence class. These simplifications are

particularly useful for segmentation applications where finer details such as disfluencies

are not as important as sentence demarcation.  The prior of the majority class is also

considered the "chance" performance, i.e., the performance if the majority class were

chosen at each word boundary.  Also clear from the table is the amount of data lost when

downsampling is performed. As mentioned in Chapter 2, downsampling evens out

distributions by creating N classes, all with the same number of tokens as the smallest

minority class. While useful in leveling class priors, much of the data in the larger classes

is lost. As discussed in the task results show, downsampled results are reported, which

are underestimates of true performance. Table 4.1.2 sums up the prior distributions of the

classes.
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Class Priors Class Tokens Downsampled
Priors

Downsampled
Tokens

Train Test Train Test Train Test
No sentence End

True Words 89.12 90.91 224815 49828 0.50 27446 4980
ASR 90.12 91.25 215495 47515 0.50 23631 4554

Sentence End
True Words 10.88 9.09 27446 4980 0.50 27446 4980

ASR 9.88 8.75 23631 4554 0.50 23631 4554

Table 4.1.2 Priors for Task 2. ASR values are in italics, chance in bold. 

4.1.2  Task 2: Predicting disfluencies and sentence boundaries (s−di−n)

This task is a three−way classification of all word boundaries as either complete

sentence ends, incomplete sentence/disfluent boundaries, and fluent sentence−internal

word boundaries. Because the minority class sizes are so small, incomplete sentences and

disfluencies are grouped together as one class, despite intrinsic prosodic differences

between these two cases. Similarly, questions are grouped with declarative sentence ends.

These oversimplifications may result in a loss, as there are theoretical prosodic

differences within the individual classes, but since there are so few question, for

example, further dissecting the "sentence" class would skew prior class probabilities even

more. Though this problem can be partially solved by downsampling, this operation

throws away data to match the priors of the smallest minority class, and could result in

even greater performance degradation. 

Table 4.1.3 shows the priors for each of the classes in the test and train sets, along

with the number of tokens considered in each class, and the number of tokens in each

class for the ASR and true word cases.  From the table it is clear that the fluent boundary

class is the most common of all classes, with the a prior probability of around 80%.

4.1.3  Task 3: Distinguishing declarative sentences from questions (s−q)

For Task 3, the data is altered quite significantly from the aforementioned

punctuation tasks. Namely, the following question is asked: given the knowledge that the
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Class Priors Class Tokens Downsampled
Priors

Downsampled
Tokens

Train Test Train Test Train Test
Fluent Boundary

True Words 78.49 80.74 197993 44252 0.33 26822 4980
ASR 80.82 80.70 193265 42020 0.33 22230 4554

Disfluency
True Words 10.63 10.17 26822 5576 0.33 26822 4980

ASR 9.29 10.55 22230 5495 0.33 22230 4554
Sentence End

True Words 10.88 9.09 27446 4980 0.33 26822 4980
ASR 9.88 8.75 23631 4554 0.33 22230 4554

Table 4.1.3: Class distributions for Task 1, in ASR/manual words, in test and train sets. Italic values
indicate the ASR case, while bold font show chance performance in each case. 

current boundary is a sentence boundary, can declarative sentence ends (i.e., periods ,

exclamation points) be distinguished from questions? From observation (D. Jurafsky et

al., 1998)  and theory, it is known that many questions end with a pitch rise. Non−

question ends, on the other hand, are spoken more softly and usually have a marked pitch

drop. 

Because for this task only locations that are sentence ends are considered, a

significant amount of data is dropped, and the LM is no longer used, as it requires  all

data points for modeling purposes. Table 4.4 summarizes the class distributions for Task

3. Note the tremendous decrease in data points considered. 

Class Priors Class Tokens Downsampled
Priors

Downsampled
Tokens

Train Test Train Test Train Test
Not Question

True Words 89.56 88.86 24443 4387 0.50 2848 550
ASR 89.10 88.86 20910 4014 0.50 2557 503

Question
True Words 10.54 11.14 2848 550 0.50 2848 550

ASR 10.90 11.14 2557 503 0.50 2557 503

Table 4.1.4: Data distribution for classes in Task 3. Italics indicate ASR distributions, bold values are the
chance performance. 
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4.1.4  Task 4: Predicting Jump−In points

The remaining tasks deal less with punctuation events  and are more  specific to

the dialog events within the MR corpus. These tasks deal in modeling and predicting

points of overlap or interruptions, from the perspective of both the interrupter and the

speaker interrupted. As mentioned above, ASR versions of these tasks are not available

in this report, because of the complexity involved in accurately labeling and scoring these

tasks. 

Task 4 is a two way classification task that attempts to predict if a foreground

speaker will be interrupted by another speaker, given a set of prosodic and lexical

features from the foreground speaker’s words. In other words, this task will predict

which prosodic features could be used by a background speaker in determining a good

place to interrupt another speaker. 

This task is particularly difficult for two reasons. First, an attempt is made to

predict when a background speaker will jump in, (the Jump−In Point), despite not having

any access to that speaker’s features. Secondly, only the points where a background

speaker (or speakers) actually jumps in are known, without knowledge of the places

where a background speaker thought about jumping in (found a prosodically appropriate

place for an interruption) but did not follow through on the interruption for whatever

reason. 

Decision trees will attempt to classify the two classes of "jump−in point" and "not

jump−in point".  These points are labeled in the overlapping scheme described in Chapter

2, where each speaker is considered a foreground speaker against all other speakers.

Table 4.1.5 shows prior class distributions for this task.  Note the inherent difficulty in

this task; over 96 % of the tokens are of the majority class. 

Class Priors Class Tokens Downsampled
Priors

Downsampled
Tokens

Train Test Train Test Train Test
No Jump−In Point

True Words 96.27 96.21 242845 52762 0.50 9417 2080
Jump−In Point

True Words 3.73 3.79 9417 2080 0.50 9417 2080

Table 4.1.5: Class distributions in train/test for Task 4. No ASR results are presented, as only true words
were used in this Task. Bold value indicates chance performance. 
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One point that should be made about jump−in point calculations is that jump−in points

are defined to be within a spurt. In other words, if a foreground speaker is cut off by a

background speaker and does not continue speaking within 0.5s , this is considered the

end of his or her spurt, and therefore there cannot be a jump−in point here, by definition. 

4.1.5  Task 5: Predicting Jump−In words

Task 5 is the final experiment conducted in this report. This task also deals with

interruptions, but now the foreground speaker is considered as the trees try to classify the

first words of each spurt as either an interruption (starting in someone else’s speech) or

not an interruption (starting in silence). This first spurt word is called a "jump−in word"

if it is spoken while some background speaker is also speaking.  From a high level

perspective, the following question is being asked: "Is there a prosodic or lexical

difference in first spurt words that start in someone else’s speech rather than those that

start in silence?"  From observation the answer to this question should be "yes": speakers

who are attempting to talk over someone may start with particularly large energy and

high prosodic features. 

As in Task 3, only a subset of all the data is considered in this task, namely only

the first word in all the spurts. Because of this, the language model is not used, as

contiguous word streams are not available.  Table 4.1.6 describes data distributions for

Task 5.

Class Priors Class Tokens Downsampled
Priors

Downsampled
Tokens

Train Test Train Test Train Test
Jump−In Word

True Words 76.09 74.65 16077 3224 0.50 5052 1095
Not Jump−In Word

True Words 23.91 25.35 5052 1095 0.50 5052 1095

Table 4.1.6: Class distributions in train/test for Task 5. No ASR results are presented, as only true words
were used in this Task. Bold value indicates chance performance. 
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4.2 Task 1 results

 This section presents a variety of experiments on Task 1, a two class

sentence/non−sentence classification of word boundaries. In the example shown below,

the word boundaries following the words "know" and "that" are considered sentence

boundaries, where as all others are not: 

4.2.1 All feature regions 

The variations within this task, called "cases",  include running the experiments

on different train/test sets (i.e., real word vs. ASR) and including all versus only past

features so as to simulate an online system. Table 4.2.1  shows results for Task 1,

including all features, but with variations on the test/train data sets in terms of true versus

ASR words. 

Case Forward
Features?

Train Set Test Set Chance LM Tree LM+Tree

Case 1 Yes True True 90.91 93.95 93.41 94.84
0.00 53.12 39.00 59.68

Case 2 Yes ASR ASR 91.25 91.77 91.25 92.62
0.00 26.86 25.62 31.59

Case 3 Yes True ASR 91.25 91.25 92.43 92.43
0.00 10.56 28.28 28.28

Table 4.2.1: Accuracies and efficiencies for three different train/test cases for Task 1, with results in
percentages.  Accuracies are in boldface and efficiencies are in italics. Chance accuracy based on
choosing most frequent class.The column headed by "Forward Features?" shows if features following the
event boundary are used.

Except in Case 3, the decision tree using prosodic features does slightly worse

than the Language Model, but in Case 2 and 3 the combination model outperforms either

individual model. In Case 3, where there is a data mismatch between training on true

words and testing on ASR, the LM does not perform above chance whereas the decision
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tree yields an improvement.  In fact, the decision tree, without any word knowledge at

all, does almost as well as the LM in Cases 1 and 2 and outperforms the LM in Case 3.

Combining the minority classes consisting of disfluencies and fluent boundaries into one

larger minority class causes a decline in performance from the prosodic standpoint

because disfluencies and fluent word boundaries have quite different tonal profiles. This

crude approximation is taken care of in Task 2, as is shown in Section 4.3. The

combination of minority classes may be hurting the decision tree. Nonetheless,

performance in these cases are impressive; even with chance accuracies around 90%,

Cases 1 and 2 accuracies outperform chance by 4.3% and 1.5% relative using the

combination model. 

As expected, the introduction of word error rates into the models has a

detrimental effect on event  classification. Using ASR, the LM  accuracy degrades by

2.32%, the prosodic feature tree by 2.31% and the combined model by 2.3%, relative to

models trained and tested on true words. In Case 3, where the learning algorithms train

on true words and test on ASR words, the individual performance for the LM and

decision tree actually improve slightly, but the combined tree does worse than in Case 2.

Both models are obviously sensitive to word errors in training, and access to true word

boundaries in training appears to be an advantage regardless of testing data set.  

The feature usage for the three cases for Task 1 are provided in Table 4.2.2. Feature

usage (E. Shriberg, 2000) is a measure that counts how many decisions in which the

feature played a role. Features higher in the tree affect more datapoints and therefore

have higher usages. Usages over the whole tree sum to 1.0 . 

Two striking observations emerge from this table. First, feature usage in Case 1

and Case 3 are identical, which is expected since the trees were trained on the same data

set. Secondly, all three examples use following pause durations most heavily, but Case 2

stands out as it uses this feature 88.36% of the time.  Following pauses are very good

indicators of sentence boundaries, as sentences often have large following pauses. Note

that pauses may also indicate incomplete sentences or disfluencies, but these phenomena

are included in the minority class, so large following pause durations may cause

classification errors in this case.  The marked lack of vowel durations in Case 2’s feature

usage is interesting − it may indicate that these features become unreliable because of
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word recognition errors.   Figure 4.2.1 shows the trees for the cases discussed above. In

order to conserve trees (pun wholly intended), only the top four levels of splits are

included. Finally, as the trees below show, when either the current or following word is

overlapped by other speakers, decision trees generally point to a sentence boundary, since

interruptions often begin when a speaker is almost done. This phenomenon is called

"precision timing" (G. Jefferson, 1973). 

