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Abstract

In this paper we present a data-intensive, semi-automatic method
for identifying subsets of contextual factors which are useful for
predicting the allophonic realizations of dictionary phonemes. The
method organizes contextual descriptions of phonological variation
into context trees. Context trees are computed using a combina-
tion of decision tree induction for factor selection, and hierarchical
clustering for forming natural groups of factor values. We describe
how the resulting context trees can be used to provide allophones
in creating pronunciation networks. We use a phoneme level repre-
sentation with a flexible context description which allows modeling
of effects extending across syllables and word-boundaries.

1. Introduction

The context in which a phoneme occurs leads to consistent dif-
ferences in how it is pronounced. Phonologists employ a variety
of contextual descriptors to explain phonological variation. These
descriptors are theoretically motivated by studies of different lan-
guages and are comprised of many factors, such as stress and syl-
lable part. However, in current speech recognition systems, only a
few contextual descriptors are employed when developing pronun-
ciation networks. In these systems, generally the effects of only
the preceding and following phones, as in triphone models, or im-
plicit within-word contextual effects, as in whole word models, are
captured.

The limited use of context in recognition systems is partially
due to the amount of data needed to train the network units in
which many contextual factors are represented. The units used
in current systems include whole word models, where phones are
represented in the context of the word in which they occur (e.g.,
[10]), generalized triphones [9], and a hierarchy from words to sub-
sets of triphones (e.g., [3]). Whole word models provide the most
complete context of the internal phones, but usually do not model
word boundary effects well. A subword unit, such as the triphone,
can be concatenated into word models to simplify additions to the
lexicon; however, triphones account for only a subset of contextual
factors.

The use of a wide variety of contextual factors allows better
predictions of pronunciation variants, which in turn, can result in
better performance of speech recognition systems. A case in point is
the work at SRI [4] [13] where speech recognition performance was
improved through the use of hand-derived phonological rules sets
which were refined using software tools and measures of coverage
and overcoverage.

In this paper, we present a data-intensive procedure for sys-
tematically selecting contextual factors to describe phonological
variants, producing a “mixed” context representation. We then
describe how the mixed factor representation can then be used in
creating pronunciation networks.
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contextual factor

values

preceding phoneme
following phoneme
preceding phone
following phone
syllable part

stress

syllable boundary type
foot boundary type
word boundary type
cluster type

(all phonemes) + SB

(all phonemes) + SB

(all phones) + deletion + SB

(all phones) + deletion + SB

onset, nucleus, coda

primary, secondary, unstressed
initial, final, internal, initial-and-final
initial, final, internal, initial-and-final
initial, final, internal, initial-and-final
onset, coda, nil

open syllable? true, false
true vowel? true, false
function word? true, false

Table 1: Contextual factors used in pronunciation experiments (SB
represents sentence boundary)

2. Contextual Factors

The context of a phoneme can be described using many
types of theoretically-motivated, linguistically-based factors, such
as stress and word boundary. Fach contextual factor describing the
context of a phoneme has a value. For example, the factor stress
may take on any one value of primary, secondary, or unstressed. The
set of factors and corresponding factor values used in this work are
listed in Table 1. Some of the factors are units normally associ-
ated with several phonemes. For example, the factor syllable part
may take on the value onset, and may be composed of up to three
phonemes. In such cases, we assign the value of a factor to each
phoneme within the unit. Thus, the exemplars /s/, /t/, and /r/
inan /str/ sequence would each be assigned a syllable part value of
onset. Fach factor represents a separate dimension, and a factor
ignores units which are irrelevant to it. Hence, a contextual factor
such as preceding phoneme extends across word boundaries.

These lexical contextual factors are used to describe the con-
text of the mapping between a dictionary phoneme and its real-
ization in a hand-transcribed segment. The mapping exemplars
were derived by automatically aligning the almost 30,000 hand-
transcribed segments in approximately 900 of the “sx” sentences
from the TIMIT database [7] to dictionary baseforms. We use
the same dictionary, the X-Dictionary” developed at Xerox PARC,
both for creating the training exemplars and later for network cre-
ation.

3. Context Trees
If the context of a phoneme is described by simultaneously using
all the contextual factors listed in Table 1, a prohibitive amount

"The X-Dictionary has been checked for consistency and has been aug-
mented from entries in standard dictionaries to include foot boundary
indicators.
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Figure 1: Pruned context tree for /th/

of data would be required to form an adequate description of each
phoneme in each context. One way to handle this difficulty is
to build a context tree, in which a subset of contextual factors is
selected using a combination of decision tree induction for selecting
factors and clustering for grouping factor values. In this method,
the number of leaves and branching of the tree are data-dependent.
An alternate method for grouping contextual factors, based on the
creation of a binary tree with a preset number of leaves, is given
by Sagayama [12)].

