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ABSTRACT

Even a modest degree of room reverberation can greatly in-
crease the difficulty of Automatic Speech Recognition. We
have observed large increases in speech recognition word
error rates when using a far-field (3-6 feet) mic in a con-
ference room, in comparison with recordings from head-
mounted mics. In this paper, we describe experiments with
a proposed remedy based on the subtraction of an estimate
of the log spectrum from a long-term (e.g., 2 s) analysis win-
dow, followed by overlap-add resynthesis. Since the tech-
nique is essentially one of enhancement, the processed sig-
nal it generates can be used as input for complete speech
recognition systems. Here we report results with both HTK
and the SRI Hub-5 recognizer. For simpler recognizer con-
figurations and/or moderate-sized training, the improvements
are huge, while moderate improvements are still observed
for more complex configurations under a number of condi-
tions.

1. INTRODUCTION

When speech is recorded in a room, the effects of reverber-
ation (along with air absorption and mic response) create a
channel response that distorts the speech spectrum.

If the channel is assumed to be a linear time-invariant
system, the received signal spectrum X(ω) is equal to the
product of the speech spectrum S(ω) and the channel spec-
trum C(ω). In practice, processing is based on a short-term
Fourier transform X(n, ω) where n is the time index around
which a windowed DFT is taken. If the analysis window
is long and smooth enough then the product property still
approximately holds: X(n, ω) ≈ S(n, ω) C(ω) ([1]). (Here
the channel has been assumed not to vary over time.) Tak-
ing the logs of both sides, we find that log X(n, ω) ≈ log
C(ω) + log S(n, ω), and thus in theory we could approxi-
mately remove C(ω), along with any constant portion of the
speech spectrum, by subtracting the time average over n of
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log X(n, ω) from log X(n, ω). This logic is also the ba-
sis for cepstral mean subtraction, which is commonly used
to counteract the effects of a time-invariant coloration such
as fixed channel frequency response. However, in the latter
case, the relevant time constants can be measured in mil-
liseconds so that a short-term (e.g., 20 ms) analysis window
can be used. For room reverberation the typical time con-
stants are closer to a second, so that much longer analysis
windows are required.

Using these concepts, the authors of [2] implemented a
speech recognition front end based on mean subtraction us-
ing a long-term (2 second) spectral analysis window. Sim-
ulating reverberation using a fixed channel response, they
found that subtracting the mean of the log magnitude spec-
trum improved ASR performance.

Reducing the effects of reverberation under realistic con-
ditions may be quite different. For instance, speakers may
move, and additive noise may complicate the degradation.
Additionally, we would like to understand the interaction
between the proposed approach and the complexity of the
recognition system, both for training and test. For these
reasons, we have experimented with artificial and natural re-
verberation, with simple and complex recognizers, and with
small and large training sets.

2. METHODS

2.1. Mean subtraction implementation

In order to use the mean subtraction method with existing
ASR systems, we wrote a separate program which produced
resynthesized audio after performing spectral analysis and
mean subtraction. The resynthesized audio was then given
to ASR systems as a regular audio file.

Spectral analysis was performed using a Hanning-win-
dowed N-point DFT stepped by N/4 samples. Except when
otherwise stated, we used a 2.048-second analysis window,
which corresponds to 16384 points at the sampling rate of
8000 Hz that we used for all our experiments.

As in [2] we chose to normalize the log magnitude spec-
trum while leaving the phase spectrum unchanged. Thus
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following spectral analysis the spectra were separated into
phase spectra and magnitude spectra. For each analysis
frame, the arithmetic mean of the log magnitude spectrum
was calculated by averaging the log magnitude spectra of
that frame and the previous W and next W frames. (W was
10 except when otherwise stated.) The mean calculated for
each frame was then subtracted from it, and each resulting
log magnitude spectrum was re-combined with the original
phase spectrum. Resynthesis was then performed.

In order to simplify resynthesis and ensure an integer
number of analysis frames, we duplicated data samples at
the beginning and end of the data to add pad samples. After
resynthesis the extra samples were discarded.

2.2. Test corpora

The experiments were carried out on connected digit strings.
For evaluations on clean speech, a 9918-word test set from
the TIDIGITS connected digits corpus ([3]) was used (down-
sampled to 8000 Hz and filtered to telephone bandwidth as
described in [4]). For some tests, the data was artificially
reverberated with a fixed impulse response, corresponding
to an RT60 of 0.5 seconds and a direct-to-reverberant en-
ergy ratio of 0 dB.1 In other cases, a large subset of TIDIG-
ITS digit strings (7704 words) was read by speakers in a
room we are using for recording natural meetings, and was
recorded with headset mics and with a PZM table-mounted
mic that was 3-6 feet from each of the talkers. This test set
was collected as part of our Meeting Recorder project ([5])
and we will refer to it as Meeting Recorder Digits.