Case 1 Case 2 Case 3
Feature Usage Feature Usage Feature Usage

Vowel Durations 48.96 Pause Durations 92.58 Vowel Durations 48.96
C_VOWEL_DUR 22.06 F_PAU_DUR 88.36 C_VOWEL_DUR 22.06

C_TRIVOWEL_DUR_Z 6.77 P_PAU_DUR 3.17 C_TRIVOWEL_DUR_Z 6.77
F_TRIVOWEL_DUR_N 6.77 PP_PAU_DUR 1.05 F_TRIVOWEL_DUR_N 6.77

C_VOWEL_DUR_N 3.46 Overlap Features 7.41 C_VOWEL_DUR_N 3.46
C_VOWEL_DUR_Z 2.77 F_IN_OVERLAP 4.77 C_VOWEL_DUR_Z 2.77

P_TRIVOWEL_DUR_N 1.88 C_IN_OVERLAP 2.64 P_TRIVOWEL_DUR_N 1.88
P_VOWEL_DUR_Z 1.79 P_VOWEL_DUR_Z 1.79

F_TRIVOWEL_DUR_Z 1.75 F_TRIVOWEL_DUR_Z 1.75
F_VOWEL_DUR 1.71 F_VOWEL_DUR 1.71

Pause Durations 48.84 Pause Durations 48.84
F_PAU_DUR 45.16 F_PAU_DUR 45.16
P_PAU_DUR 3.68 P_PAU_DUR 3.68

Table 4.2.2 Feature Usage in Task 1 a two−class sentence/non−sentence word boundary classification
task. for Cases 1,2,3. Usages are given in percentages. Bold is total for the feature type, plain are
individual features. C_, F_, P_ are the current, previous and following features, respectively, relative to
the current word. Feature definitions are given in the Appendix. 
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Figure 4.2.1 Abridged decision trees for Cases 1,2 and 3 for a two−way sentence/non−
sentence classification task. Class labels are ns (not a sentence boundary) and  s (sentence)
and probabilities are listed in that order. Case 1 trains and tests models on true words, Case 2
trains and tests on ASR words, and Case 3 trains on true words and tests on ASR. Decision
trees for Cases 1 and 3 are identical are not listed separately. Classification relies heavily on
following pauses (large pauses mainly indicating sentence boundaries) and current vowel
durations (long durations usually indicating a sentence end). 

***********************
     Cases 1 & 3 
***********************
 0.5 0.5 ns s
F_PAU_DUR < 0.175:  0.7673 0.2327 ns
|   C_VOWEL_DUR < 6.5:  0.8678 0.1322 ns
|   |   F_PAU_DUR < 0.075:  0.8769 0.1231 ns
|   |   F_PAU_DUR >= 0.075:  0.5838 0.4162 ns
|   |   |   F_TRIVOWEL_DUR_N < 0.5:  0.4404 0.5596 s
|   |   |   F_TRIVOWEL_DUR_N >= 0.5:  0.6537 0.3463 ns
|   C_VOWEL_DUR >= 6.5:  0.6646 0.3354 ns
|   |   F_TRIVOWEL_DUR_N < 0.3:  0.5101 0.4899 ns
|   |   |   F_PAU_DUR < 0.035:  0.5448 0.4552 ns
|   |   |   F_PAU_DUR >= 0.035:  0.2764 0.7236 s
F_PAU_DUR >= 0.175:  0.1315 0.8685 s
|   F_PAU_DUR < 0.7075:  0.2924 0.7076 s
|   |   C_VOWEL_DUR < 26.5:  0.2612 0.7388 s
|   |   C_VOWEL_DUR >= 26.5:  0.6385 0.3615 ns
|   |   |   P_PAU_DUR < 1.77:  0.7128 0.2872 ns
|   |   |   P_PAU_DUR >= 1.77:  0.2267 0.7733 s
|   F_PAU_DUR >= 0.7075:  0.06411 0.9359 s
|   |   F_PAU_DUR < 1.9135:  0.1266 0.8734 s
|   |   |   C_VOWEL_DUR < 28.5:  0.1081 0.8919 s
|   |   |   C_VOWEL_DUR >= 28.5:  0.4031 0.5969 s
|   |   F_PAU_DUR >= 1.9135:  0.03152 0.9685 s

***********************
       Case  2 
***********************
 0.5 0.5 ns s
F_PAU_DUR < 0.105:  0.7874 0.2126 ns
|   F_PAU_DUR < 0.045:  0.7975 0.2025 ns
|   F_PAU_DUR >= 0.045:  0.5753 0.4247 ns
|   |   F_IN_OVERLAP in 2,1,3,4,5 :  0.3953 0.6047 s
|   |   F_IN_OVERLAP in 0 :  0.6377 0.3623 ns
F_PAU_DUR >= 0.105:  0.1647 0.8353 s
|   F_PAU_DUR < 0.4375:  0.4153 0.5847 s
|   |   F_IN_OVERLAP in 2,1,3,4,5 :  0.2723 0.7277 s
|   |   F_IN_OVERLAP in 0 :  0.4738 0.5262 s
|   |   |   C_IN_OVERLAP in 2,1,3,4,5 :  0.3027 0.6973 s
|   |   |   C_IN_OVERLAP in 0 :  0.4988 0.5012 s

|   F_PAU_DUR >= 0.4375:  0.107 0.893 s



4.2.2 Online experiments 

As mentioned in Chapter 1, a real−time approach to punctuation (and other)

classification tasks is a goal of this project. In order to understand the performance of

such a system,  an examination of the above tasks with only features before the event

available to the LM and the decision tree classifier is reported here.  A significant

degradation in decision tree performance is expected, especially since the previous

experiments heavily rely on F_PAU_DIR, the pause duration following the current word.

Similarly, the language model can be expected to perform worse than in previous

experiments, as it uses future word identity.  Table 4.2.3 sums up results for experiments

which only have access to previous features (Previous Only), compared to the results for

the full feature set, showing the full feature version for comparison, and showing the

degradation between these two cases.   

Case Forward
Features?

Train Set Test Set Chance
Accuracy

LM
Accuracy

Tree
Accuracy

LM+Tree
Accuracy

Case 1 Yes True True 90.91 93.95 93.41 94.84
Case 1−PO No True True 90.91 92.91 91.06 92.91

Degradation −1.11% −2.52% −2.04%
Case 2 Yes ASR ASR 91.25 91.77 91.25 92.62

Case 2−PO No ASR ASR 91.25 91.52 91.25 91.59
Degradation −0.27% −0.00% −1.11%

Case 3 Yes True ASR 91.25 92.43 92.43 92.43
Case 3−PO No True ASR 91.25 91.25 91.25 91.39

Degradation −1.28% −1.28% −1.13%

Table 4.2.3: Accuracies for classifiers using previous only (PO) features, given in percentages.

 

The largest losses shown above are sustained by the decision tree, most notably in

the case of training and testing on true words (Case 1). While this loss is larger than all

other losses, it should be noted that many of the values, such as in Case 2, are so close to

chance that any further degradation would be minimal. The decision trees certainly suffer

in all cases above, though, and fall to chance performance when testing and training on

ASR. Obviously the combination of unreliable word boundaries, the confusion between
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incomplete sentences, disfluent boundaries, and fluent boundaries, and the lack of future

features (mainly following pause durations) are too difficult to overcome.   Although not

listed,  degradations in efficiencies are similar to the drops in accuracies listed in Table

4.2.3; both language model and prosodic classifier efficiencies drop precipitously from

the full feature set to the previous only case. 

Interestingly, although prosodic feature based trees do not perform particularly

well in some of the experiments above, the combination models in the ASR−tested cases

always outperform the LM on its own, even when the prosodic model alone performs at

chance. These improvements show that having a variety of information sources is better

than limiting training to words or pitch features alone.  

Table 4.2.4 shows feature usages for the PO experiments discussed above:

Case 1−PO Case 2−PO Case 3−PO
Feature Usage Feature Usage Feature Usage

Vowel Durations 28.87 Vowel Durations 18.18 RMS Features 26.13
C_VOWEL_DUR 20.37 C_VOWEL_DUR 18.18 C_RMS_V_MIN_Z 15.37

C_TRIVOWEL_DUR_Z 6.11 Pitch Features 40.3 P_RMS_V_MAX_Z 5.45
C_VOWEL_DUR_Z 2.39 C_F0K_LOGRATIO_

SEGMIN_WORDMIN
16.5 C_RMS_V_MAX_Z 5.31

RMS Features 20.50 C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

13.14 Vowel Durations 26.06

C_RMS_V_MIN_R 14.75 C_F0K_LOGRATIO_
WIND50MIN_BASELN

4.93 C_VOWEL_DUR 20.48

P_RMS_V_MAX_Z 3.01 C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

2.30 C_TRIVOWEL_DUR_Z 5.58

C_RMS_MIN_R 2.74 C_LAST_SLOPE_
WIND_100

3.43 Pitch Features 21.21

Pitch Features 23.28 RMS Features 22.6 C_F0K_LOGRATIO_
SEGMIN_WORDMIN

13.91

C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

12.30 C_RMS_V_MIN_Z 12.31 C_F0K_LOGDIFF_
WORDMIN_BASELN

3.85

C_F0K_LOGRATIO_
SEGMIN_WORDMIN

10.98 C_RMS_V_MAX_R 10.29 C_F0K_LOGRATIO_
WORDMIN_BASELN

3.45

Pause Features 11.12 Pause Features 6.84 Other Features 10.85
P_PAU_DUR 11.12 P_PAU_DUR 6.84 NAME 6.81

Overlap Features 7.43 C_WORD_WDPOS 4.04

P_IN_OVERLAP 7.43 Overlap Features 8.12
Other Features 5.22 P_IN_OVERLAP 8.12

NAME 5.22

Table 4.2.4: Feature usages (in percentages) for Task 1, previous features only
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The most heavily used feature, not surprisingly, is the current vowel duration, as

this was the most widely used non−future feature in Cases 1 and 3. The most notable

additions to the feature sets are the various normalizations of the energy feature

C_RMS_V_MIN, which measures the minimum energy of the voiced frames in the

current word. The inclusion of this feature in the prosodic model indicates that when the

following pauses are not available, the tree  begins looking at how loudly a person is

speaking, as soft speech is a good indicator of sentence ends. Similarly, many pitch

features are included in the table above. Most commonly used is

C_F0K_LOGRATIO_LASTPWLWIND100_BASELN which measures the last valid (i.e., not halved,

doubled or unvoiced) stylized F0 value in a window that starts at the end of the word and

stretches back 100 frames.  This feature indicates how speakers end their words, and if

the last frame is particularly low, this can be a good indication of a sentence boundary. 

Figure 4.2.2 compares performance of the prosodic tree, LM, and combination

models vis a vis the exclusion of the future features. Note the change of chance accuracy

from Case 1 to Cases 2 and 3. 

From the figures  it is clear that although the prosodic model does not necessarily

perform better than the LM in Cases 2 and 3 the combination model performs better than

either model on its own.  Performance in Case 1, when the tree and LM are trained and

tested on true words and are allowed to use both future and previous features is

impressive at almost 95%, and there are large improvements in efficiency for Cases 1

and 2.  
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Figure 4.2.2 Performance of sentence/non−sentence classification task using All vs. No Forward
features. Note that in Case 2, prosody performs at chance.

4.3 Task 2 results

Task 2 is similar to Task 1 in that a language model and prosodic feature based

decision tree are incorporated to perform a punctuation classification task. In this task,

however, disfluent boundaries are separated from fluent boundaries and introduce a

second minority disfluency class, as shown below. 
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4.3.1 All feature regions

Case Forward
Features?

Train Set Test Set Chance
Accuracy

LM
Accuracy

Tree
Accuracy

LM+Tree
Accuracy

Case 1 Yes True True 80.74 89.79 86.31 91.70
0.00 56.51 35.64 63.61

Case 2 Yes ASR ASR 80.70 82.69 84.08 85.16
0.00 21.02 22.86 28.21

Case 3 Yes True ASR 80.70 82.09 84.27 84.39
0.00 7.55 23.72 24.48

Table 4.3.1: Accuracies and efficiencies of three different train/test cases for Task 2. All results are given
in percentages. Accuracies are in boldface, efficiencies in italics.