A context tree describing the realizations of /th/ is shown in
Figure 1. The nodes of a context tree represent the values of a
particular contextual factor. Nodes with the same parent repre-
sent the same contextual factor, but different values of that factor.
In Figure 1, the first child of the root node corresponds to the
contextual factor post-phoneme with the values /s/ or ft/. The
node representing the second child also corresponds to the factor
post-phoneme but with the mutually exclusive values /v/ /D/ /W/
[~/ /x/ [/p/. Each leaf of a context tree encodes the distribution
of allophones in the context defined by the factor values encoun-
tered in traversing the tree from the root node to reach the leaf.
In general, more than one allophone occurs in a context because
phoneme realizations are not deterministic. For example, the top
leaf in Figure 1 indicates that /th/ is pronounced as [th] when fol-
lowed by an /s/ or [t/ 46%, is deleted 36%, and is realized as a
closure 18% of the time.

Toinduce a context tree, the data in a node is recursively split
into new nodes. At each node, a contextual factor is selected for the
next split. Prior to each factor selection, we first cluster the values
of a factor based on their similarity in influencing a phoneme’s
realization. In the next two sections we describe the algorithm for
context tree creation.

3.1 Selection of Contextual Factors

Contextual factors are selected using a greedy algorithm which min-
imizes the loss of information at each selection, adapted from the
decision tree induction methods of [1] and [11]. At each node, the
contextual factor is selected which has values that best separate
the realizations of the data, (i.e., make each node “purer”t). The
exemplars in the current node are subdivided according to each
exemplar’s value of the selected factor, creating a new set of nodes.
Since a phoneme may be realized as multiple allophones, we
used a reduction of entropy criterion for measuring how well a
selected factor separates the allophones in the data. As entropy
is reduced in each level of a tree, the nodes of the tree become
purer and the different realizations are better separated. We briefly
review the criterion calculations here (adapted from [1] [2] [11]).
Before splitting, the entropy at a node based on the classes X
is H(X). The average entropy at the new nodes created by split-

tA pure node contains exemplars of only one realization type.
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ting on the values ¥ of a given contextual factor is: B(H(X|v)) =
2., P(v)H(X|v) = H(X|V) where {v} represents all possible val-
ues of a contextual factor. The gain for factor a, G(a), is the dif-
ference between the entropy before splitting, H({X), and the condi-
tional entropy after splitting H(X|V): G(a) = H(X) - H(X|V) =
I(X; V), where I(X; V) is the mutual information between X and
V. To normalize for the variable number of factor values, we com-
pute the gain ratio, R(a), which is the gain for factor ¢ normal-
ized by the entropy of the number of values associated with a:
R(a) = G(a)/H(V). The factor which maximizes R{a) is selected
for splitting.

An advantage of this methodology over individual rule cre-
ation is that the usefulness of each attribute for globally separating
the different realizations is considered as the trees are constructed.
Additionally, a context tree partitions the space of contexts into
mutually exclusive subspaces, permitting direct estimation of allo-
phone probabilities.

3.2 Clustering of Contextual Factor Values

Traditionally, in tree induction, nodes are split either along all
values of a factor (e.g., [11]) or else binary splits are used (e.g.,
[1]). In speech, some factors have many values (e.g., in our model,
preceding-phoneme has 46 values) and some of the factor values are
similar in their influence on phoneme realizations. Hence, rather
than splitting on all values or performing binary splits, it would be
desirable to group factor values with similar effects. One could pre-
cluster the values according to theoretical ideas of what is similar,
but the groupings may change depending on context. For example,
the values of the factor following-phoneme could be grouped based
on manner of articulation. Such a grouping is useful when predict-
ing whether or not a plosive will be aspirated. However, such a
grouping is not useful in predicting, say, when /s/ will be palatal-
ized. Alternatively, the values could be clustered into a predefined
number of groups at each node [2]. However, the appropriate num-
ber of groups is not the same for all sounds and again may depend
on the current context.

‘We use hierarchical clustering to create clusters for each set of
factor values in which the number and type are determined from
the data, rather than predefined. Mutual information is used as the
distance metric and is computed as in [5]. That is, let the average
mutual information between context value v; and the allophones
X be: I(vi; X) = 3, P(v,z)log, %%1, where {2} represents all
possible allophones. The increase in average mutual information
resulting from pairing two factor values v,, and v, is the difference
between the average mutual information resulting from pairing v,,,
and v, I{v, Uv,; X), and the contribution to the average mutual
information before pairing vm and v,, I(v,,; X) + I(ve; X); thus
ANV X)) = I(v U} X) — I(0g; X) = I{v,; X).

