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ABSTRACT

Local state (or phone) posterior probabilities are often in-
vestigated as local classifiers (e.g., hybrid HMM/ANN sys-
tems) or as transformed acoustic features (e.g., “TAN-
DEM”) towards improved speech recognition systems. In
this paper, we present initial results towards boosting these
approaches by improving the local state, phone, or word
posterior estimates, using all possible acoustic information
(as available in the whole utterance), as well as possible
prior information (such as topological constraints). Further-
more, this approach results in a family of new HMM based
systems, where only (local and global) posterior probabil-
ities are used, while also providing a new, principled, ap-
proach towards a hierarchical use/integration of these pos-
teriors, from the frame level up to the sentence level. Ini-
tial results on several speech (as well as other multimodal)
tasks resulted in significant improvements. In this paper, we
present recognition results on Numbers’95 and on a reduced
vocabulary version (1000 words) of the DARPA Conversa-
tional Telephone Speech-to-text (CTS) task.

1. INTRODUCTION

Over the last 10-15 years, posterior probabilities have been
increasingly explored as a possible way to improve au-
tomatic speech recognition (ASR) systems, initially with
the goal of providing more discriminant training and local
HMM probabilities, and more recently as compact features
(possibly resulting of the merging of several features).

Both approaches are certainly valid and have shown
some success, e.g., in the case of hybrid HMM/ANN sys-
tem (where posteriors are used as local classifiers) or in
the case of “TANDEM” systems (where posteriors are used
as features fed into standard HMMs). However, their effi-
cacy strongly depends on the quality of these posterior es-
timates, usually based on statistical tools such as multilayer
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perceptrons (MLP) or normalized Gaussian mixture mod-
els (GMM), possibly exploiting some contextual acoustic
input.

In this paper, we present the results of some initial in-
vestigation towards new ways to improve the estimation of
local posteriors (hence the resulting performance) by us-
ing the so called “gamma” recursion (as usually referred to
in the HMM formalism) to generate local posteriors tak-
ing into account all the acoustic information available in
each utterance, possibly complemented by additional prior
information. Interestingly, using these “state/phone gam-
mas” not only yields improved recognition performance, as
shown here on Numbers’95 and CTS, but also opens up sev-
eral innovative and principled approaches towards the hier-
archical use of posterior probabilities from the frame level
up to the sentence level.

Finally, we believe that what is presented in the present
paper provides a general framework for a theory of using
posteriors as local measures (classifiers) or features in hi-
erarchical, with the additional advantage of being able to
accommodate, and possibly take advantage of, larger acous-
tic context, as well as specifically designed prior knowledge
such as topological constraints.

The notation used in this paper will be the following:

� X = xT1 = fx1; : : : ; xT g an acoustic observation
sequence

� qt be an HMM state at timet, which value can range
from 1 toNq (total number of possible HMM states)

� pt be a phoneme at timet, which value ranges from 1
toNp (total number of phones)

� wt be a word a timet, which value ranges from 1 to
Nw (total number of words)

� Events “qt = i”, “ pt = i” and “wt = i” will, respec-
tively, often be written asqit, p

i
t, andwi

t.



2. POSTERIORS AS LOCAL CLASSIFIERS OR AS
FEATURES

2.1. Posteriors as local classifiers

Hybrid HMM/ANN approaches were probably among the
first ones to make extensive use of a posteriori probabilities
in speech recognition. In these approaches, Artificial Neural
Networks (ANN), and more specifically MLPs are used to
compute the emission probabilities required in HMM sys-
tems [6]. It has indeed been shown that if each output unit
of an MLP is associated with a particular statek of the set of
possible HMM statesQ = f1; 2 : : : ; k; : : : ; Nqg, it is pos-
sible to train the MLP to generate a posteriori probabilities
of the output classes conditioned on the input, i.e.,p(qitjxt).
While allowing for discriminant training, such an approach
also has the advantage of possibly accommodating acous-
tic context by providing several frames at the MLP input,
thus estimatingp(qitjx

t+c
t�c), wherec is typically equal to 4.

However, context of up toc = 50 has also been successfully
used [15].