The roles of different data sets (ASR v. true words) and the effect of removing all

future features from the decision tree model is examined below.  As with Task 1, the

effect of training/testing on ASR, removing future features, and also removing the

NAME (speaker name) feature is examined. The last alteration is relevant because

NAME has strong correlation to non−downsampled priors, and since the trees are using

downsampled data in our experiments,  the inclusion of this feature belies class prior

equalization. Table 4.3.1  shows results for Task 2, including all features, but with

variations on the test/train data sets. The variety of cases here is useful in determining the

effect of performance drop when word errors are present in either the test or train sets (or

both). 

As mentioned in Chapter 2, downsampling of the data was performed for

numerous reasons. Because of computation time and LM mismatch, running non−

downsampled experiments on all the cases in Table 4.3.1 was not explored. Again, as

Chapter 2 states, downsampled data is required for direct integration with the LM

posteriors, so combination models for the full data sets are not available either. For the

prosodic classifiers, however, running the classification task on all the data, results in an

efficiency of 36.73%, a 8.89% relative increase from Case 1. It is necessary to compare

efficiencies in this case, since priors are unequal. These values indicate that there is some

performance drop from downsampling and that to some extent, the effectiveness of the

prosodic trees as detailed in Tables  4.2.1  and 4.3.1 is underreported.  
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From the results above, it is clear that the combination of LM and decision tree

trained on prosodic features performs better than either classifier alone.  Also, prosodic

features are much more robust to recognition errors, as the decision tree accuracy

degrades by 2.65% relative to Case 1. The LM accuracy, on the other hand, degrades by

7.9% relative. The combination model suffers a loss of 7.13% relative.  

The language model is clearly more susceptible to word errors, and the dramatic

drop in LM classification efficiencies from Case 1 to Cases 2 and 3 reflect this. This is

mostly likely due to the abundance of words such as "uh" and "uhhuh" which are

automatically marked as disfluencies in our transcription process. When word errors are

introduced many of the free gains the LM gets from these words are lost, since the

erroneous words will no longer be marked as disfluencies. In contrast, the prosodic

features are only peripherally affected by word errors rates insofar as they compromise

word boundaries.  

The decision tree actually performs better in Case 3  than it does in Case 2. While

this difference is relatively small, it is important because despite an initial hit taken by

the tree in training on recognized words, which ultimately degrade prosodic feature

integrity, the tree is relatively robust to this data mismatch, as opposed to the LM, which

clearly suffers. 

Table 4.3.2 shows relative improvements above chance for Cases 1 and 2 in

Tasks 1 and 2 .

Task (classes) Test/Train LM
Improvement

Decision Tree
Improvement

Combination
Improvement

1 (s ns) True/True 3.34% 2.75% 4.32%
1 (s ns) ASR/ASR 0.57% 0% 1.50%

2 (s di n) True/True 11.21% 6.97% 13.57%
2 (s di n) ASR/ASR 2.47% 4.19% 5.53%

Table 4.3.2 Relative improvement above chance for Task 1(sentence/non−sentence) and Task2
(sentence/disfluency/fluent boundary) task when training/testing on ASR and true data. 

In comparing Tasks 1 and 2, it is seen how using a separate disfluency class is

extremely useful for both the prosodic feature based decision tree and the Language

Model. As mentioned above, the LM in Task 2 gets many disfluencies such as "uh" and

"um" for free. In Task 1, however, the LM gets nothing for free and the poorer relative
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improvement reflects this disadvantage. Similarly, the decision trees strongly prefer the

addition of a distinct disfluency class, since this class disambiguates disfluencies from

fluent word boundaries, which were all lumped into one class in Task 1.  Trained to spot

these disfluencies, the decision tree in Task 2 clearly outperforms the tree in Task 2. The

combinations models, which are strongly dependent on the individual model

performances also do much better in the three class task than in Task 1. 

 The features used by the decision trees in Table 4.3.1 are mainly those from the

vowel duration and pause duration subset. Table 4.3.3. shows feature usage percentages.

These values indicate the percentage of all decisions made using any feature.

Case 1 Case 2 Case 3
Feature Usage Feature Usage Feature Usage

Vowel Durations 61.80 Vowel Durations 52.22 Vowel Durations 46.26
C_VOWEL_DUR 28.24 C_VOWEL_DUR 25.53 C_VOWEL_DUR 28.64

C_VOWEL_DUR_Z 9.72 P_VOWEL_DUR 9.32 C_VOWEL_DUR_N 17.62
F_TRIVOWEL_DUR_N 6.17 C_VOWEL_DUR_Z 8.81 Pause Durations 32.46

C_VOWEL_DUR_N 5.83 F_VOWEL_DUR 2.58 F_PAU_DUR 28.12
C_TRIVOWEL_DUR_Z 5.08 F_VOWEL_DUR_N 2.42 P_PAU_DUR 4.28
P_TRIVOWEL_DUR_Z 2.77 P_VOWEL_DUR_N 2.24 Other Features 14.12

P_VOWEL_DUR_Z 2.12 C_TRIVOWEL_DUR_N 1.00 NAME 14.12
F_VOWEL_DUR 1.87 P_TRIVOWEL_DUR_Z 0.32 RMS Features 7.22

Pause Durations 32.66 Pause Durations 47.58 C_RMS_V_MIN_R 7.22
F_PAU_DUR 25.47 F_PAU_DUR 40.32

P_PAU_DUR 4.16 P_PAU_DUR 5.38
PP_PAU_DUR 3.03 PP_PAU_DUR 1.88

Table 4.3.3 Feature Usage in Task 2, Cases 1,2,3. Usages are given in percentages. Note the inclusion of
the NAME feature in Case 3.

Similar to what is seen in Task 1, the table indicates that the two main feature sets

used across cases are vowel durations (most notably C_VOWEL_DUR, the duration of

the longest vowel in the current word), and pause durations (in which F_PAU_DUR, the

amount of silence following the current word, appears most frequently).  These results

concur with theoretical expectations; a large pause after a word tends to indicate that the

word is at some sort of semantic boundary. Similarly, speakers generally draw out

sounds towards the end of sentences, while speaking quickly at sentence onset. 

As mentioned above, the presence of the NAME feature is not preferred as

inherent prosodic properties of these events, rather than prior related features, would be
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more appropriate inputs to the decision trees. The feature is omitted and the results for

this new case, Case 3B are presented in Table 4.3.4. 

Case NAME
feature?

Train Set Test Set Chance
Accuracy

LM
Accuracy

Tree
Accuracy

LM+Tree
Accuracy

Case 3 Yes True ASR 80.70 82.09 84.39 84.24
Case 3B No True ASR 80.70 82.09 84.12 83.98

Degradation −0.30% −0.30%

Case 3 Case 3B
Feature Usage Feature Usage

Vowel Durations 46.26 Vowel Durations 52.57
C_VOWEL_DUR 28.64 C_VOWEL_DUR 24.22

C_VOWEL_DUR_N 17.62 C_VOWEL_DUR_N 8.55
Pause Durations 32.40 C_TRIVOWEL_DUR_N 8.11

F_PAU_DUR 28.12 P_TRIVOWEL_DUR_N 6.16
P_PAU_DUR 4.28 C_VOWEL_DUR_Z 5.53

Other Features 14.12 Pause Durations 47.43
NAME 14.12 F_PAU_DUR 26.46

RMS Features 7.22 P_PAU_DUR 20.96
C_RMS_V_MIN_R 7.22

Table 4.3.4: Accuracies and Feature usage of variation of Case 3 , where NAME is excluded

Removing the NAME feature causes only a slight degradation of 0.3% relative to

experiment with all the features present. While the top three features are the same, Case

3B looks at new features such as vowel triphones in order to make up for the lack of the

speaker identities.  

Finally, trees for Cases 1, 2 and 3B are examined. Figure 4.3.1 displays all three

trees . Because of space limitations, only the top four splits are included.  The trees

confirm what is expected from theory and practical observations: long vowel and

following pause durations are generally used to classify sentence ends , where as short

values for these features usually indicate fluent boundaries. The case of disfluencies isn’t

as clear. In terms of pauses, the trees often pick disfluencies when the following pause

duration is longer than a fluent boundary, but not quite as long as a sentence end, as

shown in this example  from Case 3B :
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F_PAU_DUR < 0.145:  0.3378 0.5158 0.1464 n 
F_PAU_DUR >= 0.145:  0.3269 0.06896 0.6042 s
    C_VOWEL_DUR < 25.5:  0.3839 0.1485 0.4676 s         
  F_PAU_DUR < 0.373:  0.4606 0.1694 0.37 di                      
F_PAU_DUR >= 0.373:  0.3087 0.1281 0.5632 s

C_VOWEL_DUR >= 25.5:  0.7909 0.09444 0.1146 di



62

Figure 4.3.1 Abridged decision trees for Cases 1,2, and 3B, for three−way classification of
sentences, disfluencies, and fluent boundaries, trained on equal class priors. Class labels are
di(disfluency), n (fluent boundary) , s (sentence)  and probabilities are listed in that order. Widely
used features include F_PAU_DUR (the pause duration after the current word) and
C_VOWEL_DUR, the maximum vowel duration of the current word, and normalized vowel
duration statistics.

***********************
Case 1

***********************

 0.3333 0.3333 0.3333 di n s
F_PAU_DUR < 0.195:  0.3461 0.5042 0.1496 n
|   C_VOWEL_DUR < 19.5:  0.2759 0.5654 0.1587 n
|   C_VOWEL_DUR >= 19.5:  0.7745 0.1311 0.0944 di
F_PAU_DUR >= 0.195:  0.313 0.06217 0.6248 s
|   F_PAU_DUR < 1.666:  0.4021 0.1043 0.4936 s
|   |   C_VOWEL_DUR < 24.5:  0.3231 0.1091 0.5678 s
|   |   C_VOWEL_DUR >= 24.5:  0.7433 0.08358 0.1732 di
|   F_PAU_DUR >= 1.666:  0.1947 0.00614 0.7992 s

***********************
Case 2

***********************
 
0.3333 0.3333 0.3333 di n s
F_PAU_DUR < 0.497:  0.3486 0.4772 0.1742 n
|   F_PAU_DUR < 0.065:  0.3105 0.5528 0.1367 n
|   |   C_VOWEL_DUR < 15.5:  0.2701 0.596 0.1339 n
|   |   C_VOWEL_DUR >= 15.5:  0.5242 0.3243 0.1515 di
|   F_PAU_DUR >= 0.065:  0.4852 0.2064 0.3084 di
F_PAU_DUR >= 0.497:  0.3028 0.04606 0.6511 s
|   C_VOWEL_DUR < 25.5:  0.2708 0.04589 0.6833 s
|   |   F_PAU_DUR >= 0.829:  0.2631 0.02545 0.7115 s
|   C_VOWEL_DUR >= 25.5:  0.4512 0.04686 0.5019 s

***********************
Case 3B

***********************

 0.3333 0.3333 0.3333 di n s
F_PAU_DUR < 0.145:  0.3378 0.5158 0.1464 n
|   C_VOWEL_DUR < 11.5:  0.2472 0.6216 0.1313 n
|   |   F_PAU_DUR < 0.045:  0.2258 0.6495 0.1247 n
|   |   |   C_VOWEL_DUR < 5.5:  0.2066 0.7129 0.08049 n
|   |   |   C_VOWEL_DUR >= 5.5:  0.2477 0.5768 0.1754 n
|   |   F_PAU_DUR >= 0.045:  0.5541 0.2206 0.2253 di
|   C_VOWEL_DUR >= 11.5:  0.5739 0.2402 0.1859 di
|   |   C_VOWEL_DUR < 32.5:  0.5 0.2774 0.2226 di
|   |   |   C_VOWEL_DUR_Z < −0.3:  0.935 0.04469 0.02028 di
|   |   |   C_VOWEL_DUR_Z >= −0.3:  0.4286 0.3156 0.2558 di
|   |   C_VOWEL_DUR >= 32.5:  0.8931 0.07938 0.0275 di
F_PAU_DUR >= 0.145:  0.3269 0.06896 0.6042 s
|   F_PAU_DUR < 0.7345:  0.4565 0.1388 0.4046 di
|   |   C_VOWEL_DUR < 25.5:  0.3839 0.1485 0.4676 s
|   |   |   F_PAU_DUR < 0.373:  0.4606 0.1694 0.37 di
|   |   |   F_PAU_DUR >= 0.373:  0.3087 0.1281 0.5632 s
|   |   C_VOWEL_DUR >= 25.5:  0.7909 0.09444 0.1146 di
|   |   |   C_VOWEL_DUR_N < 1.7:  0.9477 0.02254 0.02972 di
|   |   |   C_VOWEL_DUR_N >= 1.7:  0.6685 0.1506 0.1809 di



While it is difficult to generalize from just a few trees, these disfluencies are probably

being distinguished from sentences at turn taking boundaries, which in general may have

longer pause lengths than intraturn sentence boundaries. 

4.3.2 Online experiments

Results using the Previous Only feature set is examined in Table 4.3.5. 

Case Forward
Features?

Train Set Test Set Chance
Accuracy

LM
Accuracy

Tree
Accuracy

LM+Tree
Accuracy

Case 1 Yes True True 80.74 89.79 86.37 91.70
Case 1−PO No True True 80.74 86.37 83.93 86.53

Degradation −3.81% −2.83% −5.64%
Case 2 Yes ASR ASR 80.70 82.69 84.08 85.16

Case 2−PO No ASR ASR 80.70 81.78 81.76 82.76
Degradation −1.10% −2.76% −2.82%

Case 3B Yes True ASR 80.70 82.09 84.12 83.98
Case 3B−PO No True ASR 80.70 81.85 81.43 82.06
Degradation −0.29% −3.20% −2.29%

Table 4.3.5: Results for previous feature only (PO) cases of three way classification experiment, Task 2.
Degradation relative to original experiments are given in bold 

Both the LM and the decision trees suffer in all cases, which is understandable

since the knowledge of the following word or the following pause duration are critical in

good classification. The greatest degradation comes in Case 1, where the trees are trained

and tested on the true words, and depriving the trees and LM of forward features creates

a loss of 5.64% relative in the combined model.  Even in this case, however, the decision

tree degrades more gracefully than the LM (2.8% for tree vs. 3.8% for LM) and the

combination model still does better than words alone. 

In Cases 2 and 3B, where the LM already incurs a strong hit because of word

recognition errors, as discussed above, LM degradation isn’t as large as the decision tree,

but their accuracies are very close. Interestingly, the combined model in these cases still

outperforms either model on its own. In these cases, where word errors rob the LM of

obvious easy decisions, the majority of the loss in the LM comes from word error rates

rather than the deprivation of future word knowledge. 
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Case 1−PO Case 2−PO Case 3B−PO
Feature Usage Feature Usage Feature Usage

Vowel Durations 52.87 Pitch Features 24.83 Vowel Durations 53.99
C_VOWEL_DUR 27.79 C_F0K_RATIOSHIFT_

SEGMIN_WORDMIN_
BASELN

15.10 C_VOWEL_DUR 29.57

C_VOWEL_
DUR_N

16.76 C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

6.14 C_VOWEL_DUR_Z 16.48

C_TRIVOWEL_
DUR_Z

8.32 C_F0K_LOGRATIO_
WORDMIN_BASELN

3.59 C_TRIVOWEL_
DUR_Z

7.94

Pitch Features 18.56 RMS Features 24.72 Pitch Features 17.71
C_F0K_RATIOSHIFT_
SEGMIN_WORDMIN_

BASELN

8.56 C_RMS_V_MIN_R 14.73 C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

11.06

C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

6.82 C_RMS_V_MAX_Z 9.99 C_F0K_LOGRATIO_
WORDMIN_BASELN

6.12

C_F0K_LOGDIFF_
WORDMIN_BASELN

3.18 Vowel Durations 22.57 CP_FOK_LOGDIFF_
MAXPWLWORD_

MAXPWL_P

0.53

RMS Features 12.56 C_VOWEL_DUR 18.98 Pause Features 12.71
C_RMS_V_MIN_R 12.56 C_VOWEL_DUR_N 3.59 P_PAU_DUR 12.71

Pause Features 9.98 Other Features 15.25 RMS Features 10.44
P_PAU_DUR 8.14             NAME 15.25 C_RMS_V_MIN_R 10.44

PP_PAU_DUR 1.84 Pause Features 7.88 Overlap Features 3.99
Overlap Features 3.48 P_PAU_DUR 7.88 P_IN_OVERLAP 3.99

C_IN_OVERLAP 3.48 Other Features 1.8 Other Features 0.69
C_WORD_WDPOS 1.8 C_PERC_DOUB 0.69

Table 4.3.6: Feature usage for  experiments with access to previous features only. Vowel durations are
still extremely useful, but all experiments use more pitch features than they did in the all features case.
Feature usages are reported in percentages. 

Feature usages for the previous only experiments are in Table 4.3.6. Not

surprisingly and similarly to Task 1, when not allowed to look into the future, the

decision trees look elsewhere for discriminating features. Pitch features tend to be used

much more often in these experiments. One feature seems to occur more than others, and

this is C_F0K_RATIOSHIFT_SEGMIN_WORDMIN_BASELN, which is measure of the difference

between the lowest pitch value in the current word and the lowest pitch value in the

segment. When this value is low, the boundary is generally classified as a sentence. Also,

in the case of test and train on ASR word, the NAME feature once again appears. When

the decision tree is left with few options (i.e., no forward features allowed and in the

presence of word errors) it will begin using prior−correlated features, which is what

happens in Case2−PO.  Figure 4.3.2 graphically depicts the effects of removing forward

features from these different cases. 
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4.3.3 Speaker specific results

Finally, in this task prediction results for one speaker at a time are considered.

Motivating these experiments is a desire to more fully understand the value of a large

training set versus a smaller training set which is comprised of only one speaker. Models

tested on trained on only one participant are reported, and the tradeoff between less but

cleaner training data and the an analysis of model degradation with respect to individual

speaker word error rates are shown here. 

The speech of three speakers who were present in at least 10 meetings were

chosen as the data sets for these experiments and  Table 4.3.7 discusses the amount  of

data and word error rates for the speakers in this section. 
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Figure 4.3.2: Event detection accuracy for Task 1. "True" = true words (forced 
alignments); "ASR" = 1−best recognizer output; "LM" = Language Model



Speaker Gender Meeting Type Overall  Word
Error Rate

Words in
Train

Words in Test

Speaker A Male Bmr 39.58% 25708 5056
Speaker B Female Bmr 44.99% 21236 3789
Speaker C Male Bmr 46.09% 30154 8553

All M/F Bed, Bmr, Bro 52.46% 252261 52069

Table 4.3.7: Data and word error rates for three speakers and the entire data set.

For these speakers, experiments were only only conducted with the entire feature

set, and without the mismatched train/test set (i.e., Case 3 is excluded). Accuracies and

relative performance degradations for this classification experiment are reported in Table

4.3.8.

Speaker Forward
Features?

Train Set Test Set Chance
Accuracy

LM
Accuracy

Tree
Accuracy

LM+Tree
Accuracy

A Yes True True 83.50 87.94 89.66 91.81
Yes ASR ASR 83.10 84.84 88.67 89.01

Degradation −3.53% −1.10% −3.04%
B Yes True True  81.10 88.12 85.09 90.39

Yes ASR ASR 81.01 82.82 84.87 85.46
Degradation −6.01% −0.26% −5.45%

C Yes True True 82.58 89.37 84.75 91.20
Yes ASR ASR 82.61 84.34 84.85 85.82

Degradation −5.63% +0.18% −5.90%

Table 4.3.8: Model performance across three speakers. Degradations are given in bold. 

Clearly, word recognition rates play a significant role in the degradation from the

manual test/train sets to the ASR data. Speakers B and C, who have the largest word

error rates amongst this speaker subset, experience the largest loss in the LM and the

combined model. Curiously, it is Speaker A who incurs the biggest hit in the prosodic

model, despite relatively good recognition results. This could be due to insufficient data

− Speaker C, who has the most total number of or words actually does better in the ASR

case.  These observations offer insights into performances for these particular speakers,

but it is difficult to conclude anything with certainty for so few participants. 

Another interesting observation from Table 4.3.8 is how well Speaker A’s

prosodic decision tree does with respect to his language model classifier. Note that this is
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the only speaker in which the prosodic model outperforms the language model. This may

be an indication that some speakers exhibit more consistent, or more clear, prosody than

other speakers and that variable prosodic performance across meeting participants can be

expected. 

Figure 4.3.3 compares LM, prosodic tree, and combination model performance

degradations for these three speakers, along with the overall results reported in  Table

4.3.1. In  the figure the disparity between LM and combination model losses versus the

relatively mild degradation in the prosodic tree is quite striking. Certainly the

combination model’s performance is more dependent on the LM performance as these

two losses are always within one percent of one another. 

Table 4.3.8 and Figure 4.3.3 indicate a relationship between word error rates,

total number of words and overall performance. From these figures, one can surmise it is

better to have speaker specific training data, rather than more data. In other words,

allowing the prosodic feature based decision tree to learn the speaking pattern of one

speaker is more helpful for classification than providing many, but prosodically different,

speakers.  Table 4.3.9 shows results of testing on individual speakers’ data with decision

trees that have been trained on the entire data set, along with the change relative to

training on individual speakers. The results show that including multiple speakers into

the training set does not necessarily cause decision tree performance to degrade. In fact,

while the changes may be statistically insignificant, in all but one case shown in the table

the training on the all the speakers increases the performance of the decision tree.  

Speaker Train Test True/ASR? Chance Prosody Change
A All A True 83.50 89.89 0.26%
A All A ASR 83.10 88.79 0.14%
B All B True 81.09 86.51 1.67%
B All B ASR 81.00 84.85 −0.02%
C All C True 82.58 87.67 3.4%
C All C ASR 82.60 85.15 0.35%

Table 4.3.9: Results for a decision tree trained on full training data set but tested on individual speakers,
along with performance changes relative to models trained on individual speakers. 

Similarly, it is difficult to conjecture about the relationship between word error
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rates and the decision tree performance. In certain cases it seems that speakers that have

smaller word error rates are more robust to classification performance degradation,

whereas sometimes it appears that the number of words is a more important factor in

determining how a model performs on any given speaker. Unfortunately, there were no

speakers in the database which provided both a comparable number of words as Speakers

A, B, C while also sustaining large word error rates. The inclusion of such a speaker

could provide significant insight into the effects of all of these factors. 

4.4 Task 3 results

The final punctuation experiment aims to classify sentence ends as either

questions or declarative sentences. Unlike the previous two tasks, Task 3 is not just a

punctuation but also a dialog act distinction, where discourse−level annotation is
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Figure 4.3.3: Relative degradations for the three models, for individual speakers and all speakers.
Language and combination models both degrade much more significantly than the prosodic model.
Word Error Rates (WER) and total word counts are given in the figure as well. Note that total words
reported here are the total from the training set only.



predicted. As discussed in (D. Jurafsky, et al., 2000) ,  some questions are indicated

prosodically by pitch and energy rises, whereas sentence ends are generally accompanied

by drops in these features. Thus, F0 and RMS values are expected to appear as

discriminating features in  the classifiers. 

4.4.1 All feature regions

As mentioned previously, all words that are not followed by a sentence boundary

are discarded, and a language model is not used to model these events, as the current LM

requires a contiguous word stream. Also, for this task all incomplete sentences and

disfluencies were excluded from the data set, so only well formed sentence ends are

classified: 

These two phenomena were carefully observed in order to find inherent prosodic cues

between these two classes. Results are in Table 4.4.1.