The TIDIGITS corpus is divided into short utterances,
many of which are shorter than the analysis window length
of 2.048 seconds. Therefore, we concatenated all utterances
from the same speaker into one long vector of samples and
performed mean subtraction using that vector, and then split
the resynthesized output back into single-utterance files for
use by the ASR system. This was done for training and
test data. For the Meeting Recorder Digits corpus the same
speakers re-appeared during different recording sessions, but
we only concatenated utterances that were produced by the
same speaker during the same session. This concatenation
of segmented utterances has the effect of removing some
of the inter-utterance silence, which may have made things
easier for the mean subtraction method.

2.3. ASR systems

In our tests we first used the Aurora evaluation system de-
scribed in [4], which is a Gaussian-mixture-based HMM
system, HTK, configured to use word-level digit models.

1Thanks to Jim West and Gary Elko, of Bell Labs, and Carlos Avendano
for providing the impulse response, which was measured experimentally in
a varechoic chamber.

Clean Artificial Near Far
(TI) reverb (TI) (MR) (MR)

Baseline 1.0% 19.2% 6.6% 41.4%
Mean sub. 1.2% 3.6% 3.3% 7.9%

Table 1. Results with Aurora baseline system, testing
on TIDIGITS, artificially reverberated TIDIGITS, and near
and far mic Meeting Recorder Digits.

In later tests, we used SRI’s Hub-5 ASR system, which
is described in [6]. This incorporates both speaker adap-
tation and a broader range of context-dependence than the
configuration of HTK that we were using. For simplicity’s
sake, though, we ran the recognizer in a single pass with-
out any rescoring, using only within-word triphone acoustic
models. The language model of the Hub-5 system was re-
placed with a loop over all digit words with equal probabil-
ities. Gender detection was not used—the system was only
trained and tested on male speakers, in order to minimize
training time. We used the speaker adaptation selectively so
that we could observe its effects, and in particular any inter-
action with the log spectral subtraction technique. Speaker
adaptation was unsupervised and used maximum likelihood
linear regression on a phone-loop model (over all phones
found in digits) to adjust the means of the Gaussians in the
acoustic model via three affine transformations. (This is the
first adaptation stage in the SRI system; subsequent adapta-
tion to recognition hypotheses was omitted.)

3. EXPERIMENTAL RESULTS

3.1. Core experiments with HTK

To train the Aurora evaluation system we used the Aurora
clean training set, consisting of 4220 male and 4220 fe-
male utterances from the training portion of the TIDIGITS
corpus, downsampled to 8000 Hz and filtered to telephone
bandwidth. For mean subtraction tests we performed mean
subtraction on the training set as well as the test data.

Table 1 contrasts the word error rate of the baseline sys-
tem with the system’s performance when mean subtraction
was performed. The first column shows the results for the
TIDIGITS test data. The second column shows the results
for the same data with the artificial reverberation described
above. The third and fourth columns show word error rate
results for Meeting Recorder Digits data (7704 words) col-
lected with headset mics and the tabletop mic respectively.

It can be seen that the mean subtraction causes a small
increase in error rate in the first column, but provides dra-
matic drops in error rates in the second and fourth columns.
Performance in the third column also improves, despite be-
ing based on speech from a close-talking mic.
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Time Near Far
3.072 s 4.6% 11.2%
4.096 s 4.5% 10.3%
5.120 s 4.2% 9.3%
6.144 s 3.9% 8.9%
7.168 s 3.8% 8.7%

10.240 s 3.6% 8.0%
12.288 s 3.3% 7.9%
13.312 s 3.3% 7.9%
14.336 s 3.3% 7.9%
15.360 s 3.2% 7.8%
16.384 s 3.2% 7.9%
17.408 s 3.1% 8.0%

Table 2. Word error rate for headset (near) and tabletop (far)
mics, given the length of time over which the log spectral
mean was calculated.

3.2. Length of time used to estimate mean

Our mean subtraction implementation uses a sliding win-
dow of 2W+1 frames to estimate the mean, and in real-
world conditions (as opposed to simulated reverberation)
one might expect a trade-off between better ability to es-
timate a fixed channel response with a larger W and to track
changes in the channel response with a smaller W. How-
ever, for the Meeting Recorder Digits we found a minimum
best value of W (W=10, corresponding to 12.288 seconds of
data) but no clear maximum. Perhaps this is because there
was not much speaker movement during the digit readings.
Table 2 shows our results.

3.3. Analysis window length

Similarly, we wanted to explore other window lengths to see
how far our original choice was from optimum. In partic-
ular, we wanted to confirm our intuition that for the case
of reverberation, the usual 20-30 ms analysis window was
insufficient.