More recently, a posteriori probabilities started to be
used as local measures for different ASR purposes, such as
(1) estimating confidence measures [5, 12, 27], (2) beam
search pruning [1], or (3) word lattice rescoring [20].

In all of these cases, posterior probability estimates ap-
pear to have been quite useful.

2.2. Posteriors as features

2.2.1. General idea

More recently, the properties described above were also ex-
tended by using the MLP-generated posterior probabilities
as acoustic features, which (after some transformation) can
be used alone or appended to other sets of (more traditional)
features as inputs to HMMs. In this case, the MLP is con-
sidered as performing some kind of “optimal” feature ex-
traction (using acoustic context and nonlinear discriminant
analysis). In the case of multiple features (e.g., multi-band
and multi-stream speech recognition), this MLP can also be
used as a convenient way to integrate multiple features and
generate the most compact and most discriminant represen-
tation to be used in standard HMMs.

The purpose of feature extraction in ASR is often to re-
duce dimensionality of data while preserving (or enhancing)
the discriminant information of the data. In the process the
irrelevant variability should be alleviated and the relevant
variability preserved. To ensure Bayes error of the classifi-
cation, at leastL�1 features are required for discrimination
amongL classes (see [11], p. 444). Techniques that can sat-
isfy this requirement based on optimal rotation of feature
space such as linear discriminant analysis (LDA) has been
used in feature extraction in ASR for quite some time, e.g.,
[17].

2.2.2. TANDEM technique for deriving features for HMM-
based ASR

Nonlinear alternatives for such data-guided feature extrac-
tion start to emerge. One of the earlier and most success-
ful approach is TANDEM [16]. For every speech instant
(i.e. about every 10 ms in a typical ASR system), the TAN-
DEM technique derives a vector of posterior probabilities
of sub-word speech events from any relevant evidence pre-
sented to its input. Posteriors of classes form a particularly
convenient smallest set of features since the highest pos-
terior determines the class assignment. Typically, a prop-
erly trained MLP, trained in one-hot encoding paradigm [6],
is used for estimating posterior probabilities of context-
independent phonemes. Alternatives such as GMM-derived
posteriors were also investigated [24]. Hierarchical classi-
fication schemes in TANDEM estimator were also investi-
gated [26].

The MLP posterior probability estimates are gaussian-
ized by a static nonlinearity and whitened by the Karhunen-
Loeve transform (KLT) derived from training data. Three
different techniques were investigated for the gaussianiza-
tion: 1) computing logarithm of the MLP output, 2) taking
MLP outputs prior to its final nonlinearities, and 3) deriving
the non-linear function that properly gaussianized the his-
togram of posteriors from the training data. Observed dif-
ferences in performance were typically minor. In the case
of the experiments reported here, the logarithm was used to
roughly gaussianize the features.

Such gaussianized and whitened posterior probabilities
form the feature vector for the subsequent HMM recog-
nizer. Thus, the conventional features derived from a spec-
tral density vector representing the spectral envelope are re-
placed by the transformed posteriors of acoustic events (in
the original concept the events were context-independent
phonemes). If the targeted events are independent, the out-
put of the trained TANDEM MLP could represent an esti-
mate of the efficient low-entropy statistically-independent
code, hypothesized in perceptual processing [3, 19].

Input to TANDEM can be any data that are believed
to provide a relevant evidence for the classification. In
its simplest form, TANDEM takes as an input a super-
frame of speech typical conventional speech features such
as 9 frames of concatenated PLP static and dynamic fea-
tures. Often, TANDEM inputs are concatenated outputs
from other sub-band classifiers (TRAP [15] or HATS [8]).
TRAP has been also reported to be efficient in combining
of different features and for alleviating irrelevant informa-
tion [30] [18].

In several aspects, TANDEM represents a significant
conceptual departure from the current practice in feature ex-
traction for ASR:

1. The knowledge used for feature extraction is not only



coming from beliefs and convictions of the designer
but is mostly derived from development data. While
LDA could be viewed as doing a similar function,
TANDEM provides a more general transformation.