At each iteration, the pairing that results in the largest in-
crease in mutual information is selected and forms a new cluster.
Pairing of clusters is continued until either only two clusters are
left, the decrease in mutual information more than doubles from
one iteration to the next, or the mutual information decreases more
than a threshold, which we empirically set at -30. The conditions
for stopping define when the loss in mutual information is too great
to continue clustering. .

Since we cluster the values of each factor prior to splitting, it
may be useful to split on a factor multiple times, each time under
a more specific context (i.e., farther down the tree). Thus, after
a factor is selected for splitting, it is not removed from the set of
factors considered.

3.3 Creation of Robust Trees

A tree that has been constructed by the combined tree induction
and clustering of factor values may be too specialized to the train-



ing exemplars. To create a more robust tree, we prune the branches
and remove unlikely leaf values.

Many methods of pruning have been suggested (e.g., [1] [2]
[11]). We employ two types of pruning to retain the parts of the
tree which will be robust to new data. During tree creation, nodes
are extended only when the number of exemplars is greater than a
specified threshold [1]; we used 20. In addition, only nodes relevant
to the classification of cross-validation exemplars are kept, as mea-
sured by a chi-square test [11] at the .01 level of significance. Trees
were induced using 60% of the data and pruned on the remaining
40% of the data.

In creating pronunciation networks, it is hard to define an
“optimum” number of pronunciations to represent. With only a few
pronunciations, some variants may be poorly modeled in a speech
recognizer. With many pronunciations, the amount of training data
is sparse and unlikely pronunciations may confuse a recognizer.

With context trees, this problem can be handled at the phone-
mic level. Given a large data set, context trees tend to overgen-
erate pronunciations because each new allophonic realization of
a phoneme in a context translates into another possible are in a
network. But because context trees contain count information on
allophones in context, unlikely allophones within a leaf can be sys-
tematically removed, based upon counts or percentages and the
arcs representing the removed allophones are not created.

4. Pronunciation Network Creation

The allophones in the leaves of a context tree are described by
a “mixed” set of contextual factors. The contextual descriptions
provide a way to specify contexts for creating context models in-
termediate in the continuum from adjacent phone to whole word
models. Rather than using a fixed, consistent set of contextual fac-
tors, the mixed context representation in the context trees can be
used in pronunciation networks. The leaves of the trees represent a
one-to-many mapping between a phoneme in a particular context
and a set of allophones; these contexts limit the allophones which
can be joined.

The mapping from a dictionary baseform to a set of possible
pronunciations is characterized by the substitution, deletion, and
insertion of sounds. One context tree is created for each of the 45
dictionary phonemes in the X-Dictionary. Each tree attempts to
segregate all the allophonic realizations of a phoneme based on the
different contextual factors. The data in each tree defines the set
of deletions and substitutions, represented as allophones observed
in each context, of a dictionary phoneme. A separate tree was cre-
ated for each phoneme because, as in the example illustrating the
grouping of following-phoneme to be different for plosives and /s/
palatalization, the same contextual factor can influence different
phonemes in different ways.

In addition to modeling substitutions and deletions, pronun-
ciation network creation also requires modeling of insertions. In-
sertions do not fit the substitution/deletion model since insertions
may occur between any pair of phonemes. In addition, one must
also model when insertions do not occur to allow prediction of
the probability of an insertion in any context. These requirements
are met by representing all insertions and non-insertions in one
tree. In organizing the data to build an insertion tree, all pairs of
phonemes in the training data are checked for whether or not an
insertion occurred between them. The insertion tree thus predicts
when insertions can occur as well as what type of insertion can
occur in a particular context.

To build an insertion tree, the contextual factors describing
the mappings are redefined to be a set applicable to insertions.
Each of the factors in Table 1 below following-phone is replaced
with contextual factors describing the phonemes adjacent to where
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Figure 2: Pronunciation network for “fence”: a) initial arcs b) arcs
connected c) insertions added.

an insertion can occur. For example, the factor stress is replaced
with stress of preceding phoneme and stress of following phoneme.

Networks can be created word by word and can be joined to
produce a pronunciation network for a recognition system. To cre-
ate a word network, a two-pass process is used. First, each dictio-
nary “phoneme” in a word is mapped to the allophone distribution
represented by the leafl in a context tree corresponding to the con-
text in which the phoneme occurs. This produces a sequence of
allophones representing the sequence of phonemes (see Fignre 2a).
Contextual constraints associated with the allophones from a leaf
are matched to contextual constraints of adjacent allophones. If the
phoneme is word-initial or word-final and the context at the word
boundaries is not specified, then the allophones for each possible
context must be incorporated into the network. Insertions are then
added between the leaf values when the context for an insertion is
compatible. Insertions are added after substitutions and deletions
because the context in which an insertion occurs is dependent upon
adjacent phones, which is determined by the phoneme realizations.