Case Forward
Features?

Train Set Test Set Efficiency

Case 1 Yes True True 13.00
Case 2 Yes ASR ASR 10.88
Case 3 Yes True ASR 11.32

Table 4.4.1: Results for a two−way question/sentence classification task for 3 different test/train
combinations.  Efficiencies are given in percentages. 

As expected, the prosodic tree in Case 1 clearly outperforms the other cases,

yielding an efficiency of 13.00%. Interestingly, Case 3 does better than Case 2, despite

the test/train mismatch. Table 4.4.2 describes feature usages in all three cases. Case 2

uses the NAME feature for almost half of all decisions (45.80%) and is clearly trying to

learn the class priors as some speakers ask questions at a different rate than others.
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EXC = Excluded, Q = Question, P = Period



Similarly, Case 3 also uses name quite extensively at 23.54 %. From these results it

appears that NAME is used in cases that tested on ASR. This may be because word errors

encountered in testing make prosodic features less reliable, forcing the decision trees to

examine prior−correlated features such as NAME. NAME is omitted since inherent

prosodic differences between the two classes are sought. 

Case 1 Case 2 Case 3
Feature Usage Feature Usage Feature Usage

Pause Features 64.33 Other Features 45.80 Pause Features 36.74
P_PAU_DUR 31.44 NAME 45.80 P_PAU_DUR 26.65
F_PAU_DUR 19.96 Pause Features 34.22 PP_PAU_DUR 10.08

PP_PAU_DUR 12.93 P_PAU_DUR 20.99 Pitch Features 32.23

Pitch Features
35.67

PP_PAU_DUR 8.29 C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

32.23

C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

20.01 F_PAU_DUR 5.05

Other Features 23.54

C_F0K_LOGRATIO_
WIND50MAX_BASELN

8.57
Pitch Features 19.87

NAME 23.54

C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

7.08 C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

18.53

Vowel  Features 7.51

C_F0K_RATIOSHIFT_
SEGMAX_WORDMAX_

BASELN

1.34 C_VOWEL_DUR_Z 7.51

Table 4.4.2: Feature Usage in Task 3, Cases 1,2,3. Usages are given in percentages. Note the inclusion
of the NAME feature in Cases 2 and 3. Also note the heave dependence on pitch features and previous
pause durations. 

Table 4.4.3 shows results when after the removal of the NAME feature from

Cases 2 and 3. Note that without the inclusion of NAME in the feature set in Case 2B,

performance increases, as the tree gives up on this feature and finds that prosodic features

such as durations and pitch are more useful. This could be  due to overtraining in the

cross−validation stage, since the cross−validation was not partitioned by speaker, as

noted in Chapter 2. Nonetheless, the fact that performance is comparable to those cases

with the NAME feature included is quite encouraging. 
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Case NAME 
feature?

Train Set Test Set Efficiency

Case 2 Yes ASR ASR 10.88
Case 2B No ASR ASR 11.42
Case 3 Yes True ASR 11.32

Case 3B No True ASR 10.73

Table 4.4.3: Results for Task 3 with NAME feature removed from Cases 2 and 3. 

Feature usages for these two cases show that, at least for Case 2,  when not given

the opportunity to learn NAME, the decision tree classifiers utilize features such as pitch

and durations. Case 3, interestingly, attempts to learn other features proportional to class

priors, namely NATIVE (is a speaker a native American English speaker?) and MTYPE

(meeting type, i.e., Bed, Bmr, Bro). Table 4.4.4 shows features for Cases 1, 2B, and 3B.  

Case 1 Case 2B Case 3B
Feature Usage Feature Usage Feature Usage

Pause Features 64.33 Pause Features 59.08 Pitch Features 44.77
P_PAU_DUR 31.44 PP_PAU_DUR 30.50 C_F0K_LOGRATIO_

LASTPWLWIND100_
BASELN

27.85

F_PAU_DUR 19.96 P_PAU_DUR 28.58 CP_FOK_DIFF_
MAXPWLWORD_

MAXPWL_P−WORD

11.33

PP_PAU_DUR 12.93

Pitch Features 36.69

C_F0K_RATIOSHIFT_
SEGMIN_WORDMIN

_BASELN

5.59

Pitch Features
35.66

C_F0K_LOGDIFF_WORD
MAX_BASELN

36.69

Pause Features 28.18

C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

20.01

RMS Features
4.22

P_PAU_DUR 28.18

C_F0K_LOGRATIO_
WIND50MAX_BASELN

8.57 C_RMS_MAX_R 4.22
Other Features 27.06

C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

7.08 NATIVE
MTYPE

15.12
11.94

Table 4.4.4: Feature Usage in Task 3, Cases 1,2B,3B. Usages are given in percentages. 

The table above indicates that previous pause durations and current word pitch

features are the most useful in discriminating question boundaries from sentence
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boundaries. The pitch features, comprised of mostly last, minimum and maximum word

F0 measures, are similar to those used in Tasks 1 and 2. However, whereas in Tasks 1

and 2 following pause features were extremely useful, these do not appear extensively in

the feature lists above, indicating that there is little or no difference in the pause values

following declarative sentences and questions.

Similarly, vowel durations no longer appear on this list. Duration features are

useful in discriminating sentence/question end words from words within a sentence, but

apparently not between the sentence and question end words themselves. Figure 4.4.1

shows the trees for Cases 1, 2B, and 3B.  In this case the full decision trees are given, as

they are much more tractable than the trees in Tasks 1 and 2.

The trees confirm the theoretical assumptions  about helpful prosodic differences

between sentence and question end words. In numerous cases in Figure 4.4.1 low pitch

values indicate periods, whereas pitch rises are used to delineate question ends.  In Case

2B, for example, the following decision split indicates a decision based on pitch drop:

C_F0K_LOGDIFF_WORDMAX_BASELN < 3.5615:  0.5432 0.4568 PER
C_F0K_LOGDIFF_WORDMAX_BASELN >= 3.5615:  0.4219 0.5781 Q

In this case the tree uses a feature which measures the difference between the maximum

stylized F0 value for the current word, and the baseline. If the value is above a certain

threshold (i.e., high pitch) the decision is Q, whereas low pitches are classified as PER.

The use of previous pause durations (i.e., P_PAU_DIR and PP_PAU_DIR) probably

indicates that the classifier is learning the nature of the many backchannels in the corpus.

These are short utterances (one or two words) that are usually preceded by a large

amount of silence. Backchannels are very well defined in this sense, and the classifier is

probably learning the nature of these utterances in this tree. 

4.4.2 Previous only features

The main features used in Cases 1, 2B, and 3B involved current pitch and energy

features along with previous pauses. Because of this feature usage, it is predicted that

questions are not isolated events, but rather tied to the prosodic and lexical context in the

sentence preceding it. That said, a relatively small degradation due to removal of all

72



73

Figure 4.4.1: Tree for Task 3, Cases 1, 2B and  3B. The classes are Period (PER) and Question(Q) and
posteriors are listed in that order. Note than low pitch features are good indicators for sentence ends,
while pitch rises usually correspond to questions, as predicted. Similarly in Case 2B, when energy and
pitch are high, the classifier will guess Question. Case 3B tries to recover from the data mismatch by
using the meeting type and whether a speaker is a native American English speaker, both of which are
features that correlate to class priors

***********************
Case 1
***********************
P_PAU_DUR < 0.885:  0.4329 0.5671 PER Q
|   C_F0K_LOGDIFF_LASTPWLWIND100_BASELN < 3.4809:  0.5266 0.4734 PER
|   |   PP_PAU_DUR < 0.335:  0.5055 0.4945 PER
|   |   |   F_PAU_DUR < 2.465:  0.5383 0.4617 PER
|   |   |   |   C_F0K_LOGRATIO_WIND50MAX_BASELN < 0.76845:  0.5461 0.4539 PER
|   |   |   |   |   F_PAU_DUR < 1.297:  0.5597 0.4403 PER
|   |   |   |   |   |   P_PAU_DUR < 0.055:  0.5794 0.4206 PER
|   |   |   |   |   |   P_PAU_DUR >= 0.055:  0.4125 0.5875 Q
|   |   |   |   |   F_PAU_DUR >= 1.297:  0.45 0.55 Q
|   |   |   |   C_F0K_LOGRATIO_WIND50MAX_BASELN >= 0.76845:  0.3481 0.6519 Q
|   |   |   F_PAU_DUR >= 2.465:  0.4166 0.5834 Q
|   |   PP_PAU_DUR >= 0.335:  0.7327 0.2673 PER
|   C_F0K_LOGDIFF_LASTPWLWIND100_BASELN >= 3.4809:  0.2619 0.7381 Q
|   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < 0.32256:  0.6886 0.3114 PER
|   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= 0.32256:  0.2393 0.7607 Q
P_PAU_DUR >= 0.885:  0.8184 0.1816 PER

***********************
Case 2B
***********************
 0.5 0.5 PER Q
PP_PAU_DUR < 0.9005:  0.4612 0.5388 Q
|   P_PAU_DUR < 1.316:  0.4255 0.5745 Q
|   |   C_F0K_LOGDIFF_WORDMAX_BASELN < 3.7097:  0.5218 0.4782 PER
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN < 3.5615:  0.5432 0.4568 PER
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN >= 3.5615:  0.4219 0.5781 Q
|   |   C_F0K_LOGDIFF_WORDMAX_BASELN >= 3.7097:  0.3218 0.6782 Q
|   P_PAU_DUR >= 1.316:  0.7574 0.2426 PER
PP_PAU_DUR >= 0.9005:  0.7415 0.2585 PER
|   C_RMS_MAX_R < 1.0363:  0.8852 0.1148 PER
|   C_RMS_MAX_R >= 1.0363:  0.6215 0.3785 PER
|   |   P_PAU_DUR < 0.03:  0.4641 0.5359 Q
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN < 3.7642:  0.6923 0.3077 PER
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN >= 3.7642:  0.3551 0.6449 Q
|   |   P_PAU_DUR >= 0.03:  0.7607 0.2393 PER

***********************
Case 3B
***********************
 0.5 0.5 PER Q
P_PAU_DUR < 0.885:  0.4329 0.5671 Q
|   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < 0.34727:  0.5327 0.4673 PER
|   |   NATIVE = non:  0.6205 0.3795 PER
|   |   |   MTYPE in Bmr,Bro,� :  0.688 0.312 PER
|   |   |   MTYPE in Bed,� :  0.5044 0.4956 PER
|   |   |   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < −0.099466:  0.3691 0.6309 Q
|   |   |   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= −0.099466:  0.5688 0.4312 PER
|   |   NATIVE = nat:  0.5034 0.4966 PER
|   |   |   CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P−WORD < 9.545:  0.5213 0.4787 PER
|   |   |   |   MTYPE in Bed,Bmr,� :  0.5437 0.4563 PER
|   |   |   |   MTYPE in Bro,� :  0.4725 0.5275 Q
|   |   |   |   |   C_F0K_RATIOSHIFT_SEGMIN_WORDMIN_BASELN < −1.0651:  0.5719 0.4281 PER
|   |   |   |   |   C_F0K_RATIOSHIFT_SEGMIN_WORDMIN_BASELN >= −1.0651:  0.414 0.586 Q
|   |   |   CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P−WORD >= 9.545:  0.4574 0.5426 Q
|   |   |   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < 0.3236:  0.4451 0.5549 Q
|   |   |   |   |   C_F0K_RATIOSHIFT_SEGMIN_WORDMIN_BASELN < −5.3643:  0.6383 0.3617 PER
|   |   |   |   |   C_F0K_RATIOSHIFT_SEGMIN_WORDMIN_BASELN >= −5.3643:  0.4196 0.5804 Q
|   |   |   |   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= 0.3236:  0.6911 0.3089 PER
|   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= 0.34727:  0.248 0.752 Q
P_PAU_DUR >= 0.885:  0.8184 0.1816 PER



future features is expected, which is a clear departure from hypotheses made in previous

tasks. Table 4.4.5 describes the change in performance in these cases for these Cases. 

