
Pronunciation Modeling for LVCSR Summer 2000

Practical Session II: Phonological Rules

TeSTIA: The 8TH ELSNET European Summer School Instructor: Eric Fosler-Lussier

One thing that didn't get introduced in the last session is the concept of weighted �nite state automata.
Each transition arc can have associated with it a weight warc; also, each �nal state can have an associated
weight wfinal that is the cost of �nishing in that state. Here's an example of a digits FSM from last time,
with the weights equal to the digit. I've also included some arbitrary weights for �nishing in states 3 and 6.

weighted.fsm

0

1
ONE/1

TWO/2

2
THREE/3

3/17

SEVEN/7

FOUR/4

4

FIVE/5

SIX/6

5
NINE/9

EIGHT/8

6/2
ZERO/0

0 1 ONE 1

0 1 TWO 2

0 2 THREE 3

1 2 FOUR 4

1 3 FIVE 5

2 3 SIX 6

0 4 SEVEN 7

4 17

3 5 EIGHT 8

4 5 NINE 9

5 6 ZERO 0

6 2

Weights also enable you to have a concept of the best path, that is, the one with the lowest score. For
example, the best path of this FSM can be found with:

prompt> fsmbestpath weighted.fsm > weighted-best.fsm

weighted-best.fsm

0 1
ONE/1

2
FIVE/5

3
EIGHT/8

4/2
ZERO/0

In this case, the FSM tools �nd the best path by summing along all of these paths, in the same way that
the Viterbi search operates on graphs.1 In fact, when the weights are the negative log probabilities of the
transitions, using fsmbestpath corresponds to searching with the Viterbi criterion in ASR.

Weighted �nite automata will be important in the implementation of probabilistic phonological rules and
decision tree pronunciation models.

1Technically, you can use any semiring (K;+; �) as your mathematical basis in a weighted �nite state transducer. When
you have to combine two arcs, as in a union operation, the addition (+) operation is used to combine scores, whereas for
intersection, the multiplication (�) operator is used. For more information, see F. Pereira and M. Riley, \Speech Recognition
by Composition of Weighted Finite Automata", cmp-lg archive 9603001, 7 March 1996. As distributed, the AT&T tools de�ne
min as the addition operation and + as the multiplication operation. This, in e�ect, mimics the Viterbi criterion when the
weights are interpreted as negative log probabilities.

1



2 Pronunciation Modeling

1 Feasible pairs

Phonological rules are rewrite rules that map baseform phones to realized phone. In order to model pronun-
ciation phenomena with FSMs, you �rst need to determine how each baseform phone can be realized. The
reason for this will become clearer shortly. Let's consider a reduced set of English phones, with the following
feasible pairs (the baseform phone is the left of the pair, the realization the right):

ae ae

ah ah

ah ax

ax ax

ax NULL

b b

ih ih

ix ax

ix ix

k k

m em

m m

r r

t dx

t t

s s

This means that we only expect \b" to be realized as \b", but \ix" might be pronounce \ix" or \ax".

2 Phonological rules

Let's try to model a simple (but probably incorrect) rule �rst.

ix ! ax (20%)
ix ! ix (80%)

This means that we usually expect \ix" to be pronounced \ix", but sometimes it's pronounced \ax." We
can model this with a transducer.

The key to constructing transducers for these rules is to remember to allow other feasible pairs to occur. For
example, you might think that the following transducer would su�ce:

bad-ixax.fsm

0/0

ix:ix/0.096
ix:ax/0.699

0 0 ix ix 0.0969

0 0 ix ax 0.6990

0

Note that the cost for transforming \ix" to \ix" is 0:969 � � log
10
(0:8), whereas \ax" costs 0:6990 �

� log
10
(0:2). Higher scores are worse. There is a problem with this transducer, however: when you compose

this with, e.g., the dictionary entry for rabbit:



Practical Session II 3

rabbit-canon.fsm

0 1
RABBIT:r

2
-:ae

3
-:b

4
-:ix

5
-:t

you'll get an empty FSM, because the transducer doesn't know what to do with inputs of \r," \ae," \b,"
and \t." To do this, you need to allow all other possible phones, i.e.:

good-ixax.fsm

0/0

ae:ae/0
ah:ah/0

ix:ix/0.096
ix:ax/0.699

ax:ax/0
b:b/0

ih:ih/0
k:k/0
r:r/0
t:t/0

dx:dx/0
s:s/0

prompt> fsmcompose rabbit-canon.fsm good-ixax.fsm > rabbit-alt.fsm

rabbit-alt.fsm

0 1
RABBIT:r/0

2
-:ae/0

3
-:b/0

4
-:ax/0.699

-:ix/0.096
5/0

-:t/0

To do: how would you represent the following rule?

ah ! ax (2%)
ah ! ah (98%)

(� log
10
(0:02) � 1:699;� log

10
(0:98) � 0:0088)

3 Combining rules

Usually we have more than one phonological rule that we're interested in. There's essentially two ways that
you can combine rules: you can apply them in sequential order, or in a parallel fashion.

If our word rabbit is represented by the FSM W , and the ix-ax rule represented by FSM A, then the resulting
composition is:

W �A

where � represents composition. (The output of W �A is pictured above as \rabbit-alt.fsm.") We can apply
a second rule B, such as our ah-ax transducer, by just composing the output of W �A with B:



4 Pronunciation Modeling

(W �A) �B

Of course, for the word rabbit, there is no di�erence in the output, since rabbit doesn't contain any ah sounds.

It turns out that the composition operation is associative, which means

(W �A) �B =W � (A �B)

This implies that we can compose all of our phonological rules into one big transducer and apply it to any
word. The composition of A and B looks like this:

0/0

ae:ae/0
ah:ah/0.008

s:s/0
m:m/0

em:em/0
ix:ix/0.096
ix:ax/0.699

ah:ax/1.699
ax:ax/0
b:b/0

ih:ih/0
k:k/0
r:r/0
t:t/0

dx:dx/0

To do: Using the word RUSSET, with the pronunciation r ah s ix t, check to make sure that the associative
property of composition is true.

It is important to remember that composition is not commutative, that is in general,

A �B 6= B �A

which you can see if you consider A = Transducer(ah ! ax) and B = Transducer(ax ! ix): composing
A � B always converts ah to ix, whereas B � A converts ah to ax. This brings up the issue of rule ordering
| choosing the order in which rules are to be applied can a�ect the output of the system. One way to get
around this problem is to make all rules optional, and repeatedly apply the phonological rules until you stop
getting new variants (this is what we did in Tajchman et al. 1995, using a non-FSM-based paradigm). Other
researchers have suggested that the best method is to apply all rules in parallel, in e�ect:

W � (A \ B)

This is where the idea of feasible pairs comes in: remember that when you take the intersection of two FSMs,
you keep only the paths that are common to both FSMs. This means that each FSM must allow all of the



Practical Session II 5

feasible-pair alternations, i.e.:

full-ixax.fsm

0/0

ae:ae/0
ah:ah/0

t:dx/0
s:s/0

m:m/0
m:em/0

ix:ix/0.096
ix:ax/0.699

ah:ax/0
ax:ax/0

ax:NULL/0
b:b/0

ih:ih/0
k:k/0
r:r/0
t:t/0

full-ahax.fsm

0/0

ae:ae/0
ah:ax/1.699

m:m/0
m:em/0

r:r/0
t:t/0

t:dx/0
s:s/0

ah:ah/0.008
ax:ax/0

ax:NULL/0
b:b/0

ih:ih/0
ix:ix/0
ix:ax/0
k:k/0

In essence, by including all possible alternations with a score of zero, the transducer says \this might be
a possible symbol pair, but I don't know anything about it". The responsibility for assigning weights to
zero-weighted patterns is left up to other transducers. The obvious disadvantage to this method is that every
transducer must be aware of the possible pronunciation alternatives provided by other rules.

Transducer intersection is only well de�ned for certain types of transducers | in particular, the two trans-
ducers must produce expressions of the same length. Intersection is accomplished by considering each pair
of symbols as an atomic symbol.

To do: (if you have leftover time) The AT&T toolkit doesn't allow for intersection of transducers, but by
manipulating the ASCII representations of transducers, one can convert transducers to automata and then
use fsmintersect to intersect them. Write a perl program (or use some other scripting language) to do this
automatically.