Table 3 shows our results. The first column gives anal-
ysis window length, and the second and third columns give
word error rates for near and far mic Meeting Recorder Dig-
its. For these experiments, we used 12.288 seconds of data
to estimate the mean.

Clearly, shorter analysis windows are insufficient for
this task, and window lengths in the 1-2 second range ap-
pear to work well.

3.4. Follow-up with the SRI Hub-5 system

While the results from the Aurora evaluation system showed
the mean subtraction causing dramatic gains in performance,
the baseline results were often poor. For this reason we

Analysis Window Near Far
0.032 s 7.0% 38.4%
0.256 s 3.4% 14.6%
0.512 s 3.0% 8.8%
1.024 s 3.0% 7.9%
2.048 s 3.3% 7.9%
4.096 s 3.8% 8.4%

Table 3. Word error rate for headset (near) and tabletop
(far) mics, given a range of analysis window lengths.

Small training set Large training set
Artificial reverb 16.3/9.7 9.2/4.1
Natural far mic 12.7/5.1 4.8/3.0

Table 4. Word error rates in percent for the baseline SRI
recognizer without mean subtraction. Results without/with
speaker adaptation are before/after the slashes. The test sets
were artificially reverberated TIDIGITS and tabletop-mic
Meeting Recorder Digits.

also experimented with SRI’s Hub-5 ASR system, for which
the number of parameters automatically increases when the
amount of training data is increased, and which also incor-
porates other enhancements (e.g., speaker adaptation) that
were not available in the Aurora configuration of HTK. 2

The same test sets and mean subtraction parameters were
used as for the tests described in section 3.1 above.

Initially, we used the TIDIGITS training set, as was used
for the HTK experiments; in this case, however, we used
male speaker data (4235 utterances) from the original TI-
DIGITS set, rather than the Aurora version. We also tried
training on a larger set consisting of 11.1 hours from the
Switchboard and Callhome-English conversational speech
corpora ([7], [8]) and 21.1 hours from the Macrophone read
speech corpus ([9]), all from males.

The baseline word error rates for the two kinds of degra-
dations are given in table 4. All of these results were signif-
icantly better than for the original experiments.3

Table 5 shows the percent reduction in WER resulting
from the mean log spectral subtraction technique. Reduc-
tions in error rate (some of which are quite large) can be
seen for all but one case.

2Unlike the Aurora baseline system, the SRI system uses short-term
cepstral mean subtraction in its front end. Therefore any gains in per-
formance due to long-term mean subtraction with the SRI system are in
addition to the short-term cepstral mean subtraction.

3The results given here are not directly comparable, as they are per-
formed on somewhat different, male-only, test and training sets. Nonethe-
less, using the baselines shown here might be closer to what would be
relevant for a well-trained modern system.
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Small training set Large training set
Artificial reverb 69/68 34/15
Natural far mic 50/18 6/-2

Table 5. Relative improvement in percent using the mean
subtraction technique, without/with speaker adaptation.

4. DISCUSSION AND CONCLUSIONS

The results reported in this paper generally support the no-
tion that long-term log spectral subtraction can help with
ASR degradation due to room reverberation. We found that
the subtraction could improve performance on data collected
in realistic acoustic conditions, where the channel response
may vary over time due to speaker movement, and that the
use of the long analysis window was important.

However, our results also reinforce the common obser-
vation that it is easier to improve a poor system than a rel-
atively good one. Speaker adaptation and the use of a large
diverse training set (recorded over many different telephones
with a wide variation in noise and channel characteristics)
improves performance well enough for the Meeting Recor-
der digits that the subtraction technique provides no im-
provement, and in fact appears to hurt performance slightly.
However, if the degradation matches the assumptions of the
mean subtraction technique (purely artificial reverberation)
or if only a smaller training set is available, the improve-
ment can be large, even if adaptation is used. Furthermore,
in many applications a system with many parameters might
not be feasible, for instance due to memory constraints in
a portable device. And if the number of parameters are too
limited, the system might not be able to take advantage of
much more training data, and results might be closer to what
we have observed for the small training set.

Of course, we have only tested one “natural” room in
this experiment, and it may well be that results would differ
in general. In particular, rooms and mic/talker placements
will yield both differing reverberation characteristics (e.g.,
decay time and direct-to-reverberant ratios), and also differ-
ent SNRs. The NIST stnr tool ([10]) yields a SNR for the
Meeting Recorder Digits (far mic) of 9.0 dB, which suggests
that our purely convolutional degradation model might be a
poor match to our test conditions. It is clear to us that we
need to have the model incorporate additive noise as well.
This is a goal for future work.
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