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1. INTRODUCTION

For decades, speech recognition systems have used pat-
tern recognition techniques to identify lexical items from
a sequence of short-term spectra or cepstra, often with
some additional linear or nonlinear processing of these
features. This basic scheme owes much to the early
methods for channel vocoding; there, filter banks pro-
duced short term spectral energies that could be sam-
pled at 50-100 Hz and transmitted to represent the
spectral envelope (the excitation information being a
separate stream). Both dynamic time warp and HMM
approaches to speech recognition could use such a stream
of short-term spectral representations to provide a mea-
sure of local dissimilarity or similarity to stored exam-
ples or models. Much of the effort in front-end signal
processing for ASR has been on improving these short-
term features.

However, over the last 15 years, approaches have
been developed that focus more on the temporal aspect
- that is, given some particular feature that varies over
time (e.g., 500 Hz signal energy in a 25 ms window),
apply signal processing techniques to the sequence of
values for that feature. Figure 1 shows the general
scheme for such processing. Some of these approaches
have become quite standard (for instance, the tempo-
ral derivative or “delta” features), while others are new
and still quite controversial. In this paper I will review
a range of these approaches, closing with what I be-
lieve to be some of the most important areas for further
work.

2. DYNAMIC FEATURES

Feature vectors computed from mel cepstra [7] or PLP
analysis [13] correspond to smoothed estimates of local
spectra. However, it could be argued that a key char-
acteristic of speech is its dynamic behavior. Because of
this, many researchers have made use of estimates of
the local time derivatives of the short-term spectrum
or cepstrum.
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Figure 1: Spectral vs. temporal processing for ASR.
In the first case, some measure of the short-term spec-
trum energy, such as the FFT of a Hamming-windowed
signal, is used as the input to processing such as com-
putation of the real cepstrum. This is illustrated in the
upper figure. In the second case, the spectral energies
(or the processed versions from the first case) are sub-
ject to temporal processing. Figure courtesy of Sangita

Sharma of OGI.



One of the most common forms of this measure is
the so-called delta cepstrum [11]. This is typically im-
plemented as a least-squares approximation to the local
slope, and as such is a smoother estimate of the local
derivative than a simple difference between cepstra for
neighboring frames. This can be expressed as

Aci(n) = 2=y b eiln T h) (1)
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where a typical value for N is 5.

Thus, each stream of delta cepstral values is com-
puted by correlating the corresponding stream of cep-
stral values with a straight line that has a slope of 1.

The second derivative (commonly referred to as delta-
delta cepstrum) is also often useful, and corresponds to
a similar correlation, but with a parabolic function.

Many speech recognition systems have incorporated
features such as these. They tend to emphasize the dy-
namic aspects of the speech spectrum over time, and
to be relatively insensitive to constant spectral charac-
teristics that might be unrelated to the linguistic con-
tent in speech, such as the long term average spectral
slope. However, the resulting feature vectors miss some
of the key characteristics that are salient in static spec-
tral representations, and typically are not sufficient for
good recognition performance. In practice, most sys-
tems that incorporate delta features use them as a com-
plement to static measures such as mel cepstra or PLP
cepstra.

Another way of looking at delta or delta-delta fea-
tures is as a filtered version of the temporal stream for
each component of the framewise observation vector. If
this choice of temporal processing has often been use-
ful, what about other filtering operations?

3. TEMPORAL FILTERING

The previous section illustrated one of the most com-
mon forms of temporal filtering, that of computing lo-
cal estimates of the time derivative for each component
in the sequence of feature vectors. One of the impor-
tant properties of this measure is that it is insensitive
to the average value of each component. Another way
to achieve this property would be to calculate a mean
vector (a vector whose components are the average of
corresponding components in the feature vectors) and
subtract it from the feature vectors. If the mean is com-
puted over a sufficiently large chunk of time, the result-
ing vector sequence will retain the gross characteristics
that simple delta filtering can sometimes remove.

