
MOVING BEYOND THE ‘BEADS-ON-A-STRING’ MODEL OF SPEECH

M. Ostendorf

Departmentof ElectricalEngineering
Universityof Washington,Seattle,WA 98195

ABSTRACT

Thenotion thata word is composedof a sequenceof phoneseg-
ments,sometimesreferredto as‘beadsonastring’, hasformedthe
basisof mostspeechrecognitionwork for over15years.However,
asmoreresearcherstacklespontaneousspeechrecognitiontasks,
thatview is beingcalledinto question.Thispaperraisesproblems
with thephonemeasthebasicsubwordunit in speechrecognition,
suggestingthat finer-grainedcontrol is neededto capturethesort
of pronunciationvariability observed in spontaneousspeech.We
offer two differentalternatives– automaticallyderivedsubwordu-
nits andlinguistically motivateddistinctive featuresystems– and
discusscurrentwork in thesedirections. In addition,we look at
problemsthatarisein acousticmodelingwhentrying to incorpo-
ratehigher-level structurewith thesetwo strategies.

1. INTRODUCTION

It hasoften beennotedthatautomaticspeechrecognitionperfor-
manceis much worseon spontaneousspeechthan on carefully
plannedor readspeech.For thebestsystemsreportingresultson
the1999DARPA BroadcastNews benchmarktests,errorrateson
thespontaneousspeechportionof thetestset(14-16%)werenear-
ly doublethoseonthebaselineconditionof planned,studiorecord-
ings (8-9%) [1]. Thosesitesthat alsoparticipatedin a workshop
on conversationalspeechrecognitiona few monthslater reported
worderrorratesof roughly40%.Pronunciationvariability hasfre-
quentlybeencitedasa key reasonfor thepoorperformance;yet,
phone-basedpronunciationmodelingwork hasso far led to only
smallerrorratereduction.Couldit bethattherelianceon theidea
of wordsasa sequenceof phonemesegments(‘beadsonastring’)
hashadits day?

In this paper, we will look at evidenceagainstthe phoneme
asa basicunit in speechrecognitionandat two alternative lexi-
cal representations:automaticallyderived (sub-phone)units and
linguistically motivatedstatesdefinedin termsof categorical fea-
tures. In bothcases,thegoal is finer-level unit control. However,
wealsoacknowledgetheneedfor introducingcontext dependence
on syllableandhigher-level structureanddiscussmechanismsfor
doing this. Finally, we discussthe importanceof new acoustic
modelingresearchto supportthe increasein granularitywithout
anexplosionof modelparameters.

2. THE CASE AGAINST THE PHONEME

Severalstudieshave pointedto acousticvariability asa key prob-
lemfor systemsrecognizingspontaneousspeech.For example,an
SRI studyshowed neardoublingof word error rateson theexact
sameword sequencewhenit wasspoken spontaneouslyvs. read

[2]. More recently, McAllister et al. usesimulateddatain experi-
mentsthatsuggestthatpoorpronunciationmodelingaccountsfor
the bulk of the high error rateon the Switchboardtask [3]. Not
surprisingly, therehave beena large numberof researchefforts
devotedto pronunciationmodelingin thelastfew years,including
techniquesthat useautomaticlearning,hand-writtenphonologi-
cal rulesandvariouscombinationsof the two. Unfortunately, the
gainsfrom phone-basedpronunciationmodelingtechniqueshave
beendisappointing,e.g.reducingword error ratesfrom 40.9%to
38.5%onconversationalspeech[4]. Thisgainrepresentsastatisti-
cally significantimprovementona difficult task,but not thefactor
of five reductionpredictedin [3]. Of course,the factor of five
is optimisticbecauseof thematchbetweenmodelingassumption-
s in the recognitionandsimulationof data,but mostresearchers
still sharethe intuition that thereis moreto be gainedfrom pro-
nunciationmodeling.Many of thepronunciationmodelsthathave
beenappliedarequitesophisticatedandwork well onreadspeech,
which raisesthe question:is recognitionperformancelimited by
theassumptionthatpronunciationvariationis representedin terms
of phone-level substitutions,deletionsandinsertions?

In anextensive seriesof experimentswith differentpronunci-
ationmodelsandtrainingconditions,Saraclaret al. show thatim-
proving phonerecognitionaccuracy canactuallyhurt word recog-
nitionaccuracy [5]. Resultsin [4] mayexplainthisin part:decision-
treepronunciationmodelsgenerateword-level pronunciationprob-
abilitiesthatdo not matchtherelative frequency of thosepronun-
ciationsin thedata– a flaw in theassumptionof conditionalinde-
pendenceof phones.(Of course,it is alsothecasethat,in theory,
optimizingfor accuracy of low-levelunit recognitionisnotthebest
choicefor recognizinghigher-level unitswhenthelow-level unit-
s aresequentiallydependent.)The conditionalindependenceas-
sumptioncanbeamelioratedby syllable-level pronunciationpre-
diction,but word errorratereductionis still lessthan10%[6].

Anotherindicatorof problemswith thephonemeis thatpho-
netictranscriptionof conversationalspeechisquitedifficult for hu-
manlabelers.It hasbeenobserved,in theSwitchboardcorpusand
in otherstudies,thatphonemeswhichappearto be‘deleted’(in the
senseof having little ornoidentifiableassociatedtimesegmentin a
spectrogramrepresentation)areoftenstill perceivedbecauseof the
presenceof coarticulationeffectson neighboringsegments.Such
shortsegmentsarequite frequent,asevidencedby distributional
datain hand-labeledphonetictranscriptions[7] andby the high
percentageof phonesmappedto the minimum allowed duration
in a forcedalignmentusinga single-pronunciationdictionary(ob-
servedin severalstudies).In [6], it is notedthattherelatively high
rateof occurenceof phenomenasuchasfeaturespreadingandcue
tradingposeddifficultiesfor labelerstranscribingtheSwitchboard
corpus. Thesephenomenaalsoposedifficulties for phone-based
computerrecognitionmodels. For example,if a phoneis delet-



ed in an alernatepronunciation,a different triphonewill be used
andcoarticulationeffectscannotbecaptured.In fact, this sortof
featurespreadingmay be bettercapturedwithout explicit phone
deletionin thewordpronunciation,sincethetriphonemodelsmay
haveeffectively learnedthedeletionpattern.Notethat,in standard
HMM training, which is not constrainedby hand-labeledphone
segmenttimes,triphoneslearncoarticulationeffectsthat resultin
‘phonetic’ time alignmentsthatdo not correspondto wherea hu-
manlabelerwould put a phonesegmentboundary. This behavior
of automaticallytrainedtriphonesis yet anotherargumentagainst
thephone.

Analysesof thehand-labeledSwitchboardcorpusin termsof
deviationsfrom thecanonicaldictionarypronunciationshow astrong
dependenceon syllablestructure,e.g.syllableonsetsaremostof-
tenpreservedandcodasaremostoftendeleted[7]. For theseand
otherreasons,severalresearchershaverecentlyarguedfor thesyl-
lableasanalternative to thephonemefor representingspeech.In
thispaper, wetakeadifferenttackandarguefor finer-grainedlow-
level representation,incorporatingdependenceon syllable (and
higher level) structurevia context conditioning. Thereare sev-
eral reasonsfor looking at a finer grainedtemporalscale. First,
usinga pronunciationmodelbasedonphonesbut acousticmodels
basedon triphonesmeansthata phonesubstitutiontranslatesinto
a 3-segment(or, 9-state)substitionwhich may be an inappropri-
atelylong timespan,aspointedout by Saraclaret al. [5] who find
improvedperformanceusingstate-level (vs. phone-level) pronun-
ciation modeling. Alternative views of the ‘hidden state’ of the
speechprocess– eitherasa vectorof articulatortrajectories(es-
sentiallycontinuousvalued)or asparallelasynchronousstreams
of binaryfeatures– all point to theneedfor a fine-grained(larger)
statespace. The needfor more temporaldetail is also support-
edexperimentallyby observationssuchasimprovedperformance
from increasingthenumberof HMM statespertriphone(e.g.[8])
andbiggergainsfrom addingparametersto characterizetempo-
ral variability vs. mixture components[9]. Lastly, the needfor a
state-level generalizationmechanismto handleunseentriphones
(andsyllables)arguesfor a finer-grainedrepresentation.

In the two sectionsto follow, we will suggesttwo quite dif-
ferentalternatives– data-driven andlinguistically based– for in-
creasingtemporalresolutionwhile at the sametime retaininga
connectionto syllablestructure.

3. ACOUSTICALLY-DERIVED SUB-WORD UNITS

Acoustically derived sub-word units (ASWUs) representa data-
drivenapproachto definingthesub-word unitsof speech.Recog-
nition systemdesigninvolvesacombinationof automaticsegmen-
tation into stationaryregions or ‘segments’, clusteringthe seg-
mentsbasedonacousticsimilarity, anddictionary

�
design.ASWUs

wereproposedseveral yearsago[10, 11, 12, 13], but they faded
from view asspeaker-independentrecognitionbecametheprimary
goal,becauseof thedifficulty of distinguishingspeaker variability
from real pronunciationdifferences.However, this problemhas
recentlybeenaddressedby integratingtheunit anddictionaryde-
signstep[14, 15], sothatanASWU systemis now aviableoption
for speaker-independentrecognition.For readspeechtasksande-
speciallyfor low complexity systems,ASWU HMM systemscon-
sistentlyoutperformphone-basedsystems,giving word error rate
�
The term ‘dictionary’ is usedto mean‘pronouncingdictionary’, pri-

marily for brevity.

reductionsof 10-20%for systemsof equivalentcomplexity. Even
thelimiting requirementof having several instancesof eachword
in the vocabulary canbe addressedby usinga hybrid phoneand
ASWU system[16]. The problemof modelingcross-word con-
textual variationsis addressedin [17], andmultiple pronunciation
dictionarydesignis coveredin [18].

