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ABSTRACT

In this paper we describe a completely automatic
algorithm that builds multiple pronunciation word
models by expanding baseform pronunciations with
a set of candidate phonological rules. We show how
to train the probabilities of these phonological rules,
and how to use these probabilities to assign pronun-
ciation probabilities to words not seen in the training
corpus. The algorithm we propose i1s an instance of
the class of techniques we call Exploratory Computa-
tional Phonology.

1. INTRODUCTION

One well-known difficulty in understanding speaker-
independent continuous speech is variability in the
pronunciation of words. This variability occurs across
speakers and also across different contexts for a single
speaker. In order to model this variation, recognition
systems often use a richer lexicon in which each word
has multiple pronunciations.

Using a multiple-pronunciation lexicon requires
setting a probability for each pronunciation. The
minimal algorithm, for example, would assign each
of the n pronunciations of a word the zero-knowledge
prior probability 1/n. If a sufficient corpus and suf-
ficient training time are available, these probabilities
can be set simply by running a forced-Viterbi pass
on some training data and deriving counts for each
pronunciation of each word. But it is often the case
that we lack sufficient training data or time to train
each word. Our algorithm includes a new method for
using phonological rules to estimate these pronunci-
ation probabilities, which does not require retraining
on each new corpus. The algorithm sets the prob-
ability of a word’s pronunciation by combining the
probabilities of the phonological rules used in each
pronunciation.

We show two ways in which using these probabili-
ties can help build an improved lexicon for speech lex-
icon. First, a lexicon with pronunciation probabilities
has a lower word error rate on a Wall-Street Journal
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speech recognition task than a lexicon with equiprob-
able pronunciations, although not significantly bet-
ter. Second, assigning probabilities to pronunciations
gives us a metric for pruning away some pronuncia-
tions. A pruned lexicon allows for faster decoding and
also, we show, for a statistically significantly reduced
word error rate.

Deriving pronunciation probabilities by probabilis-
tic rules also allows the development of a “parameter-
ized” recognition lexicon, if the test set has sources of
variability not present in the training set. For exam-
ple, if the test set involves particularly fast speakers,
the probabilities of phone deletion/reduction rules
can be increased, increasing the probability of re-
duced pronunciations. Similarly, rules can be written
to model the phonological effects of foreign accents.
Then if a foreign speaker is detected, those rule prob-
abilities can be changed dynamically.

We have been referring to our probabilistic rule
training algorithm, along with other methods like
phonological decision tree induction, as Exploratory
Computational Phonology, a paradigm which uses
pattern recognition tools to explore the space of
phonological variation directly from acoustic data.

2. PHONOLOGICAL RULES FOR
CREATING PRONUNCIATIONS

Given a base dictionary of pronunciations, we first
apply optional phonological rules to produce an
expanded lexicon, following the insights of Cohen
(1989). Since the rules are optional, the surface lex-
icon will contain each underlying pronunciation un-
modified, as well as the pronunciation resulting from
the application of each relevant phonological rule.
Each of our rules comes from our own error analy-
sis of our recognizer or from the literature (Cohen
(1989), Zwicky (1970, 1972b, 1972a), Kaisse (1985)).
Table 1 gives the rules used in these experiments.
Our baseform dictionary was made by combin-
ing five different on-line pronunciation dictionaries:
CMU (CMU 1993), LIMST (Lamel 1993), PRONLEX
(COMLEX 1994), BRITPRON (Robinson 1994), and
a text-to-speech system. The pronunciations from
all these sources were mapped into our b4-phone



Name Code | Rule
Reductions
Mid vowels | RV1 | -stress [aa ae ah ao eh er ey ow uh]— ax
High vowels | RV2 | -stress [iy ih uw] — ix
R-vowel RV3 | -stress er — axr
Syllabic n SL.1 ax ix] n — en
Syllabic m SL2 ax 1x| m — em
Syllabic 1 SL3 ax ix] 1 — el
Syllabic r SL4 ax 1x| r — axr
Flapping FL1 | [tel del] [t d]— dx /V — [ax ix axr]
Flapping-r FL2 | [tel del] [t d]— dx /V r — [ax ix axr]
H-voicing VH1 | hh — hv / [+voice] — [+voice]

Table 1: Phonological Rules with Estimated Probabilities

ARPAbet-like phone set using a set of obligatory
rules for stop closures [bel, del, gel, pel, tel, kel],
and optional rules to introduce the syllabic conso-
nants [el, em, en], reduced vowels [ax, ix, axr], voiced
h [hv], and alveolar flap [dx]. One goal of our rule-
application procedure was to build a tagged lexicon to
avoid the complexity of parsing the surface pronun-
ciations with a phonological-rule parser. In a tagged
lexicon, each surface pronunciation is annotated with
the names of the phonological rules that applied to
produce it. Thus when the decoder finds a particu-
lar pronunciation in the speech input, the list of rules
which applied to produce it can simply be looked up
in the tagged lexicon.

The resulting tagged surface lexicon would have the
entries in Table 2.

3. RULE PROBABILITY ESTIMATION

Given the rule-tagged lexicon, we next run an embed-
ded forced-Viterbi procedure on a segment of the Wall
Street Journal 1993 corpus to find the optimal align-
ment of word pronunciations to the corpus. From this
alignment we can then produce counts for each pro-
nunciation of each word. The counts and the lexicon
can then be combined to form a tagged lexicon that
also has counts for each pronunciation of each word.

Notice in Table 2 that each pronunciation of a word
may contain multiple derivations, each consisting of
the list of rules which applied to give the pronun-
ciation from the base form. These tags are either
positive, indicating that a rule applied, or negative,
indicating that it did not.

To produce the initial rule probabilities, we need
to count the number of times each rule applies, and
compare it to the number of times it had the poten-
tial to apply. If each pronunciation only had a single
derivation, this would be computed simply as follows:

Ct (Rule R applied in p)

Z Ct (Rule R could have applied in
LCPRON ( pp P)

P(R)=

This could be computed from the tags as :

Ct(+R tags in p)

P(R)= E - -
Ct(+R tags in + Ct(-R tags in
LCPRON ( gs in p) ( gs in p)

However, since each pronunciation can have mul-
tiple derivations, the counts for each rule from each
derivation need to be weighted by the probability of
the derivation. The derivation probability is com-
puted by multiplying together the probability of each
of the applications or non-applications of the rule.
Let

e DERIVS(p) be the set of all derivations of a pro-
nunciation p.

e POSRULES(p,r,d) be 1.0 if derivation d of pro-

nunciation p uses rule r, else 0.

e ALLRULES(p,r) be the count of all derivations
of p in which rule r could have applied (i.e. in

which d has either a +R or -R tag).

e P(d|p) be the probability of the derivation d of
pronunciation p.

o PRON be the set of pronunciations derived from
the forced-Viterbi output.

Now a single iteration of the rule-probability algo-
rithm must perform the following computation:

Pr)=)_ > Pdp)

»ePRON ¢eDERIVS(»)

POSRULES(p,r,d)
ALLRULES(p,1)

Since we have no prior knowledge, we make the
zero-knowledge initial assumption that P(d|p) =
m. The algorithm can then be run as a suc-
cessive estimation-maximization to provide successive
approximations to P(d|p). For efficiency reasons, we
actually compute the probabilities of all rules in par-
allel, as shown in Figure 1.

4. ESTIMATING PROBABILITIES OF
UNSEEN WORDS

Given the probabilities of phonological rules and the
tagged lexicon, we can now estimate the probabilities
of pronunciations for each word. Let:

e P(+R) be the probability of rule R applying.

e P(—R) = 1 — P(+R) be the probability of rule
R not applying.



bel b ah dx ax:+BPU +FL1; +CMU +FL1 +RV1; +PLX +FL1 +RV1

bel b ah dx axr: +TTS +FL1; +BPU +FL1; +CMU +FL1 -RV1 +RV3; +LIM +FL1 ; +PLX +FL1 -RV1 +RV3
bel b ah tel t ax:+BPU -FL1; +CMU -FL1 +RV1; +PLX -FL1 +RV1

bel b ah tel t axr:+TTS -FL1; +BPU -FL1; +CMU -FL1 -RV1 +RV3; +LIM -F L1; +PLX -FL1 -RV1 +RV3

bel b ah tcl t er:+CMU -RV1 -RV3; +PLX -RV1 -RV3

Table 2: Resulting tagged entries

For each word/pron pair p € PRON from
forced-Viterbi alignment
Let DERIVS(p) be the set of rule
derivations of p
For every d € DERIVS(p)
For every rule Red
if (R =+4RULE)
then
ruleapp{ RULE} +=
else
rulenoapp{ RULE} +=

For every rule RULE
P(RULE) =

1
|IDERIVS(p)|

1
|IDERIVS(p)|

ruleapp(RULE)
ruleapp(RULE)+rulenoapp(RULE)

Figure 1: Parallel computation of rule probabilities

The probability of pronunciation pron, of word W
with tags +Ri,..., 2R, 1s estimated by two steps.
First, we take the geometric mean of pronunciation
probabilities, to avoid penalizing words in which a
large number of phonological rules apply.

Q' (prom; [W) =

f[ P(£Ry)

Next, these geometric means are normalized.

Q' (pron; |W)
P(pron; |W) =
( W) Z]' Q’(pronj|W)
Probabilities of identical pronunciations with dif-

ferent derivations are summed together, to give a
complete probability for the pronunciation.

5. RESULTS

We ran the estimation algorithm on 7203 sentences
(129,864 words) read from the Wall Street Journal.
The corpus (1993 WSJ Hub 2 (WSJO0) training data)
consisted of 12 hours of speech, and had 8916 unique
words. Table 1 shows the resulting phonological rule
probabilities.

We first attempted to judge the reliability of our
automatic rule-probability estimation algorithm by
comparing it with hand-transcribed pronunciations.
We took the hand-transcribed pronunciations of each
word in TIMIT, and computed rule probabilities by
the same rule-tag counting procedure used for our
forced-Viterbi output. Figure 2 shows the fit be-
tween the automatic and hand-transcribed probabil-
ities. Since the TIMIT pronunciations were from a

completely different data collection effort with a very
different corpus and speakers, the similarity of the
two sets of probabilities is quite encouraging.
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Figure 2: Automatic vs Hand-Transcribed Probabil-
ities for Phonological Rules

We next attempted to determine whether our algo-
rithm for assigning pronunciation probabilities per-
formed better than the zero-knowledge equiprobable
lexicon. We compared a lexicon with pronunciation
probabilities set by our algorithm to the same lexicon
in which each pronunciation had the same probabil-
ity. The experiment was run on a 5 kword closed-
vocabulary test database taken from the female sub-
set of spoke 5 of the 1993 WSJ development set. For
these experiments, the training set consisted of all
of the female speakers in the WSJO database. The
speech database contained 3538 sentences, with 8195
unique words.

Table 3 shows that adding pronunciation probabil-
ities reduced word error from 32.6% for the equiprob-
able lexicon to 30.4% for the probabilistic lexicon.

The reduction in word error due to assigning prob-
abilities is not statistically significant. We do get a
statistically significant error reduction, however, by
using the pronunciation probabilities to prune the lex-
icon. We define a pruning parameter, p, such that
0 < p < 1, where if

P*((pron; |W) = maz; P(pron, |W)
We then prune all pronunciations pron, such that

P(prow; |W) < pP"(pron;|W)



| Lexicon | Word Recog. Error |
Equiprobable 32.6%
Probabilities, No Pruning 30.4%
Probabilities, Pruned pu=0.2 25.5%
Probabilities, Pruned p=0.4 23.1%
Probabilities, Pruned pu=0.6 23.8%
Probabilities, Pruned p=0.8 24.4%
Probabilities, Most-Likely 24.6%
Forced-Viterbi (lower bound) 20.8%

Table 3: Results of Probabilistic Rule Algorithm

The results can be seen in Table 3. Note that the
absolute word error values are quite high, since we are
using a simple bigram system, and only giving it half
the normal training time to facilitate experimental
turnaround.

The lexica pruned at p=0.4 and p=0.6 are signif-
icantly better than the unpruned and equiprobable
lexica. In addition, pruning the lexicon allows for
a faster decoding time. In order to establish a lower
bound for our experiment, we report in the final value
in Table 3 results from using a lexicon in which the
probabilities of each pronunciation are generated by
doing a forced-Viterbi on a training set. Notice that
the pruned, untrained lexicons produce a word-error
only about 3% worse than the fully trained lexicon.

We also ran an experiment in which we used our
rules to augment the LIMSI lexicon (Lamel 1993)
with extra pronunciations. We found that our pro-
nunciations did not improve the LIMSI lexicon at all;
in fact the word error rose with the new pronuncia-
tions. However, since the LIMSI pronunciations were
tuned on exactly this corpus, this is perhaps not the
best comparison. In addition, since most of our rules
were designed with fast, spontaneous speech in mind,
a read-speech corpus like the Wall Street Journal is
probably the wrong testbed for this algorithm.

6. RELATED WORK

An important component of our technique, the use of
a forced-Viterbi speech decoder to discover pronunci-
ations from a corpus is based on the work of Wooters
(1993), while Wesenick & Schiel (1994) independently
propose a very similar forced-Viterbi-decoder-based
technique which they use for measuring the accuracy
of hand-written phonology. Chen (1990) and Riley
(1991) model the relationship between phonemes and
their allophonic realizations by training decision trees
on TIMIT data for each phone specifying its surface
realization in different contexts. Decision tree meth-
ods potentially allow great flexibility in the analysis of
of contextual influences. We believe that a hybrid be-
tween our acoustic-trained rule-based algorithm and
a decision-tree approach could prove quite powerful.

7. CONCLUSIONS

We have only performed preliminary experiments
with our algorithm for assigning probabilities to

phonological rules and using them to build multiple-
pronunciation lexicons. However, we already have
significant results on the usefulness of the rules to
enable lexicon pruning. If there is not sufficient time
or corpora to prune via forced-Viterbi counts, or if
the test set has sources of variability not present in
the training set (e.g. accent or fast rate of speech),
our algorithm provides a useful method for pronuncia-
tion probability estimation. OQur algorithm runs only
about 3% worse than actually training the pronun-
ciation probabilities directly with a complete forced
Viterbi alignment.

We hope in the future to test out these rules on
databases of fast speakers (Mirghafori et al. 1995) and
spontaneous speech, and to create new rules modeling
foreign-accent effects.
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