In practice, the static features most commonly used
for ASR are some form of short term cepstra, so the

subtraction of the mean vector is equivalent to a nor-
malization (division) by the geometric mean of the short
term power spectra. A little math may clarify this
interpretation. Assume that a number of effects (mi-
crophone frequency response, effect of turned head of
speaker, time-invariant average frequency response of
radiation characteristic from speaker’s mouth, etc.) can
be modeled, to first order, as a linear filtering of the
“clean” speech signal. Assume further that a speech
signal with short-term spectrum S(w, ) is processed by
this linear time invariant filter with transfer function
H(w,t). Then, if X(w,t) is the short-term spectrum of
the observed signal, we may say

X(w,t) = S(w,t)H(w,1) (2)

Then the corresponding short-term log power spec-
trum would be

log|X((.u,t)|2 = lOg|S((.a,t)|2 + lOg|H((.u,t)|2 (3)

Thus, a convolutional effect in the time domain (as
caused by the filter) corresponds to a multiplication in
the frequency domain, and to a sum in the log power
domain. If the second factor is relatively constant over
the period for which the mean is computed, and if con-
stant components of S are not useful, one can simply
estimate the constant component of the sum by com-
puting the mean of the log spectrum. Alternatively,
one may compute the Fourier transform of the above
components, yielding cepstra, and remove the means in
this domain. This operation is a standard one in many
speech recognition systems, and is often referred to as
Cepstral Mean Subtraction, or CMS (as discussed in
[28], along with other approaches to acoustic robust-
ness).

Consider a relevant recognition scenario. A dis-
turbance has affected the speech, and the disturbance
might be unknown - a change in telephone channel, a
switch in microphones, or perhaps just a turn of the
speaker’s head so that the overall spectral characteris-
tic is changed. The above analysis suggests that dis-
tinguishing between the signal components on the basis
of how quickly the cepstrum or log spectrum changes
with time can separate out the speech from the convo-
lutional disturbance. In other words, disturbances that
were convolutional in the time domain become additive
in the log spectral domain. If such additive components
have different temporal characteristics, linear filters can
be used to separate them out.

Viewed in this more general framework, cepstral
mean subtraction can be seen as a specific example of
a more general notion of filtering in the domain of the
time trajectories of cepstral or log power spectral co-
efficients. Another specific example of such a principle



is the approach referred to as RASTA-PLP, a modi-
fication to PLP analysis that is an on-line approach
to achieving robustness to convolutional disturbances
[15][18][14].> 1In this approach, the log of each criti-
cal band trajectory is filtered with a bandpass filter;
typically there is a zero at 0 Hz, and the restriction
at the higher frequencies constrains the modulations of
log critical band energies to a passband that is required
for speech intelligibility. The resulting filtered trajec-
tory is then exponentiated to yield a modified critical
band power spectrum for analysis in the later steps of
PLP. The use of the log domain for the filtering results
in a kind of implicit automatic gain control for the final
output sequence.

RASTA filtering can be seen as a generalization
of cepstral mean subtraction or delta filtering, both
of which apply a linear operation to the temporal se-
quence for each component of a feature vector. His-
torically, RASTA processing has either incorporated
bandpass filtering between 1 and 12 Hz, or highpass
filtering at something like 1 Hz. A related perspective
on temporal filtering can be provided by the modula-
tion spectrum [19], which is the spectrum of the energy
contour normalized by the average value of the energy
envelope. For speech, the higher modulation frequen-
cies (e.g., over 20 Hz or so) have relatively little content;
this is the reason why energy envelopes can be sampled
at 50-100 Hz for channel vocoders without significant
loss 1n intelligibility. For extremely low frequency bins
in the modulation spectrum, the content does not ap-
pear to be particularly helpful for speech intelligibil-
ity, and in fact is strongly affected by common signal
degradations such as the convolutional effects referred
to above.

A number of researchers have performed either per-
ceptual tests or ASR experiments to show the relative
significance of different parts of the modulation spec-
trum [8][2][16]. A recently developed signal processing
approach is similar to RASTA in spirit, but implements
gain control explicitly, separately from the modulation
filtering [23].

Finally, temporal filters can be automatically de-
signed using Linear Discriminant Analysis (LDA). LDA
finds a linear transformation that maximizes the ratio
between between-class variance and within-class vari-
ance. In [3], LDA was applied to 1 second of each criti-
cal band spectral energy, and the first few eigenvectors
of the LDA were used as finite impulse response (FIR)
filters to be applied to each time trajectory. The fil-

IThe more general idea of filtering temporal trajectories of
subband energies, or simple transformations such as cepstral tra-
jectories, is sometimes also called RASTA filtering. RASTA has
also been applied to analysis approaches other than PLP; for
instance, it has been applied to mel cepstra [26].

ters essentially do RASTA processing, but their specific
characteristics have been designed from data rather
than intuition.

4. MULTIPLE-FRAME ANALYSIS

The principal theme of this paper is the processing of
temporal sequences of speech features prior to the prob-
ability estimation stage. However, the distinction be-
tween the two stages can often be blurred. For instance,
in the case of hybrid hidden Markov model/artificial
neural network (HMM/ANN) systems, the input to the
probability estimator (typically a multi-layer percep-
tron or a recurrent network) consists of multiple se-
quential feature vectors. During training, the network
parameters are adjusted with stochastic gradient de-
scent, and the final weights implement some nonlinear
function of the multiple input feature vectors. Thus,
both temporal and spectral signal processing are being
applied on the path to generating state probabilities.
LDA, described earlier, has also been successfully ap-
plied to the transformation of variables from one or
more frames for speech recognition by a number of re-
searchers in the 1980s and 1990s [20] [12]. A key as-
pect of these approaches is that features from multi-
ple frames are used to generate probabilities (or likeli-
hoods). Clearly, these time trajectories can be based
on speech representations that have been subject to
temporal and/or spectral processing. This is the topic
of the next two sections.

5. MULTIPLE SPECTRAL STREAMS

In 1993, 1 participated in the Rutgers Workshop on
Conversational Speech Recognition, which was the pre-
cursor to the Johns Hopkins workshop of recent years.
At that workshop, Hynek Hermansky and I were for-
tunate to spend a fair amount of time listening to Jont
Allen talking about Harvey Fletcher. Allen was a great
fan of work that Fletcher had done early in the 20th
century. One of the key points that Allen emphasized
in these discussions was the temporal perspective - ex-
tracting information about phonetic identity from in-
dividual spectral channels across time. A key idea (as
expounded in [1]), was that unreliable signal compo-
nents over a limited spectral region would have less of
an effect on the ultimate classification than they would
for an approach based on full spectral representations
computed for each time slice.

Additionally, separate processing of spectral sub-
bands could potentially compensate for variability in
the relative timing of phonetic events between different
parts of the spectrum. This variability could be exac-



erbated by differing speaking styles (affecting speak-
ing rate, intensity, etc.) and by room reverberation.
Such asynchronies were measured and described, for
instance, in [24].

Finally, the temporal pattern for some subbands
might be more useful for particular phonetic discrim-
inations. For all of these reasons, over the next few
years, a number of sites began to experiment with the
estimation of probabilities from subsets of the full spec-
tral vector [4][29][6][30][25]. In the early versions of
these experiments, improved performance was demon-
strated for speech that had been artificially degraded
with additive narrowband noise. Following this, im-
provements were even observed for recognition of clean
speech when a subband system was used in combina-
tion with a fullband system. Nearly all of these ex-
periments were done with small tasks, although some
of them were reasonably realistic. More recent experi-
ments with the large vocabulary Broadcast News task
were less conclusive [21].

For these subband experiments, 2-7 bands were used
(most commonly 3 or 4). In a recent development, the
multi-band recognition approach has been carried to
an extreme by using 500-1000 ms of speech over each
single critical band energy trajectory. In other words,
the temporal filtering strategy described earlier was es-
sentially used to generate a stream of probabilities (or
distances) for each filter output channel [17].

It 1s likely that we still do not know how to prop-
erly incorporate subband streams in ASR. Recently,
Bourlard has suggested statistical approaches to han-
dle the combination of streams from all possible sub-
sets of a chosen set of subbands, with weights treated
as latent variables. We also now know from experi-
ments with Broadcast News that an oracular setting of
such weights (setting to 1 for each frame the band that
is most likely to give the correct sound as the chosen
class) can lead to major improvements in performance
[21]. Learning how to set these weights in a more real-
istic setting may then be the key to wider benefits from
multi-band approaches.

6. GENERALIZED MULTI-STREAM ANALYSIS

The previous section described a class of techniques
that incorporated a temporal perspective - probabil-
ities were generated separately for different temporal
trajectories (of spectral energies). However, the tem-
poral signal processing per se applied to each stream
was minimal. In a generalization of this technique, sig-
nal processing can be used to generate streams that
differ in other aspects than purely spectral. In par-
ticular, temporal filtering can be applied to produce

multiple spectral representations. Much as the multi-
band approach was suggested by the complementarity
of different parts of the spectrum for phonetic discrimi-
nation, similarly streams with differing temporal prop-
erties can potentially complement one another for this
purpose.

Probably the oldest (and most successful) applica-
tion of this approach is one already described in this
paper - the use of delta cepstra in addition to the static
features. In fact, the delta cepstrum has a different
characteristic in the modulation spectrum than does its
static equivalent, and consequently has different tem-
poral properties.

More recently, modulation-filtered spectra were com-
bined with PLP at the level of probability streams [21].
This was done in the context of a Broadcast News test.
The combination yielded significant improvements in
word error rate over the pure PLP case despite the
fact that the filtered spectra yielded substantially worse
results on their own. In an earlier experiment for a
smaller task, we observed a significant complementar-
ity of the errors for each of the two streams in separate
decoding passes [31].

This was an ad hoc combination experiment: a
“standard” stream was combined with a spectral rep-
resentation that had a different temporal characteris-
tic, where the latter was developed for some other pur-
pose (to provide robustness under reverberant condi-
tions). What would be a principled criterion for choos-
ing multiple representations, given that they would be
combined using a merged statistical model? In one
approach, LDA was used as described at the end of
Section 3, but was applied to speech for a number of
conditions that were not present in the data used for
training the statistical models; in particular, several
different levels of additive noise and reverberation [27].
These analyses, along with the processing of the “clean
data”, yielded filters that improved discrimination be-
tween target classes (typically phones or syllables). In
principle this approach could yield a range of temporal
filters that would provide a multi-stream system with
representations that would be optimal for a range of
potential conditions (in the usual LDA sense of opti-
mality).

Figure 2 shows temporal filters that were generated
by this method for the “clean” condition, for phone
classes, and for each of 15 critical bands in the tele-
phone bandwidth.

7. DISCUSSION

Researchers have been working to design effective short-
term feature vectors for speech recognition for almost
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Figure 2: Temporal filters for critical band energies,
estimated from a linear discriminant analysis focused
on distinguishing between phones in the OGI Stories
task [27]. The filter for band 1 is essentially noise, due
to the low signal content in this band.

50 years. The history of temporal processing for these
features is much shorter. Can powerful statistical meth-
ods, both offline and online, make up for the deficiencies
in our signal processing methods? Perhaps. However,
historically, improvements in the basic signal process-
ing (for instance using cepstral mean subtraction) have
provided considerable benefit despite the availability of
the statistical mechanisms. In particular, the temporal
structure of spectral or cepstral information over time
can provide important cues that may not in practice
be learned as part of our statistical (acoustic) models.
Furthermore, due to the finite size of our training sets
and our models, practical systems must always face
mismatches between training and test set conditions.
Consequently, it may be critical to develop the core
signal processing methods much further, if only to pro-
vide better raw materials for statistical adaptation and
classification during recognition.

Considering temporal processing as well as spectral
processing permits a range of possible feature vectors
that otherwise would not be considered. It may be that
making such a variety of features available to the sta-
tistical components will be necessary in order to sub-
stantially improve ASR over the current state-of-the-
art. Given the computational resources already avail-
able, and the likelihood that we will have 100 times
as much within a decade, researchers should not be
deterred from using many different features in experi-
mental systems. The range of possible variables should
include the results from applying different types of tem-
poral processing to spectral or cepstral vectors. Meth-
ods such as the LDA-based approach described above
should be considered; but also, other criteria for deter-
mining temporal or even time-frequency components

should be tried. Considered in this light, we have only
scratched the surface of plausible measures.

Similarly, we only have the barest understanding of
the nature of the speech signal as it is really received
for our processing. What is “typical” reverberation for
common recognizer use? How does it affect the time-
frequency signature of different speech sounds? What
is the combined effect of room acoustics, noise, and
casual speaking style? What is the interaction be-
tween what we have traditionally called language mod-
eling (modeling word sequences), pronunciation mod-
eling (modeling phone sequences), acoustic modeling
(modeling state sequences) and front end signal pro-
cessing? Surely it is an oversimplification that these
pieces are modular - for instance, the predictability of
words is known to affect their pronunciation [10], and
may also have an impact on the utility of different sig-
nal processing measures. And as noted in the previous
section, it may be the case that some of the advances to
come may result from the joint development of acous-
tic signal processing methods and modifications to the
acoustic modeling, two components of ASR that are
particularly interdependent.

Thus, there are many questions, and at this point,
not so many answers. It is the task of the readers to
get to the solutions.

And they won’t be found at the back of the book.
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