Automatically derived units have the potentialfor capturing
effectsassociatedwith syllableandword position,becausetheas-
signmentof unit sequencesto a word pronunciationis complete-
ly basedon acoustics.However, theconnectionto syllablestruc-
turecanbemademoreexplicit by learningASWU unitsandpro-
nunciationsfrom syllabletokensratherthanword tokens. Using
syllable-level tokenswould amelioratethe unseenword problem
in largevocabulary recognitionto someextent,but therewill still
be many unobserved syllables,particularlywith conditioningon
lexical stress.

An alternative meansof incorporatingsyllablestructure(and
modelingstate-level pronunciationvariation)is to think of ASWU
designasessentiallythesameproblemasHMM topologydesign.
Onecouldapplythesuccessivestatesplitting(SSS)algorithm[19],
which hasbeenusedfor designingtriphonestatesharing,at the
syllablelevel. TheSSSalgorithmis essentiallyageneralizationof
standardHMM tree-basedclusteringtechniques,e.g.[20], which
canlearnbothcontextual andtemporalstructure(i.e. thetopology
is not fixed to a certainnumberof statesper phone). Applied at
the syllable level, it caneasily learneffectsof syllablestructure.
In addition,SSScanincorporatelexical stressandword position
by labelingsyllableswith this informationasanextracontext con-
ditioning variablethat canbe usedin statesplitting. In standard
decisiontreeclustering,thisstrategy for addingconditioningvari-
ableshasbeenreferredto as ‘taggedclustering,’ i.e. phonesare
taggedwith stressandotherfeaturesandtri-tag(vs.triphone)mod-
elsareclustered.Theideaof taggedclusteringwasfirst introduced
in speechsynthesisby Donovan [21], andsubsequentapplication
to recognitionhasbeendescribedin [22, 23, 24]. A limitation of
taggedclusteringis thatcodingphones(or syllables)causesahuge
increasein the numberof elementarycontext-dependentmodels,
whichleadsto largememoryrequirementsandincreasedcomplex-
ity of training becauseof the increasein possibledatadivisions.
As a result,only simpletag setshave beenexploredin large vo-
cabulary systemsusingcross-word context. Work in progresson
multi-stageclusteringmayaddressthisproblemby usingdifferent
subsetsof featuresin differentstagesof tree(or topology)design.

Anotherclassof approachesthat falls underthe data-driven
themeis thework onstate-level pronunciationmodeling,different
variationsof whichhavebeenproposedin [25,5]. Themotivation,
asraisedin theprevious section,is that therearemany instances
whereit is moreappropriateto substituteor deletepart of a tri-
phoneratherthanthe whole triphone. In this work, the subword
units aresequential‘regions’ of phonestrainedusingstandardt-
riphonedesigntechniques,but the final pronunciationnetwork is
notconstrainedto maintaintheoriginalphone-level sequencerela-
tionships.While thework reportedsofar hasnot takenadvantage
of syllablestructure,it is easyto imaginedoingsoby startingwith
triphonestatesdesignedusingtaggedclusteringor usingdecision
treesfor findingstatetransformationprobabilities.

4. LINGUISTICALLY-MOTIVATED ALTERNATIVES

In linguistics,it is featuresandnotphonemesthatareviewedasthe
fundamentalunitsof speech[26], wherephonesarespecified(or



coded)in termsof distinctivefeatures.(Notethattheterm‘feature’
is mostoften usedin the speechrecognitionliteratureto refer to
acousticobservations,suchascepstralvectorsor voiceonsettime,
but hereweuse‘features’to meansymbolicindicatorsof phonetic
contrasts.) For the most part, distinctive featuresare relatedto
the mannerin which a speechsoundis produced(the degreeof
constrictionin thevocaltract),theparticulararticulatorthatisused
(glottis, soft palate,lips andtongueblade,body androot) and/or
placeof constriction,andhow anarticulatoris usedto producethe
sound. Different featuresystemshave beenproposed,including
binaryandmulti-valuedfeatures;for simplicity wewill restrictour
discussionto binary features,with the caveat that featurevalues
cansometimesbeunspecifiedin the‘code’ for a phoneme,which
couldbethoughtof asa third value. Examplesof binary features
arenasal,voiced,continuant,labial,etc.