2. In conjunction with sub-band classifiers (TRAP or
HATS), the frequency-localized evidence is in the
early stages of the feature extraction converted
to frequency-localized estimates of likelihoods of
speech events. In that way, many vulnerabilities of
the short-term spectral envelope of speech are al-
leviated. Evidence used for deriving the features
does not all come from the relatively short segment
of speech representing a short part of the underly-
ing sub-word class (phoneme) but the employed time
span covers at least the typical coarticulation span of
the phoneme. In that way, each feature vector could
carry most of the available information about the un-
derlying phoneme. While HATS/TRAP are not used
in the experiments described here, they are an inte-
gral part of the larger EARS system developed by our
team.

The TANDEM-based ASR has been so far found most
useful in combination with the conventional spectrum-based
(PLP, Mel Cepstrum, etc) ASR. Thus, e.g. the system with
TANDEM module was shown to perform the best among all
presented feature extraction techniques (including the offi-
cially accepted ETSI standard) on the small vocabulary Au-
rora task [2]. More recently, the TANDEM-derived features
were successfully used in DARPA EARS program, where
they brought more than 10% relative improvement in error
rate on a smaller (1000 word task) and scaled successfully
on a full vocabulary task [22, 8, 30].

2.3. Layered Approaches Based on Posteriors

Recently, several researchers have proposed the use of a
layered approach to simplify the encoding of relations be-
tween observations and high-level events (such as sen-
tences) [23, 29]. In this approach, an HMM is built for
each layer of semantic complexity; for instance, in speech
recognition, one could think of a layer encoding phonemes,
followed by a layer encoding words and a final layer encod-
ing sentences. One advantage of such an approach is that
by decomposing the problem hierarchically, learning is per-
formed on lower-dimensional observation spaces and, prior
information related to each level of semantic can more eas-
ily be included. While in the literature [23, 29] the observa-
tions of each layer was encoded using some form of event
likelihoods, we believe that they would probably be best en-
coded using local posteriors. Section 5 explains how these
posteriors could be computed from layer to layer and how
these layers could incorporate different prior information.

3. IMPROVING STATE POSTERIOR ESTIMATION

In this section, we show how the estimation of local pos-
terior probabilities can be improved by using all the acous-
tic information available, as well as possible prior knowl-
edge. We recall and discuss here possible ways to esti-
mate use “state gammas” (state posteriors taking into ac-
count all available acoustic, as well as possible prior infor-
mation and/or topological constraints) to improve state-of-
the-art speech recognition systems.

In the following, we show that these state gammas can
be estimated in two different ways, depending on whether
the local estimators being used are likelihoods or posteriors
(MLP).

3.1. Standard likelihood based systems

In standard (likelihood based) HMMs, using local emission
likelihoodsp(xtjqit) (usually modeled by GMMs), we know
that we can compute the “state gamma”
(i; t), defined as
p(qitjx

T
1 ;M), thus estimating state posterior probabilities,

but actually taking into account the whole acoustic sequence
xT1 , as well as some possible prior information encapsulated
through some HMM underlying topologyM . In the follow-
ing, we will often drop theM , keeping in mind that all re-
cursions are processed through some prior (Markov) model
M .

These “state gammas” are typically estimated by using
the following� recursion:

�(i; t) = p(xt1; q
i
t) (1)

= p(xtjq
i
t)
X
j

p(qitjq
j
t�1)�(j; t � 1)

and� recursion:

�(i; t) = p(xTt+1jq
i
t) (2)

=
X
j

p(xt+1jq
j
t+1)p(q

j
t+1jq

i
t)�(j; t + 1)

thus yielding the estimate ofp(qitjx
T
1 ):


(i; t) = p(qitjx
T
1 ) (3)

=
�(i; t)�(i; t)P

j �(j; T )

3.2. Posterior based systems

Similar recursions, also yielding to “state gammas”, can
also be developed for systems based on local posterior prob-
abilities, such as hybrid HMM/ANN systems using MLPs to
estimate HMM emission probabilities [6]. In this case, typ-
ically, an MLP is fed with the local acoustic vectorxt, pos-
sibly complemented by its acoustic context, i.e.,xt+c

t�c (with



c typically equal to 4), and is trained to estimatep(qitjxt) or
p(qitjx

t+c
t�c) at its output. In standard HMM/ANN systems,

these local posteriors are usually turned into “scaled likeli-
hood” by dividing MLP outputs by their respective a priori
probabilityp(qit), as estimated on the training data, i.e.:

p(xtjq
i
t)

p(xt)
=

p(qitjxt)

p(qit)
(4)

where the left hand side1 of the equality is referred to as
“scaled likelihood” and can be used in standard HMMs
since, during recognition,1=p(xt) is simply a normaliza-
tion factor independent of the stateqit.

In [13], it was shown that these scaled likelihood mod-
els can be used in “scaled alpha”�s(i; t) and “scaled beta”
�s(i; t) recursions to yield other gamma estimates. A differ-
ent way of using scaled likelihoods was also given in [10],
where the goal was initially to alleviate the scaling (under-
flow) problems inherent in Baum’s original formulation of
the forward-backward algorithm [4]. Of course, all these
gammas (computed from local likelihoods or local posteri-
ors) have the same theoretical definition (i.e., local posteri-
ors integrating all available acoustic information, as well as
possible topological constraints) and thus result in the same
theoretical value. However, their estimate may be better, or
have different properties, depending on the properties of the
local estimators being used.

To use scaled likelihoods, we start by defining “scaled”
� as:

�s(i; t) =
p(xt1; q

i
t)Qt

�=1 p(x� )
(5)

We note here that this is simply adefinition. Thus, the prod-
uct in the denominator does not imply that we have made
any explicit temporal independence assumption. In fact, all
the recursions used below, as well as in Section 3.1, will
never make any additional temporal independence assump-
tion than the usualstate conditional independence assump-
tion.2

Starting from (5), we can the express the scaled� recur-
sion as follows:

�s(i; t) =
p(xtjq

i
t)

p(xt)

X
j

p(qitjq
j
t�1)

p(xt�11 ; qjt�1)Qt�1
�=1 p(x� )

=
p(xtjq

i
t)

p(xt)

X
j

p(qitjq
j
t�1)�

s(j; t� 1)

�s(i; t) =
p(qitjxt)

p(qit)

X
j

p(qitjq
j
t�1)�

s(j; t� 1) (6)

1In the sequel of this paper, and for simplicity sake, we will often write
MLP posterior outputs asp(qi

t
jxt), keeping in mind though that there are

often estimatingp(qi
t
jxt+c

t�c
) if acoustic context is provided at the input.

2Which, in fact, may even be relaxed a bit in the case of hybrid
HMM/ANN systems where we used acoustic context to estimate local pos-
teriors.

Similarly, we can define the “scaled”� and� recursion as
follows:

�s(i; t) =
p(xTt+1jq

i
t)QT

�=t+1 p(x� )
(7)

=
X
j

p(qjt+1jxt+1)

p(qjt+1)
p(qjt+1jq

i
t)�

s(j; t+ 1)

(8)

Given that all values required in (6) and (8) are available
from the MLP output, another estimate of the state gammas
p(qitjx

T
1 ) (3), denoted here as
s(i; t), can thus be obtained

as:


s(i; t) = p(qitjx
T
1 ) (9)

=
p(qit; x

T
1 )

p(xT1 )

=
p(xTt+1jq

i
t)p(q

i
t; x

t
1)

p(xT1 )

=
p(xTt+1jq

i
t)p(q

i
t; x

t
1)
QT

�=1 p(x� )

p(xT1 )
QT

�=1 p(x� )

=
p(xTt+1jq

i
t)p(q

i
t; x

t
1)
QT

�=1 p(x� )

p(xT1 )
Qt

�=1 p(x� )
QT

�=t+1 p(x� )

=
�s(i; t)�s(i; t)

QT

�=1 p(x� )

p(xT1 )

=
�s(i; t)�s(i; t)

QT

�=1 p(x� )P
j p(x

T
1 ; q

j
T )

(10)

=
�s(i; t)�s(i; t)P

j �
s(j; T )

(11)

Again, in theory, we have:


(i; t) = 
s(i; t) = P (qitjx
T
1 ) (12)

although their estimated values will be different since differ-
ent local estimators, possibly with different properties, will
usually be used.