Using our method based on context trees, the pronunciation
network produced for the word “fence” is shown in Figure 2. In
creating this network, we made the simplification of not using the
contextual factors describing adjacent phones for modeling substi-
tutions and deletions. This produces the simple network in Fig-
ure 2b. Addition of insertions, in which we do include the con-
textual factors describing adjacent phones, produces the network
shown in Figure 2c. In creating this network, we also assumed that
the word was spoken in isolation and therefore preceded and fol-
lowed by silence. Had we not done so, the boundaries of the word
would be much more bushy with additional arcs representing the
different possible allophones and probabilities in various contexts.

Because of limited training data, some of the words may con-
tain a context value which has not been observed in the training
data. However, each node of the tree contains the distribution of al-
lophones for the partial context represented by the node. Thus, the
allophones for unobserved contexts can be estimated from a partial
context specification by tracing down the tree as far as consistent
with the observed contextual factor values describing a phonemic
baseform.

In tree induction a subset from a predetermined set of possi-
ble contexts which are good at differentiating among the realiza-
tion distributions is selected. This subset is a larger number of
contexts than the data would permit if the selected contexts were
always considered together. Consequently, a larger overall number
of contexts are used for describing the realizations. For example,
in Figure 3, the three contexts of PRE-PHONEME, FNC-WORD-P,
and FooT-BDRY are used for describing the realizations of /y/, but
only two contexts, either PRE-PHONEME and FNC-WORD-P or PRE-
PHONEME and FOOT-BDRY, are used to describe each leaf, Thus,
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Figure 3: Pruned context tree for /y/

the effective number of contexts used to describe the conditions
under which different variants of a phoneme occur is larger, given
a limited amount of data.

5. Discussion

We informally examined the context categories formed by the clus-
tering technique in which the number of groups was determined by
the data. We observed that many times the values composing a
category corresponded to a linguistic category. For example, one
set of values of the factor PRE-PHONEME in a /b/ context tree was
composed of the plosives {p t k b d g C J} and silence. And in
Figure 3, the tree indicates that /y/ is often realized as [jh] when
preceded by /d/ or /C/, as expected. These examples illustrate
that in creating the context trees, both traditional and uncom-
mon but expected linguistic categories are identified. However, we
also noted that the categories sometimes contained unanticipated
values. Examination showed that there generally were very few
exemplars of these values, in agreement with [8].

The utility of contexts other than preceding and following
phoneme was tested by examining the contexts in the top two lev-
els of the 45 context trees which were created. In 22 trees (N a
AXEI|UuylrnsJCgdbktp) preceding-phoneme and
following-phoneme were included as factors in the top two levels. In
nine trees (¢ Wil wm D Z S) only preceding-phoneme appeared in
the top two levels, and in 12 trees only following-phoneme (LR @
YeoO GvTfz)appeared in the top two levels. However, other
factors also appeared in the top two levels, as well as in lower levels.
The additional contextual factors which appeared and the number
of times each appeared in the first two levels of the tree are: stress
15, function-word? 9, syllable-part 6, syllable-boundary-type 4,
foot-boundary-type 2, cluster-type 2, and word-boundary-type 1.
This data indicates that the use of additional /alternate contextual
factors can permit better modeling of phonological variation if a
limited number of factors is used.

6. Concluding Remarks
In this paper, we presented a systematic, data-intensive approach
for describing and modeling phonological variation. By basing the
models on a large data set, counts of the occurrence of different
variants are available for cross-validation to produce more robust
models. We advocated a phone representation with an enriched set
of contextual descriptors and the use of a combination of decision
tree induction and hierarchical clustering to organize the pronun-
ciation data into a context tree. Although tree induction methods
do not find the “best” model, a “good” model identifying a subset
of contextual factors is generally found. The context trees possess
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many properties which can be exploited in the creation of pronun-
ciation networks. These properties permit ease of context combina-
tion, estimation of distributions from a partial context description
in IIMM’s, representation of allophone probabilities, systematic re-
duction of network size, and identification of natural groups for
tying in HMM’s [6] from the leaves. We described a method for
using the mixed context descriptions, as specified by the leaves of
the context trees, for building pronunciation networks, permitting
a wide variety of factors to be used to model contextual effects.
Finally, our data indicate that use of contextual factors in addition
to preceding and following phoneme can permit better modeling of
phonological variation.
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