What is interesting about the above results is that in distinguishing sentence ends

from question ends, there is no need for future features at all, indicating that these events

are not isolated in time, but rather related to previous prosody. It seems that forcing the

prosodic classifier to only look at previous features increases performance in Cases 1 and

2B. Case 3B, in which the data mismatch occurs, is learning the prosodic characteristics

of the manually transcribed data, which differs from the test set, since the latter has

markedly poorer word boundaries. Finally, Table 4.4.6 examines the feature usage for

the PO cases. 

Case Forward
Features?

NAME
included?

Train Set Test Set Efficiency

Case 1 Yes Yes True True 13.00
Case 1−PO No Yes True True 13.41

Change +3.15%
Case 2B Yes No ASR ASR 11.42

Case 2B−PO No No ASR ASR 11.54
Change +1.05%
Case 3B Yes No True ASR 10.73

Case 3B−PO No No True ASR 9.72
Change −9.41%

Table 4.4.5: Efficiencies for Cases 1, 2B, and 3B in the case of All and Previous  Only (PO) features

Case 1−PO Case 2B−PO Case 3B−PO
Feature Usage Feature Usage Feature Usage

Pitch Features 51.1 Pause Durations 40.99 Pitch Features 40.69
C_F0K_LOGDIFF_

LASTPWLWIND100_
BASELN

26.34 P_PAU_DUR
PP_PAU_DUR

20.68
20.31

C_F0K_LOGDIFF_
LASTPWLWIND100_

BASELN

20.76

C_F0K_LOGRATIO_
WIND80MIN_BASELN

15.44 Pitch Features
C_F0K_LOGDIFF_

LASTPWLWIND100_
BASELN

30.40
25.62

C_F0K_LOGRATIO_
SEGMAX_

WORDMAX

8.71

C_F0K_LOGRATIO_
LASTPWLWIND100_

BASELN

9.32 C_F0K_RATIOSHIFT_
SEGMAX_WORDMAX_

BASELN

3.75 C_DIST_
SEGPWLMAXLOC_

WORDSTART

5.68

Pause Durations 48.91

CP_FOK_LOGDIFF_
MAXPWLWORD_

MAXPWL_P

1.03 P_F0K_LOGRATIO_
SEGMIN_WORDMIN

5.54
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Case 1−PO Case 2B−PO Case 3B−PO
P_PAU_DUR 31.89 RMS Features 19.24 Other Features

 C_WORD_WDPOS
34.82
34.82

PP_PAU_DUR 17.02 P_RMS_V_MAX_R 19.24 Pause Features 13.07
Other Features 9.42 PP_PAU_DUR 13.07

NATIVE 7.27 Other Features 11.42
P_PERC_HALF 2.15 NATIVE 11.42

Table 4.4.7: Feature Usage for Sentence/Questions classification task, using only Previous Features. 

The features shown above mostly consist of current pitch features and previous pause

durations. Though the pitch features used in these cases are not exactly the same as their

full featured counterparts, note the continued importance of the last F0 feature in the

word, along with a variety of minimum and maximum F0 measures. Cases 2B−PO  and

3B−PO use the class prior−correlated feature NATIVE, and the latter experiment also

attempts to make use of the current word  position inside the spurt. In that case the

following decision is made:

P_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.33268:  0.5314 0.4686 PER

P_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.33268:  0.4512 0.5488 Q
C_WORD_WDPOS < 6.5:  0.5964 0.4036 PER
C_WORD_WDPOS >= 6.5:  0.4172 0.5828 Q

The decision here says that if the word has a high pitch and is the at least the

seventh word in the spurt, it is classified as a period. This split indicates that given this

prosodic context, longer spurts in the training set are generally questions.  

4.5 Task 4 results

 The remaining tasks deal with speaker interaction tasks, which are much more

exploratory. In Task 4 prosody feature based decision trees along with the language

model are used in predicting points of interruption. Specifically, a speaker’s foreground

speech is examined at the point where some other speaker(s) interrupts, as shown below.

The word boundary immediately following the word where the foreground speaker was

interrupted is labeled as a "Jump−In Point" and discriminative features that help in
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prediction of this event are analyzed.

As opposed to previous tasks, where automatic recognition results are reported,

experiments based on ASR words and word boundaries are not reported, since insertions

and deletions may cause false interruption points thereby making training and scoring

difficult and beyond the scope of this work. 

In addition, it was found that the language model used in the previous tasks is not

helpful at all in this task. This is an interesting result because it shows that despite having

access to previous words relative to the interruption event, such knowledge does not help

to predict the event itself, indicating that speakers are not waiting for particular words as

indicative cues for interruption points. 

Table 4.5.1 reports efficiencies for two cases of Task 4. All experiments for Task

4 exclude punctuation marks as these are "cheating" features. Efficiencies are shown here

because the class priors are extremely skewed, with  over 96% of the word boundaries

belonging to the non−interruption class.  Also, the inherent uncertainty in this task ,

along with lack of performance from the LM gives no accuracy above chance in the

prior−adjusted case. Still, a non−zero efficiency on the downsampled data in promising,

and those numbers are given here. 

Case Previous Only? NAME
included? 

LM
Efficiency

Tree
Efficiency

1 No No 0.00% 7.60%
2 Yes No 0.00% 5.46%

Table 4.5.1 Efficiencies for the prediction of "Jump−In Points" using two feature sets 

Table 4.5.2 shows feature usages for these two cases, and Figure 4.5.1 shows the

corresponding trees. 
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Label:    0     0           0      1        0  0      0
FG:   did   you   remember   the  score   of    the   game
BG:                                   wait    a     second 

FG: Foreground, BG: Background 
1 = Jump−In Point, 0 = No Jump−In Point



77

Figure 4.5.1:  Decision trees for Cases 1 and 2 for classification of  Jump−In points, trained on equal
class priors. Class labels are 0 (no interruption) and 1 (jump−in point)  and probabilities are listed in
that order. 

************
   Case 1      
************
F_PAU_DUR < 0.445:  0.5418 0.4582 0
|   P_PAU_DUR < 0.045:  0.6018 0.3982 0
|   |   SEX = m:  0.6246 0.3754 0
|   |   |   C_VOWEL_DUR < 8.5:  0.6386 0.3614 0
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN < −0.15818:  0.6641 0.3359 0
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= −0.15818:  0.5807 0.4193 0
|   |   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN < 0.12874:  0.603 0.397 0
|   |   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= 0.12874:  0.4073 0.5927 1
|   |   |   C_VOWEL_DUR >= 8.5:  0.5926 0.4074 0
|   |   SEX = f:  0.5029 0.4971 0
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN < 4.5762:  0.5385 0.4615 0
|   |   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN < 2.5689:  0.4044 0.5956 1
|   |   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN >= 2.5689:  0.5483 0.4517 0
|   |   |   |   |   F_PAU_DUR < 0.045:  0.5682 0.4318 0
|   |   |   |   |   |   C_VOWEL_DUR < 10.5:  0.592 0.408 0
|   |   |   |   |   |   C_VOWEL_DUR >= 10.5:  0.4506 0.5494 1
|   |   |   |   |   F_PAU_DUR >= 0.045:  0.4123 0.5877 1
|   |   |   C_F0K_LOGDIFF_WORDMAX_BASELN >= 4.5762:  0.4153 0.5847 1
|   P_PAU_DUR >= 0.045:  0.3776 0.6224 1
F_PAU_DUR >= 0.445:  0.3188 0.6812 1
|   F_PAU_DUR < 1.5985:  0.422 0.578 1
|   |   P_PAU_DUR < 0.005:  0.4892 0.5108 1
|   |   |   C_VOWEL_DUR < 18.5:  0.4598 0.5402 1
|   |   |   C_VOWEL_DUR >= 18.5:  0.5943 0.4057 0
|   |   P_PAU_DUR >= 0.005:  0.306 0.694 1
|   F_PAU_DUR >= 1.5985:  0.2396 0.7604 1
************
   Case 2
************
P_PAU_DUR < 0.035:  0.5718 0.4282 0
|   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < 0.45292:  0.587 0.413 0
|   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.38721:  0.6398 0.3602 0
|   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.38721:  0.5401 0.4599 0
|   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.25901:  0.5973 0.4027 0
|   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.25901:  0.5103 0.4897 0
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.044127:  0.5368 0.4632 0
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.044127:  0.4545 0.5455 1
|   C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= 0.45292:  0.5029 0.4971 0
|   |   C_F0K_LOGRATIO_SEGMIN_BASELN < 0.1858:  0.5181 0.4819 0
|   |   |   P_RMS_V_MAX_Z < −0.5064:  0.403 0.597 1
|   |   |   P_RMS_V_MAX_Z >= −0.5064:  0.5291 0.4709 0
|   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= 0.1858:  0.308 0.692 1
P_PAU_DUR >= 0.035:  0.3381 0.6619 1
|   P_PAU_DUR < 0.525:  0.2757 0.7243 1
|   P_PAU_DUR >= 0.525:  0.4286 0.5714 1
|   |   P_PAU_DUR < 1.571:  0.5397 0.4603 0
|   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.15997:  0.5973 0.4027 0
|   |   |   C_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.15997:  0.4305 0.5695 1
|   |   P_PAU_DUR >= 1.571:  0.349 0.651 1



Pause Durations 56.76 Pitch Features 55.57
F_PAU_DUR 29.21 C_F0K_LOGRATIO_

SEGMIN_WORDMIN 
32.09

P_PAU_DUR 27.55 C_F0K_LOGRATIO_
LASTPWLWIND100_BASELN 

19.88

Pitch Features 15.66 C_F0K_LOGRATIO_
SEGMIN_BASELN 

3.60

C_F0K_LOGRATIO_
SEGMIN_BASELN 

11.24 Pause Durations 41.10

C_F0K_LOGDIFF_
WORDMAX_

BASELN 

4.42 P_PAU_DUR 41.10

Vowel Durations 13.89 RMS Features 8.34
C_VOWEL_DUR 13.89 P_RMS_V_MAX_Z 8..34

Other Features 13.79
SEX 13.79

Table 4.5.2 Feature usages (given in percentages) for Cases 1 and 2 of Task 4, a two class Jump−In
point  prediction experiment

In Case 1, where the full feature set is available, one sees that following and

previous pause durations are clearly the most widely used features. As the following

splits (top two levels from Figure 4.5.1) indicate, long durations for both of these pause

features usually result in the prediction of a jump−in point:

F_PAU_DUR < 0.445:  0.5418 0.4582 0
P_PAU_DUR < 0.045:  0.6018 0.3982 0
P_PAU_DUR >= 0.045:  0.3776 0.6224 1

F_PAU_DUR >= 0.445:  0.3188 0.6812 1
F_PAU_DUR < 1.5985:  0.422 0.578 1

   F_PAU_DUR >= 1.5985:  0.2396 0.7604 1

All but one of the splits shown above confirm our hypothesis that long pauses on

either (or both) side of a word are generally good indicators for Jump−In points. In terms

of previous pause durations, it appears that speakers wait for a suitable Jump−In point

which is demarcated by a longer than usual pause duration. Since speakers do not have

direct access to following features (although perhaps they can predict them to some

extent), the inclusion of the F_PAU_DUR here is a reflection that when speakers are

interrupted, they often pause and wait to hear what the interrupting speaker has to say,

but this is not a feature that could be used in a real system. 

After removing access to future features, the classifiers experience a precipitous

fall in efficiency from Case 1 to Case 2. While depriving the decision tree of future

features induces this relative degradation of 28.16%, Case 2 is more interesting, since
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human participants and online machines only have access to this feature set. 

In Case 2 , the decision tree makes much more use of current pitch features along

with some energy features, as it must look elsewhere to compensate for the lack of

following pauses. Only the "lower half" of the decision tree is considered here,

conditioned on P_PAU_DUR >= 0.035, since this is where most of the Jump−In Points

are classified:

From the splits above it is clear that long previous pause durations indicate good

interruption points. Also when  C_F0K_LOGRATIO_SEGMIN_WORDMIN is greater than some

number, boundaries are generally classified as Jump−In Points. This feature measures the

log difference between the segment minimum and the current word minimum so it is

always less then or equal to zero, with equality holding when the word minimum is the

actual segment minimum. Apparently the closer the word minimum is to the segment

pitch valley, the more likely someone is to interrupt at that point. 

While the efficiencies of these experiments are not very high, any performance

above chance in this experiment can be considered an accomplishment considering 1) the

inherent uncertainty involved in this event detection and 2) that the LM with true words

performs at chance. As mentioned in Section 4.1 , it is not known when a background

speaker (or speakers) intend to interrupt the foreground participant, but decide not too.

Our goals are to identify prosodic or lexical cues which other speakers use as markers for

allowable interruption points, but their decision to interrupt or not blurs our ability to

model these events with no uncertainty.  Similarly, the models predict events that

indicate an interruption in the background speaker without any knowledge of the

background speaker’s prosodic or lexical features. Thus inherent uncertainties make this

task a difficult one, but the use of prosodic features and pauses certainly help in
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P_PAU_DUR < 0.035:  0.5718 0.4282 0
P_PAU_DUR >= 0.035:  0.3381 0.6619 1                                   

P_PAU_DUR < 0.525:  0.2757 0.7243 1                                    
P_PAU_DUR >= 0.525:  0.4286 0.5714 1                                   

P_PAU_DUR < 1.571:  0.5397 0.4603 0                   
C_F0K_LOGRATIO_SEGMIN_WORDMIN < −0.15997:  0.5973 0.4027 0   
C_F0K_LOGRATIO_SEGMIN_WORDMIN >= −0.15997: 0.4305 0.5695 1         

P_PAU_DUR < 1.571:  0.5397 0.4603 0
       P_PAU_DUR >= 1.571:  0.349 0.651 1



identifying possible "jump−in points", especially considering a language model trained

on true words does no better than chance. 

4.6 Task 5 results 

Task 5 asks about how people jump in − do they change their prosody depending

on whether or not somebody is already talking? The first word in each spurt is considered

and classified as a  "Jump−In Words", or words which are spoken during another

person’s speech, as shown below. As only the first word in each spurt is being

considered, the data set is not a contiguous word stream, and the language model is not

used in these experiments. Also, as seen in Task 4, experiments trained on ASR are not

available in these dialogue tasks, since determining overlap regions for ASR is beyond

the scope of this project.

 For Task 5 an efficiency of 12.55% is attained for the prosodic feature based

decision tree. Table 4.6.1 describes the features used in the model and Figure 4.6.1 shows

the corresponding tree.

    

Task 5
Feature Usage

Pause Durations 91.05
P_PAU_DUR 42.00
F_PAU_DUR 32.12

PP_PAU_DUR 16.93
Pitch Features 8.95

C_F0K_LOGRATIO_
SEGMIN_BASELN

5.62

C_F0K_LOGDIFF_
SEGMAX_BASELN

2.43

Table 4.6.1 Feature usage for Task 5, a two class Jump−In word classification task
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Label:     1   EXC EXC   0  EXC EXC 
FG:                 when was this?  oh  i’m sorry
BG: well  the other day i was working 

          
    FG: Foreground, BG: Background
1:Jump In Word, 0: Not a Jump−In word
EXC: Excluded Word (not classified)



Pause durations, both previous and following are used primarily in classifying

Jump−In words. The tree splits generally indicate that shorter previous pauses imply

starting in silence. Note that by definition, the shortest previous pause possible in this

experiment is 0.5s , since all data words are at the beginning of a spurt. Shorter previous

pause durations probably mean that a speakers simply paused during his or her utterance,

and continued after a short time. Longer previous pause durations reflect more isolated

words, and seem to be more indicative of jumping in during another speaker’s utterance. 

Pitch features are also used in classifying Jump−In Words, as seen in the

following decision:

C_F0K_LOGRATIO_SEGMIN_BASELN < −0.39073: 0.6321 0.3679 0
C_F0K_LOGRATIO_SEGMIN_BASELN >= −0.39073: 0.4854 0.5146 1

In this case, low segment pitch minima  are used as cues to indicate starting in 

silence (0) whereas a high pitch indicates starting during another speaker’s speech. This

result concurs with theory; when attempting to grab the floor, it has been shown that
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Figure 4.6.1 Decision trees for classification of  Jump−In Words, trained on equal class priors. Class
labels are 0 (first word in silence)  and 1 (first word in other speech)  and probabilities are listed in that
order. 

TREE WITH PROBABILITES:
***********************
 0.5 0.5 0
P_PAU_DUR < 1.535:  0.6872 0.3128 0
|   F_PAU_DUR < 1.5875:  0.7223 0.2777 0
|   |   PP_PAU_DUR < 1.175:  0.7461 0.2539 0
|   |   PP_PAU_DUR >= 1.175:  0.4877 0.5123 1
|   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN < −0.22934:  0.5822 0.4178 0
|   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= −0.22934:  0.406 0.594 1
|   F_PAU_DUR >= 1.5875:  0.3985 0.6015 1
|   |   F_PAU_DUR < 2.3105:  0.5561 0.4439 0
|   |   F_PAU_DUR >= 2.3105:  0.3552 0.6448 1
P_PAU_DUR >= 1.535:  0.3486 0.6514 1
|   F_PAU_DUR < 0.925:  0.4007 0.5993 1
|   |   P_PAU_DUR < 3.365:  0.475 0.525 1
|   |   |   PP_PAU_DUR < 2.513:  0.5042 0.4958 0
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN < 0.11873:  0.5227 0.4773 0
|   |   |   |   |   C_F0K_LOGDIFF_SEGMAX_BASELN < 4.888:  0.5425 0.4575 0
|   |   |   |   |   |   P_PAU_DUR < 1.7525:  0.6288 0.3712 0
|   |   |   |   |   |   P_PAU_DUR >= 1.7525:  0.5155 0.4845 0
|   |   |   |   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN < −0.39073: 0.6321 0.3679 0
|   |   |   |   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= −0.39073: 0.4854 0.5146 1
|   |   |   |   |   |   |   |   PP_PAU_DUR < 0.035:  0.4514 0.5486 1
|   |   |   |   |   |   |   |   PP_PAU_DUR >= 0.035:  0.5546 0.4454 0
|   |   |   |   |   C_F0K_LOGDIFF_SEGMAX_BASELN >= 4.888:  0.3408 0.6592 1
|   |   |   |   C_F0K_LOGRATIO_SEGMIN_BASELN >= 0.11873:  0.3914 0.6086 1
|   |   |   PP_PAU_DUR >= 2.513:  0.3305 0.6695 1
|   |   P_PAU_DUR >= 3.365:  0.363 0.637 1
|   F_PAU_DUR >= 0.925:  0.2718 0.7282 1



speakers will start with high energy and high pitch (French and Local, 1983). While

energy features are not included in the tree above, the use of pitch features is promising.

4.7  Cross task comparisons and overall discussions

The results given above point to many common threads across tasks and cases.

First, degradation caused by ASR words and word boundaries strongly affects accuracy

performance, especially in Task 2, where the LM was making many gains for free.

Prosodic feature based classifiers generally tend to be more robust to word recognition

errors than the LM since the LM depends on word identities and prosody only on word

boundaries. 

With regard to feature usages, vowel and pause durations are extremely important

in both punctuation and dialog classification tasks. Across tasks, the use of pitch and

energy features increases tremendously in cases where the classifiers are allowed to only

see the previous features. Decision trees utilize information in pitch features when future

features, especially following pause features, are not available. This point is extremely

important because in real time systems, future features are not available, so the ability to

automatically derive and use prosodic features is crucial. 

Also, an attempt was made to correlate word error rates with performance

degradation in all models. Though a clear relationship was not found between these

variables, in the process it was noted that testing on speakers with low word error rates

will undoubtedly increase model performance, but it is still better to train on as much

data as possible rather than on one specific speaker alone. Additionally, and perhaps

more interestingly, it was found that certain speakers have prosodic models which

perform better than their language models. The variability between speakers in this sense

indicates that some meeting participants probably have more consistent and predictable

prosodic cues than others, and that speaker specific modeling of these tasks should take

this fact into account. 

In Task 3, a number of interesting observations can be seen in the

sentence/question distinction task.   First, the lack of vowel durations used in the trees

distinguishes this task from Tasks 1 and 2; our results show that question and sentence

ends have little or no difference in terms of vowel durations. Second, distinguishing these
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events does not require future knowledge, and depriving the trees of future features

actually increases performance. The implication here is that sentence and question ends

are not isolated events, but rather very much dependent on the previous sentence context.

In Task 4, where classifiers attempt to predict Jump−In Points,  it is again shown

that pitch features are extremely useful in cases where systems don’t have access to

future features. Specifically, it was found that the combination of long previous pause

durations along with pitch drops yield prosodically acceptable places for other speakers

to jump in and interrupt the current speaker. When these speakers do interrupt, Task 5

shows that they often start with an elevated pitch. Results also indicate that the longer the

pause before a speaker starts speaking the more likely he or she is to interrupt , rather

than start in silence. 

Finally, results across tasks pointed to the fact training on manually transcribed,

forced alignment based prosodic feature sets, while testing on ASR based features,

yielded small performance degradations. This fact is extremely important because it

points to the possibility of training on a data set over which the computationally

expensive recognition process had not been performed, even for models which will be

used for recognition output word streams and ASR based prosodic data. Thus, human

transcripts, which can be assumed to exist already since recognition systems require

manual transcription for their training, can be used in training prosodic models, without

requiring the additional steps of word recognition and feature extraction on the entire

training data set.
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5. Conclusion

This project aimed to use automatically derived prosodic features, in conjunction

with lexical features, to classify various punctuation, dialog and interaction events in the

Meeting Recorder corpus. The use of prosodic cues in the classification of these events

were found to be extremely useful.  Pause and vowel durations were often selected by

prosodic decision trees, especially when the classifier had access to both future and past

information. In the "online" case, where the decision tree only had access to features

occurring before the current event location, pitch features played an important role,

especially in punctuation Tasks 1 (sentence/non−sentence) and 2 (sentence/non−

sentence/disfluency).  Pitch was also an extremely useful cue in distinguishing

declarative sentence ends from question ends.

In addition, the effect of using recognition output rather than true words for

punctuation tasks was analyzed, and it was found that decision trees using ASR based

feature sets were quite robust to alignment boundary and word errors. These trees always

performed above chance, and further more usually outperformed language models, which

degraded less gracefully when using an error ridden word stream. It was also found that

training on forced−alignment based features and testing on ASR words yielded

performances comparable to experiments which trained ASR based feature sets. This is

both numerically and practically important, since it means that running ASR on, and

computing features for training data can be avoided. In all cases, a combination model

using both words and prosodic features almost always outperformed either model on its

own. 

In more exploratory experiments, prosody was used to help prediction of

interruption points and whether the first word in a spurt was in speech or silence.  In the

former task, a language model was found to not be at all helpful in predicting points in

time at which other speakers jump in to interrupt the foreground speaker. Prosodic

decision trees, however, achieved efficiencies that were large enough to sugges that pitch

and pause features are useful in discriminating such locations. Trees were also able to

help distinguish whether a speaker’s first word in a spurt is in silence or another person’s

speech. Speakers generally start at high pitch levels when wanting to take the floor.
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A long term goal of this work is a comprehensive model of conversational speech

that would allow for the automatic recovery of pragmatic and semantic structures, and

eventually the creation of conversational agents that behave naturally as meeting

participants. This study provides a good starting point in assessing the importance of

prosodic and lexical cues for this purpose, but more work is necessary to determine the

effect of different meeting types and word errors on prosodic feature sets.  