3.3. Special Case: Ergodic HMM with uniform transi-
tion probabilities

As already mentioned above, and further illustrated later,
the advantages in using
(i; t)’s, defined asp(qitjx

T
1 ;M), as

“local” posterior probabilities are numerous, including:

1. Possibility of generating better posterior estimates:

(a) By making use of a large acoustic context,
which can easily extend to the whole utterance
xT1 .



(b) Integrating specific prior knowledge, e.g., using
specific HMM topologiesM .

2. Possibility of using these posterior probabilities in hi-
erarchical structures, focusing on different blocks of
the recognition system, and possibly using more “op-
timal” (better suited) prior knowledge (e.g., HMM
topologies) to the recognition level being considered
(e.f., phones, words, sentences). When used as fea-
tures, these
’s could also be complemented with
level-specific additional features.

For our initial investigations though, we often experi-
mented with a special case where we do not make use of any
specific prior information, thus equivalent to using an er-
godic HMM with uniform transition probabilities forM . In
this case, we show below that the resulting
 estimates are
well known values, which can be estimated locally (without
requiring to run the� and� recursions).

Starting from the following equality (still requiring no
additional assumption than the usual temporal state condi-
tional independence assumption):

p(xT1 ) =
X
k

p(xT1 ; q
k
t ); 8t

=
X
k

p(xTt+1jq
k
t )p(x

t
1; q

k
t )

=
X
k

p(xTt+1jq
k
t )
QT

�=t+1 p(x� )QT

�=t+1 p(x� )

�
p(xt1; q

k
t )
Qt

�=1 p(x� )Qt

�=1 p(x� )

p(xT1 ) =
X
k

�s(t; k)�s(t; k)

TY
�=1

p(x� ) (13)

Thus, using the fact that

X
k

p(xT1 ; q
k
t ) =

X
k

�s(t; k)�s(t; k)

TY
�=1

p(x� ); 8t

in (10), we get the following expression for the ergodic
gamma estimate
se(i; t)


se(i; t) =
�s(i; t)�s(i; t)P
k �

s(k; t)�s(k; t)
(14)

Integrating the definition of�s(i; t) in (14), we obtain:


se (i; t) =

p(qit jxt)

p(qit)

P
j p(q

i
tjq

j
t�1)�

s(j; t� 1)�s(i; t)
P

k

p(qkt jxt)

p(qkt )

P
j p(q

k
t jq

j
t�1)�

s(j; t� 1)�s(k; t)

In the case of ergodic HMM with uniform transition proba-
bilities, the sum factors in the above numerator and denom-
inator are constant and identical and can thus be dropped,

yielding:


se(i; t) =

p(qitjxt)

p(qit)P
k

p(qkt jxt)

p(qkt )

(15)

where (15) will be referred to as “normalized scaled likeli-
hood”. Thus, estimating “state gammas” from local pos-
teriors through an ergodic, uniform transition probability
model, doesn’t require to run� and� recursions, and it is
enough to compute the above local normalized scaled like-
lihoods.

Furthermore, in the case of likelihood-based systems
where we only have access to local likelihoodsp(xtjq

i
t),

equation (15) can, of course, be rewritten as:


e(i; t) =
p(xtjq

i
t)P

k p(xtjq
k
t )

(16)

which is then the usual “normalized likelihood” typically
used to get posterior estimates from likelihoods (as often
used, e.g., to estimate confidence measures).

4. USING STATE GAMMAS AS FEATURES

In the next sections, and building upon the success of the
TANDEM approach, we investigate how our new posteriors
(state gammas) can be used to improve state-of-the-art ASR
performance, and results will be presented on Numbers’95
and a reduced vocabulary version of the DARPA Conversa-
tional Telephone Speech-to-text (CTS) task (1000 words).

It is also possible to use gammas to recurrently compute
and integrate phone gammas, word gammas, and sentence
gammas, providing a convenient approach towards hierar-
chical HMM structures. Although we haven’t yet exper-
imented with these approaches, we discussing these ideas
towards the end of the paper, in Section 5.

4.1. Numbers’95

We used the OGI Numbers database for connected word
recognition task [9]. The definition of the training set, val-
idation set and test set is similar to the one defined in [21].
The training set contains 3’233 utterances spoken by differ-
ent speakers (approximately 1.5 hours) and the validation
set consists of 357 utterances (used during MLP training).
The test set contains 1’206 utterances. The vocabulary con-
sists of 31 words (including silence) with a single pronunci-
ation for each word.