4 Adding context

The rules we've been considering to this point were very simple, context-free rules. In general, however,
there is context to be considered. For instance, (part of) the apping rule in English is as follows:

t! dx=

�
+stress
+vowel

� �
-stress
+vowel

�

Let's assume that this rule applies 90% of the time. The trick to constructing the transducer for rules like
this is to keep track of the purpose of each state. Let's start with the start state, i.e. state 0. If we're in
state 0 and see a stressed vowel (ae, ah, or ih), then we've ful�lled the left-context precondition for the rule.



6 Pronunciation Modeling

We'll use state 1 to signify that we've seen the stressed vowel, and add a transition from state 0 to 1:

flap1.fsm

0

dx:dx
t:t
s:s

ax:ax
b:b

ix:ix
k:k

m:m
em:em

r:r

1

ae:ae

ah:ah

ih:ih

Note that for all other phones, we'll stay in state 0.2 The question is, what happens next? Well, if we
saw a t followed by an unstressed vowel (ax, ix, or em), then we'd want to convert the t to a dx with 90%
probability. After seeing the unstressed vowel, we would be back where we started: not having seen the left
context. Therefore, after the unstressed vowel, we transit back to state 0.

flap2.fsm

0

dx:dx/0
t:t/0
s:s/0

ax:ax/0
b:b/0

ix:ix/0
k:k/0

m:m/0
em:em/0

r:r/0

1

ae:ae/0

ah:ah/0

ih:ih/0

2

t:dx/0.046

t:t/1

ax:ax/0

ix:ix/0

em:em/0

But what if we were in state 1 and didn't see an unstressed vowel after the t? Then the t should just be
realized as t. So we add another state (3) from which we can only expect phones other than unstressed
vowels. If we see a stressed vowel, we have the left-context precondition for apping: we transit back to
state 1. Otherwise, for non-vowels we just transit back to state 0.

2I've chosen to do this in the composition-based style rather than listing all feasible pairs for combination by intersection,
but you can do this the other way as well.



Practical Session II 7

flap3.fsm

0

dx:dx/0
t:t/0
s:s/0

ax:ax/0
b:b/0

ix:ix/0
k:k/0

m:m/0
em:em/0

r:r/0

1
ae:ae/0

ah:ah/0

ih:ih/0

2

t:dx/0.046

t:t/1

3

t:t/0

ax:ax/0

ix:ix/0

em:em/0

b:b/0

k:k/0

m:m/0

r:r/0

dx:dx/0

t:t/0

s:s/0

ae:ae/0

ah:ah/0

ih:ih/0

We're not quite done yet. What happens in state 1 if we something other than a t? If it's a stressed vowel,
then that's a precondition for the apping rule, so we stay in state 1; otherwise, we just transition back to
state 0.

We also have to determine which states are �nal and which are not. The main criterion is that we can't
allow a situation where a phonological rule is partially completed (i.e. its right context hasn't been seen) to
be �nal. State 0 can be �nal because no context has been seen at all. State 1 has only seen the left context;
no claims on the realization of t are made. State 2 cannot be �nal, because we need to see the right context
if the transformation is to be allowed. State 3 can be �nal, since that's the state in which the rule didn't
apply.



8 Pronunciation Modeling

The �nal product is:

flap4.fsm

0/0

dx:dx/0
t:t/0
s:s/0

ax:ax/0
b:b/0

ix:ix/0
k:k/0

m:m/0
em:em/0

r:r/0

1/0

ae:ae/0

ah:ah/0

ih:ih/0

b:b/0

k:k/0

m:m/0

r:r/0

dx:dx/0

s:s/0

ax:ax/0

ix:ix/0

em:em/0

ae:ae/0
ah:ah/0
ih:ih/0

2

t:dx/0.046

t:t/1

3/0

t:t/0

ax:ax/0

ix:ix/0

em:em/0

b:b/0

k:k/0

m:m/0

r:r/0

dx:dx/0

t:t/0

s:s/0

ae:ae/0

ah:ah/0

ih:ih/0

To do: Can you make a transducer corresponding to \ax m ! em"? (Hint: model it as a deletion of ax
(i.e. transformed to NULL) followed by a transformation of m.)

To do: What if the above rule was optional (50% probability)?

To do: Can you modify the ap transducer to allow for an optional r before the t?

t! dx=

�
+stress
+vowel

�
(r)?

�
-stress
+vowel

�


