
Pronunciation Modeling for LVCSR Summer 2000

Practical Session I: AT&T Finite State Tools

TeSTIA: The 8TH ELSNET European Summer School Instructor: Eric Fosler-Lussier

These exercises are intended to familiarize you with the AT&T Finite State modeling tools. This is a powerful
toolkit that will allow you to manipulate �nite state automata and transducers of both the weighted and
unweighted variety.

Finite state machines (that is, automata and transducers) are compiled from a human-readable ascii format,
specifying the transitions between states, into a binary format used by the FSM libraries. If you use labels
on your transitions that are non-numeric, you must provide an alphabet key. For example, here is an (ascii)
�nite state automaton that recognizes English digits:

paprika$ cat digits.stxt

0 1 ONE

0 1 TWO

0 1 THREE

0 1 FOUR

0 1 FIVE

0 1 SIX

0 1 SEVEN

0 1 EIGHT

0 1 NINE

0 1 ZERO

1

The \1" on a line by itself indicates that state 1 is a �nal state. This is the alphabet key corresponding to
the digits:

paprika$ cat digits.alpha

epsilon 0

ONE 1

TWO 2

THREE 3

FOUR 4

FIVE 5

SIX 6

SEVEN 7

EIGHT 8

NINE 9

ZERO 10

The symbol number 0 in any alphabet �le is interpreted as an epsilon transition marker { that is, when
accepting this language, the machine can move between states without consuming any input.

To compile the ascii FSM into a machine usable format, the appropriate command is fsmcompile. You can
decompile (i.e. print) a binary FSM using fsmprint, or draw a prettier version of it using the fsmdraw and
dot commands.

1



2
P
ro
n
u
n
cia

tio
n
M
o
d
elin

g

p
r
o
m
p
t
>
f
s
m
c
o
m
p
i
l
e
-
i
d
i
g
i
t
s
.
a
l
p
h
a
d
i
g
i
t
s
.
s
t
x
t
>
d
i
g
i
t
s
.
f
s
m

p
r
o
m
p
t
>
f
s
m
p
r
i
n
t
-
i
d
i
g
i
t
s
.
a
l
p
h
a
d
i
g
i
t
s
.
f
s
m

0
1

O
N
E

0
1

T
W
O

0
1

T
H
R
E
E

0
1

F
O
U
R

0
1

F
I
V
E

0
1

S
I
X

0
1

S
E
V
E
N

0
1

E
I
G
H
T

0
1

N
I
N
E

0
1

Z
E
R
O

1p
r
o
m
p
t
>
f
s
m
d
r
a
w
-
i
d
i
g
i
t
s
.
a
l
p
h
a
d
i
g
i
t
s
.
f
s
m
|
d
o
t
-
T
p
s
>
d
i
g
i
t
s
.
p
s

p
r
o
m
p
t
>
g
h
o
s
t
v
i
e
w
d
i
g
i
t
s
.
p
s

digits.fsm

0 1

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

ZERO

I
ju
st

ty
p
ed

in
th
is
F
S
M
,
b
u
t
a
n
o
th
er

w
ay

o
f
co
n
stru

ctin
g
it
is
to

co
n
sid

er
it
a
s
a
u
n
io
n
o
f
a
n
F
S
M

th
a
t

a
ccep

ts
th
e
w
o
rd

\
O
N
E
"
w
ith

th
e
F
S
M

th
a
t
a
ccep

ts
th
e
w
o
rd

\
T
W
O
"
a
n
d
a
n
o
th
er

th
a
t
a
ccep

ts
\
T
H
R
E
E
"

a
n
d
so

o
n
.
I'v

e
in
clu

d
ed

a
sim

p
le

scrip
t
th
a
t
ca
n
g
en
era

te
lin

ea
r
F
S
M
s,

ca
lled

m
a
k
e
_
l
i
n
e
a
r
_
f
s
m
.
p
l
.
T
o

g
en
era

te
th
e
d
ig
its

fsm
b
y
fo
rm

in
g
th
e
u
n
io
n
o
f
o
th
er

F
S
M
s,
d
o
th
is:

p
r
o
m
p
t
>
f
o
r
e
a
c
h
i
(
O
N
E
T
W
O
T
H
R
E
E
F
O
U
R
F
I
V
E
S
I
X
S
E
V
E
N
E
I
G
H
T
N
I
N
E
Z
E
R
O
)

f
o
r
e
a
c
h
?
m
a
k
e
_
l
i
n
e
a
r
_
f
s
m
.
p
l
$
i
>
$
i
.
s
t
x
t

f
o
r
e
a
c
h
?
f
s
m
c
o
m
p
i
l
e
-
i
d
i
g
i
t
s
.
a
l
p
h
a
$
i
.
s
t
x
t
>
$
i
.
f
s
m

f
o
r
e
a
c
h
?
e
n
d

p
r
o
m
p
t
>
f
s
m
u
n
i
o
n
O
N
E
.
f
s
m
T
W
O
.
f
s
m
T
H
R
E
E
.
f
s
m
F
O
U
R
.
f
s
m
F
I
V
E
.
f
s
m
S
I
X
.
f
s
m
\

S
E
V
E
N
.
f
s
m
E
I
G
H
T
.
f
s
m
N
I
N
E
.
f
s
m
Z
E
R
O
.
f
s
m
>
d
i
g
i
t
s
2
.
f
s
m

T
h
e
resu

ltin
g
F
S
M

d
o
esn

't
lo
o
k
q
u
ite

th
e
sa
m
e:



P
ra
ctica

l
S
essio

n
I

3

digits2.fsm

0

1ONE

2epsilon

4epsilon

6epsilon

8epsilon

10

epsilon

12

epsilon

14

epsilon

16

epsilon

18

epsilon

3TWO

5THREE

7FOUR

9FIVE

11
SIX

13
SEVEN

15
EIGHT

17
NINE

19
ZERO

H
ow

ev
er,

y
o
u
ca
n
p
ro
b
a
b
ly

tell
th
a
t
th
ey

a
re

th
e
sa
m
e,
a
n
d
,
in

fa
ct,

y
o
u
ca
n
d
eterm

in
e
th
a
t
w
ith

f
s
m
e
q
u
i
v
,

a
fter

rem
ov
in
g
th
e
ep
silo

n
tra

n
sitio

n
s
a
n
d
d
eterm

in
izin

g
:

p
r
o
m
p
t
>
f
s
m
r
m
e
p
s
i
l
o
n
d
i
g
i
t
s
2
.
f
s
m
|
f
s
m
d
e
t
e
r
m
i
n
i
z
e
|
f
s
m
e
q
u
i
v
d
i
g
i
t
s
.
f
s
m
-

p
r
o
m
p
t
>
e
c
h
o
$
?

0f
s
m
e
q
u
i
v
w
ill

retu
rn

a
sta

tu
s
o
f
zero

if
th
e
tw
o
F
S
M
s
a
re

eq
u
iv
la
en
t,
o
n
e
o
th
erw

ise.

O
f
co
u
rse,

y
o
u
m
ig
h
t
w
a
n
t
to

h
av
e
a
strin

g
o
f
d
ig
its,

ra
th
er

th
a
n
ju
st

o
n
e.

W
e
ca
n
ta
k
e
th
e
K
leen

e
clo

su
re

o
f
th
e
d
ig
its

F
S
M

to
g
et

a
n
ew

F
S
M
:

p
r
o
m
p
t
>
f
s
m
c
l
o
s
u
r
e
-
p
d
i
g
i
t
s
.
f
s
m
>
d
i
g
i
t
s
+
.
f
s
m

T
h
is
p
ro
d
u
ces

a
n
ew

F
S
M

th
a
t
w
ill

a
ccep

t
o
n
e
o
r
m
o
re

d
ig
its

(n
o
te

th
e
ep
silo

n
fro

m
sta

te
1
to

sta
te

0
):

digits+.fsm

0 1

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

ZERO

epsilon



4 Pronunciation Modeling

This type of Kleene closure is called the \Kleene plus", which means that there are 1 or more repetitions
of the FSM. If you want zero or more repetitions (the \Kleene star"), then you just leave out the \-p"
arguement in fsmclosure.

Let's now use two subsets of the digits: the even numbers, and the multiples of three. These are in the �les
even.stxt and threes.stxt. If, for some reason, we would want to build a FSM that accepted an even
number followed by a multiple of three (perhaps as a code), we could build the FSM by concatenating the
two FSMs together (using fsmconcat):

prompt> fsmconcat even.fsm threes.fsm > code.fsm

code.fsm

0 1

TWO

FOUR

SIX

EIGHT

ZERO

2
epsilon

3

THREE

SIX

NINE

ZERO

On a more interesting note, we can ask the question: what digits are even and a multiple of three? Of course,
we know that the answers are zero and six, but we can prove that by intersecting the even and threes FSMs:

prompt> fsmintersect even.fsm threes.fsm > eventhrees.fsm

eventhrees.fsm

0 1
SIX

ZERO



Practical Session I 5

Intersection only allows paths that appear in both input FSMs to be present in the output FSM.

Another useful concept is composition, which is an operation de�ned on transducers. If we wanted to convert
English digits to German digits, for example, we might have the following transducer:

Eng2German.fsm

0

ONE:EINS
TWO:ZWEI

THREE:DREI
FOUR:VIER
FIVE:FUENF
SIX:SECHS

SEVEN:SIEBEN
EIGHT:ACHT
NINE:NEUN
ZERO:NULL

0 0 ONE EINS

0 0 TWO ZWEI

0 0 THREE DREI

0 0 FOUR VIER

0 0 FIVE FUENF

0 0 SIX SECHS

0 0 SEVEN SIEBEN

0 0 EIGHT ACHT

0 0 NINE NEUN

0 0 ZERO NULL

0

To compile this, we need to have a separate output alphabet (consisting of German numbers) from the input
alphabet. fsmcompile takes the \-t" argument to indicate that the FSM is a transducer:

prompt> fsmcompile -t -i digits.alpha -o germandigits.alpha Eng2German.stxt > Eng2German.fsm

We can now compose this with, say, our code FSM to produce a German equivalent. The composition
operation is a lot like intersection, except that we only match strings on the input side of the transducer:

prompt> fsmcompose code.fsm Eng2German.fsm > codeGerman.fsm

codeGerman.fsm

0 1

TWO:ZWEI

FOUR:VIER

SIX:SECHS

EIGHT:ACHT

ZERO:NULL

2
epsilon:epsilon

3

THREE:DREI

SIX:SECHS

NINE:NEUN

ZERO:NULL



6 Pronunciation Modeling

Notice that the output of the composition operation is a transducer. If we only care about the German
portion of the output, we can project to the output symbols using fsmproject:

prompt> fsmproject -o codeGerman.fsm > codeGermanOnly.fsm

codeGermanOnly.fsm

0 1

ZWEI

VIER

SECHS

ACHT

NULL

2
epsilon

3

DREI

SECHS

NEUN

NULL

Here are some problems to try out on your own:

1. The happy language

(a) How would you represent the string There's a happy boy ?

(b) In English, we can modify (some) adjectives with the word \very". Therefore, we can imagine
the following possible extensions to the above sentence

There's a happy boy

There's a very happy boy

There's a very very happy boy

...

Can you represent this with an FSM?

(c) How would you allow girl, dog, rabbit, etc. instead of boy?

2. Humans only, please! What operation would you use to remove rabbits, dogs, and other non-humans
from the above FSM, while still producing complete sentences?

3. Change of emotion: Can you de�ne a transducer that will change:

(a) happy to sad?

(b) happy to either happy or sad?

4. How would you design a pronunciation dictionary for this small language? Hint: you'll need to convert

words to phones, and there's more phones than words.