The acoustic vectorxt is the PLP cepstral coeffi-
cients [14] extracted from the speech signal using a win-
dow of 25 ms with a shift of 12.5 ms, followed by cepstral
mean subtraction. At each time framet, 13 PLP cepstral
coefficients, their first-order and second-order derivatives



were extracted, resulting in 39 dimensional acoustic vector.
There were 24 context-independent phonemes including si-
lence.

We trained an MLP with 351 input nodes (9x39 vec-
tor), 1200 hidden units and 24 output units corresponding
to the 24 context-independent phonemes. After training,
the phoneme posteriors for the training set and test set were
estimated and, were scaled by their respective priors (es-
timated from the training segmentation) to obtain scaled-
likelihoods. The scaled-likelihoods were then used to esti-
mate the state gammas according to (15). Finally, the state
gammas at each framet were transformed to 24 dimen-
sional gamma feature vector by performinglog operation
and KLT3, as done in case of tandem feature extraction [16].

For comparison purpose, we also extracted the regular
tandem features by taking the value of output units prior
to the nonlinearity and performing KLT, resulting in a 24
dimensional tandem feature vector at every time framet.

For each type of feature, we trained a HMM-GMM sys-
tem with 80 context-dependent phonemes, 3 emitting states
per phoneme and 12 mixtures per state using the HTK-
toolkit [28]. The results of the recognition studies are given
in Table 1. The system using “state gamma” features per-
forms better than both conventional ASR system using PLP
features and standard TANDEM system.

Features WER
PLP 6.9%

Tandem phone posteriors (alone)4.9%
Gamma phone posteriors (alone)4.6%

Table 1. Word error rate (WER) on the Numbers’95 task.

4.2. DARPA CTS task

The use of “state gamma” as features was further evalu-
ated on a conversational telephone speech (CTS) recogni-
tion task. The training set for this task contained 32 hours
of gender balanced CTS speech randomly selected from the
Fisher Corpus and the Switchboard Corpus. The tuning/test
set was a subset selected from the the NIST 2003 evaluation
set. Only those utterances that covered the top most frequent
500 words with lower than 10% OOV rate were selected, re-
sulting in 2.5 hours of data, which was further divided into
a 1.2 hour tuning set and a 1.3 hour test set. The tuning
and test set contained similar ratio of the number of utter-
ances from Fisher corpus to the number of utterances from
the Switchboard corpus.

Gender dependent MLPs (with 9 frames of PLP acous-
tic features) were trained using the training set. Each MLP
was trained with 14.6 hours of speech with the remaining

3PCA statistics obtained from the training data.

1.4 hours of speech used as a cross-validation set to pre-
vent over-training. The input layer of the MLP had 351
nodes containing 9 frames of PLP features, together with
their first and second order derivatives. The hidden layer
had 1300 nodes and the output layer had 46 outputs, asso-
ciated with the 46 phones defined in the 2003 SRI Decipher
system. This resulted in an MLP with about 500K param-
eters. After training, the phone posteriors for the training
set and the test set were computed, and used to estimate
the “state gammas”, which were than sent as features to a
HMM-GMM system for recognition.

The baseline system used PLP with the first two deriva-
tives as the feature. It was computed with vocal tract
normalization and mean and variance normalization. The
SRI decipher system was used for the recognition (HMM-
GMM) experiments. Gender dependent models were
trained through 7 iterations: 2 on context independent mod-
els, 2 on context dependent models, and 3 on Genone clus-
tered models [25] using an ML criterion. The trained model
had 1498 Gaussian clusters for female and 1725 clusters for
male. Each Gaussian cluster contained 64 Gaussians. A
1000 word dictionary with multi-words and multi-pronun-
ciations was used in decoding, using a bi-gram language
model (LM) based on the 1000 words and extracted from
the LM in the 2004 SRI system.