Prosodic feature based classification trees can also provide extremely useful

insights into the inherent cues used by humans to convey and detect these events. The

extensive database developed in this work can offer a clear picture of the complex

interactions of pause, pitch, and energy features within both the conversational and

dialog domains; these observations could be very useful for linguistic theory.

Finally, robotic meeting participants, as described in (Y. Matsusaka, 2001) could

serve as  meeting proctors, note takers, or facilitators. In order for such machines to

function naturally in a meeting setting, they must be able to predict and respond to both

pragmatic and structural events, which are not available in word transcripts. It is hoped

that the research conducted in this study provides a useful starting point for the use of

prosody in such domains. 

There are many potential areas for future work. For example, the inclusion of

fully automatic segmentations is desired, since hand−adjusted ones were used in this

study. Similarly, automatic speech recognition systems need to be developed specifically

for the meeting domain, accounting for the effect of multiple speakers, room acoustics,

informal speech patterns, and language usage.  In this study the recognizer was not tuned

to the specific acoustic or language characteristics of the Meeting Recorder corpus,

partially because of the lack of data but also to expedite experiments. A better recognizer

would increase performance in both the prosodic and language models. As seen in

Chapter 4, prosodic models trained on true words and tested on ASR output  performed

better than those trained and tested on ASR words. As better recognizers approach this

upper bound of human transcribed words, performance of prosodic trees can therefore

also be expected to increase.

In terms of the classification experiments, it would be beneficial to more critically

analyze the specific role of word errors in the prosodic trees, language models, and
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combination classifiers, and to more fully understand the role of these errors within each

of these frameworks. A more comprehensive study of the effect of word error rates to

specific speaker performance would also be of great value. Understanding the role of

word errors in both of these contexts could be used to determine if certain models or

features are better in various noise conditions or speakers. Perhaps word error rates

themselves could be included as predictive features in the future. 

This work has shown that prosody is a powerful information source for the

classification of a variety of types of events in the meeting domain. Such event detection

should be fully exploited in a machine transcription annotation framework, where ASR

word streams require punctuation and dialogue markings for both readability and deeper

machine understanding. The ability to accomplish this fully automatically would have

major implications in the field of automatic speech processing and ultimately influence

the fields of automatic understanding, information extraction, summarization, human−

machine interaction and rich transcription. 
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Appendix

Feature Descriptions

KEY:
PWL= Piecewise−linear fitted

SW=Switchboard
WINLENGTH= Number of frames in window, Values = 10,20,50,80,100

Region Key:

P_ = Previous 
C_ = Current

F_ = Following

Feature Description

Pause Features

PP_PAU_DUR Pause before previous word

{P_,F_}PAU_DUR Pause duration before or after word

Vowel Durations

{P_,C_,F_}TRIVOWEL_DUR_N Normalized maximum trivowel duration in word

{P_,C_,F_}TRIVOWEL_DUR_Z Z−score maximum trivowel duration in word

{P_,C_,F_}VOWEL_DUR Maximum vowel duration in word

{P_,C_,F_}VOWEL_DUR_N Normalized maximum vowel duration in word (by
SW stats)

{P_,C_,F_}VOWEL_DUR_Z Z−score maximum vowel duration in word (by SW
stats)

F0 Features

{P_,C_,F_}F0K_DIFF_
FIRSTPWLWORD_BASELN

Difference between first PWL value of word and
baseline

{P_,C_,F_}F0K_LOGDIFF_
FIRSTPWLWORD_BASELN

Log of difference between first PWL value of
word and baseline

{P_,C_,F_}F0K_LOGRATIO_
FIRSTPWLWORD_BASELN

Log of ratio between first PWL value of word and
baseline

{P_,C_,F_}F0K_DIFF_
LASTPWLWORD_BASELN

Difference between last PWL value of word and
baseline
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Feature Description

{P_,C_,F_}F0K_LOGDIFF_
LASTPWLWORD_BASELN

Log of difference between last PWL value in  word
and baseline

{P_,C_,F_}F0K_LOGRATIO_
LASTPWLWORD_BASELN

Log of ratio between last PWL value in word and
baseline

{P_,C_,F_}F0K_LOGDIFF_
SEGMAX_WORDMAX

Log of difference between segment PWL max and
word PWL max 

{P_,C_,F_}F0K_LOGRATIO_
SEGMAX_WORDMAX

Log of ratio between segment maximum PWL
value and word max PWL

{P_,C_,F_}F0K_LOGDIFF_
SEGMIN_WORDMIN

Log of difference between segment minimum PWL
value and baseline for word

{P_,C_,F_}F0K_LOGRATIO_
SEGMIN_WORDMIN

Log of ratio between segment minimum PWL
value and word min PWL

{P_,C_,F_}F0K_LOGDIFF_
LASTPWLWINDWINLENGTH_BASELN

Log of difference between last PWL value in
window of length WINLENGTH for word and

baseline

{P_,C_,F_}F0K_LOGRATIO_
LASTPWLWINDWINLENGTH_BASELN

Log of ratio between last PWL value in window of
length WINLENGTH for word and baseline

{P_,C_,F_}F0K_LOGDIFF_
WINDWINLENGTHMAX_BASELN

Log of difference between max PWL value in
window of length WINLENGTH for word and

baseline for follwing word

{P_,C_,F_}F0K_LOGRATIO_
WINDWINLENGTHMAX_BASELN

Log of ratio between max PWL value in window
of length WINLENGTH and baseline

{P_,C_,F_}F0K_LOGDIFF_
WINDWINLENGTHMIN_BASELN

Log of difference between min PWL value in
window of length WINLENGTH for word and

baseline

{P_,C_,F_}F0K_LOGRATIO_
WINDWINLENGTHMIN_BASELN

Log of ratio between min PWL value in window of
length WINLENGTH for word and baseline

{P_,C_,F_}F0K_LOGDIFF_
WORDMAX_BASELN

Log of difference between word maximum and
baseline

{P_,C_,F_}F0K_LOGRATIO_
WORDMAX_BASELN

Log of ratio between word max PWL value and
baseline

{P_,C_,F_}F0K_LOGDIFF_
WORDMIN_BASELN

Log of difference between word minimum and
baseline

{P_,C_,F_}F0K_LOGRATIO_
WORDMIN_BASELN

Log of ratio between word min PWL value and
baseline

{P_,C_,F_}F0K_RATIOSHIFT_
SEGMAX_WORDMAX_BASELN

Difference between PWL segment maximum and
baseline divided by difference between PWL word

max

{P_,C_,F_}F0K_RATIOSHIFT_
SEGMIN_WORDMIN_BASELN

Difference between PWL segment minimum and
baseline divided by difference between PWL word

min

PC_F0K_DIFF_
P−LASTPWLWORD_C−FIRSTPWLWORD

Difference between last PWL value in previous
word and first PWL value in current word
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Feature Description

PC_F0K_LOGDIFF_
P−LASTPWLWORD_C−FIRSTPWLWORD

Log of difference between last PWL value in
previous word and first PWL value in current word

PC_F0K_LOGRATIO_
P−LASTPWLWORD_C−FIRSTPWLWORD

Log of ratio between last PWL value in previous
word and first PWL value in current word

PC_F0K_DIFF_
P−LASTSLOPE_C−FIRSTSLOPE

Difference between last slope in previous word and
first slope in current word

PC_F0K_RATIOSHIFT_P−LASTPWLWORD_C−
FIRSTPWLWORD_F0KBASELN

Difference of last PWL value of previous word and
baseline divided by difference of first PWL of

current word and baseline

CP_FOK_DIFF_
MAXPWLWORD_MAXPWL_P−WORD

Difference between maximum PWL value of
current word and maximum PWL value of previous

word

CP_FOK_LOGDIFF_
MAXPWLWORD_MAXPWL_P−WORD

Log of difference between maximum PWL value
of current word and maximum PWL value of

previous word

CF_F0K_DIFF_
LASTPWLWORD_F−FIRSTPWLWORD

Difference between last PWL value in current
word and first PWL value in word

CF_F0K_DIFF_
LASTSLOPE_F−FIRSTSLOPE

Difference between last slope in current word and
first slope in word

CF_F0K_LOGDIFF_
LASTPWLWORD_F−FIRSTPWLWORD

Log of difference between last PWL value in
current word and first PWL value in word

CF_F0K_LOGRATIO_
LASTPWLWORD_F−FIRSTPWLWORD

Log of ration between last PWL value in current
word and first PWL value in word

CF_FOK_DIFF_
P−MAXPWLWORD_
F−MAXPWLWORD

Difference between maximum PWL value of
current word and maximum PWL value of word

CF_FOK_LOGDIFF_
P−MAXPWLWORD_
F−MAXPWLWORD

Log of difference between maximum PWL value
of current word and maximum PWL value of word

CF_F0K_RATIOSHIFT_
LASTPWLWORD_F−

FIRSTPWLWORD_F0KBASELN

Difference of last PWL value of current word and
baseline divided by difference of first PWL of

word and baseline

RMS Features

{P_,C_,F_}RMS_MAX_R Ratio of maximum RMS value of all frames in
word to the mean RMS for all frames

{P_,C_,F_}RMS_MAX_Z Z−Score of maximum RMS value of all frames in
word to the mean RMS for all frames

{P_,C_,F_}RMS_MIN_R Ratio of  minimum RMS value of all frames in
word to the mean RMS for all frames

{P_,C_,F_}RMS_MIN_Z Z−Score of minimum RMS value of all frames in
word to the mean RMS for all frames

{P_,C_,F_}RMS_V_MAX_R Ratio of maximum RMS value of voiced frames in
word to the mean RMS for voiced frames
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Feature Description

{P_,C_,F_}RMS_V_MAX_Z Z−Score of maximum RMS value of voiced frames
in word to the mean RMS for voiced frames

{P_,C_,F_}RMS_V_MIN_R Ratio of  minimum RMS value of voiced frames in
word to the mean RMS for voiced frames

{P_,C_,F_}RMS_V_MIN_Z Z−Score of minimum RMS value of voiced frames
in word to the mean RMS for voiced frames

Octaval Features

{P_,C_,F_}PERC_DOUB Percentage of frames assumed to be doubled in
word

{P_,C_,F_}PERC_HALF Percentage of frames assumed to be halved in word

Sentence Boundary Features

{P_,F_}Q boundary a question mark?

{P_,F_}S boundary a sentence boundary?

{P_,F_}S_TYPE Type of boundary (i.e., sentence, incomplete,
fluent)

{P_,C_,F_}DFIP boundary a disfluent or incomplete sentence
boundary? 

Special Word Features

{P_,C_,F_}IN_CC word a coordinated conjunction?

{P_,C_,F_}IN_BA word in backchannel?

{P_,C_,F_}IN_DM word a discourse marker?

{P_,C_,F_}IN_FP word a filled pause?

{P_,C_,F_}IN_RP word a repeat?

{P_,C_,F_}IN_SW_ALL word a special word, i.e., in 5 categories above?

{P_,C_,F_}IN_SW_BACCDM word a backchannel, coordinated conjunction or
discourse marker?

{P_,C_,F_}IN_SW_CCDM word a coordinated conjunction or discourse
marker?

{P_,C_,F_}IN_SW_FPRP word a filled pause or repeat?

{P_,C_,F_}WORD_FREQ Word frequency of word in SW

Contextual Features

MIC Microphone type

MTYPE Meeting type

NAME Speaker name

NATIVE Native American−English speaker?

SEX Gender
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