State posteriors (as typically used in TANDEM sys-
tems) or “state gammas” (as proposed here) were combined
with the baseline PLP feature in the same way as described
in [30] through log, KLT and truncation. The resulting 25
dimension feature vector is then appended to the baseline
PLP feature vector. For such a long feature, the Gaussian
weight [30] is set to 0.3 compared to 0.8 for the baseline
system. The resulting augmented feature then go through
the same HMM-GMM decoding processing as the baseline
feature.

For the initial experiments we only tested on one gender
(male, which for these data is more difficult to recognize
than the female test set), and only used an ergodic HMM for
the estimation of the state gamma, which is thus equivalent
to using the normalized scaled likelihoods (15) estimated
from the MLP output as features.

The results reported in the table below show that the
“state gamma” features give significant improvement com-
pared with the PLP baseline, and the PLP feature augmented
with phone posteriors (Tandem).

5. HIERARCHICAL POSTERIOR BASED ASR

5.1. Hierarchical gamma estimation

Although not evaluated here, another extension to the ap-
proach discussed in the present paper, is to integrate the
state gammas
 (i.e., improved local posterior estimates,
taking all acoustic data, as well as possible prior information



Features WER
PLP 44.3%

PLP+Tandem phone posteriors42.5%
PLP+Gamma phone posteriors41.7%

Table 2. Word error rate (WER) on the male part of a re-
duced vocabulary version (1000 words) of the DARPA Con-
versational Telephone Speech-to-text (CTS) task.

or topological constraints, into account), estimated accord-
ing to (3) or (11), into new recursions, yielding estimates of
phone gammas
p and word gammas
w.

Phone gammas
p(i; t) can indeed be expressed in terms
of state gammas
(i; t) as follows:
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T
1 ) (17)

=

NqX
j=1

p(pit; q
j
t jx

T
1 )

=

NqX
j=1

p(pitjq
j
t ; x

T
1 )p(q

j
t jx

T
1 )

=

NqX
j=1

p(pitjq
j
t ; x

T
1 )
(j; t) (18)

where probabilityp(pitjq
j
t ; x

T
1 ) represents the probability of

being in a given phonemepit at timet knowing the stateqit at
time t. If there is no parameter sharing between phonemes,
this is deterministic and equal to 1 or 0. Otherwise, this can
also easily be estimated from the training data.

Similarly, at a next level, we can also integrate phone
gammas
p(i; j) into word gammas
w(i; j) as follows:
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where probabilityp(wi
tjp

j
t ; x

T
1 ) now represents the proba-

bility of being in a given word knowing the phoneme, which
thus encodes the lexical information. Obviously, this proba-
bility is also independent ofxT1 , and can easily be estimated
from some large corpus.

5.2. Decoding

Decoding can then be performed in different ways using
gammas. In the case of Viterbi decoding, we define

V (i; t) = max
w
t�1
1

p(wi
t; w

t�1
1 jxT1 ) (21)

which can be derived recursively as follows:
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We can now for instance reasonably decide to estimate
p(wi

tjw
j
t�1; w

t�2
1 ; xT1 ) as follows:
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hence, the gamma term on the words reappear, as well as a
language model over words.

6. CONCLUSIONS

In this paper, we first briefly discussed the approaches cur-
rently using local posterior probabilities as local measures
or as features in ASR systems. Indeed, several approaches
in that direction have recently been shown to have a sig-
nificant potential to improve state-of-the-art ASR systems.
However, we also believe that further progress in that direc-
tion will critically depend on several factors such as (1) im-
proving the quality of these posterior estimates (using, e.g.,
GMMs or MLPs), while (2) preserving a strong theoretical
framework, permitting the hierarchical integration of poste-
riors corresponding to processing level, while also integrat-
ing at each of these levels all possible information present
in the data, as well as all possible appropriate a priori in-
formation (e.g., represented as specific HMM topological
constraints).

We believe that the present paper introduced a gen-
eral framework in this direction. Simply stated, we pro-
posed here to replace the use of local posterior probabilities
(used as local measures or as features) by new estimates of
those local posteriors, usually referred to as “gamma poste-
riors”, using different versions of the� and� (likelihood or
posterior-based) recursions.

When used as features, even for the simplified case that
corresponds to the scaling and normalizing of local posteri-
ors, we have shown here that gammas can yield significant



performance improvements on two different speech recog-
nition tasks.4
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