Pronunciationvariationscanbeexpressedin termsof context-
dependentrulesdescribingchangesin thefeaturevaluesor in fea-
tureassociationwith segments.Examplesincludedevoicing of a
vowel or final consonantin thecontext of a subsequentvoiceless
consonant,reducinga tensevowel ‘iy’ to a lax ‘ih’, andchang-
ing theplaceof articulationso that ‘n’ becomes‘m’ whenthe‘n’
is followedby a labial stop(asin ‘can be’). Featurechangescan
alsoaccountfor apparentphonesegmentdeletionwherethereis
still evidencefor the segment in the realizationof neighboring
segments,as in a nasalized‘ae’ in a reducedform of ‘can’t’ or
the singledental-nasalsegmentsometimesproducedfor the two
consonantsin ‘in the.’ Featurescannotalwaysbemappedto syn-
chronousparalleltimefunctions,andasynchrony canleadto cases
wheresegmentsappearto be inserted,asin an epentheticstopin
‘warmth’ dueto asynchronouschangingof thenasalandcontinu-
antfeatures.

The goal of a feature-basedcodingof the HMM statespace
is to representsuchpronunciationvariability in terms of asyn-
chronouslinguistic featurechanges.A word hasa lexical repre-
sentationthatis asequenceof d-dimensionalsymbolicfeaturevec-
tors, which expandsinto an asynchronoustime sequence,which
is mappedto d-dimensionalhypercubeof statesfor decoding.In
otherwords,the bit vectorthat correspondsto the featurevalues
indexesan HMM state,andthe statetransitionsaregovernedby
featurespreadingcharacteristics.Thekey problemswith usingthe
featurerepresentationaresimplifying searchandestimationof that
highdimensionalspacewhich,like triphones,will includemany s-
tatesthatarenever observed.

Dengandcolleagues[27, 28] proposeda setof paralleldis-
cretefeaturestreams,with hand-writtenrulesfor constrainingfea-
ture ‘spreading.’ (Their ‘features’correspondto quantizedvocal
tract shapeparameters,but the basicidea appliesdirectly to the
distinctive linguistic featuresdiscussedhere.) The featurevector
pointsto a statemodelindex, andthecollectionof statesdefined
by thefeaturespreadingrulescombineto form whatis effectively
a context-dependentHMM with statesharingdeterminedby hu-
manknowledgeratherthanautomaticclustering.Theinitial work
usedindependenttraining of the compositestates,which corre-
spondsto assumingthatall featuresareinterdependentandhasno
mechanismfor training unseenstates. Recentwork takes a first
stepat extendingtriphoneclusteringtechniquesto this paradigm
[29], thoughmoreresearchis needed.

A moreflexible structuretreatsthedifferentfeaturesandtheir
associatedacousticparametersas independentstreamssynchro-
nizedat thesyllablelevel [30, 31]. By treatingthestreamsasin-
dependent,a complex statespaceis achieved while at the same

time keepingthe training anddecodingproblemsrelatively sim-
ple. The framework nicely accommodatesa variety of differen-
t acousticmeasures,which canleadto improved performancein
high noise(0dB) conditions[32] andresultsin reducedconfusion
betweencertainphonemes[33]. Decouplingfeaturesfrom phones
mayalsoleadto modelsthatgeneralizebetteracrosslanguages.

The useof completelyindependentstreamsmay be a bit too
flexible, however, asevidencedby the fact thata moretraditional
phone-basedmodeloutperformsthe feature-basedsystemin low
noiseconditions[32]. Two mainproblemsstandout. First, it has
beenobservedthatcertainsetsof featurestendto spreador modify
togetherin groupsthatcanbecharacterizedby ahierarchicalorga-
nization[34]. Thus,the timing of differentfeaturestreamsneeds
to bemorecoordinated,thoughtheexistenceof thehierarchyfacil-
itatesmodeling,asproposedin [35]. Secondly, theacousticcorre-
latesof thedifferentfeaturesarenotstrictly independent;thereare
interactionsbetweensomefeaturesthat enhancecertainphonetic
contrasts[36]. Suchinteractionsimply that acousticobservation
modelsshouldbeconditionedon setsof featuresandnot individ-
ual features.Thework of Bilmeson learningmodelstructure[37]
mayprovide anautomaticmechanismfor learninganappropriate
dependencestructurethatalsokeepsthemodeldimensionalitys-
mall.

5. DYNAMIC PRONUNCIATION MODELS

Onceoneacceptsthe role of syllable (and/orword) structurein
modelingacousticvariability, which is by now quiteclearlyestab-
lished, the questionis raisedasto whethertheremight be a role
for higher-level structure.Indeed,thereappearsto beevidencefor
word frequency, syntaxand/orprosodicfactors.Fosler-Lussieret
al. show aninteractionbetweenspeakingrateandword frequency
in predictinghow mucha word pronunciationwill deviate from a
dictionarybaseform[6]. Syntaxappearsto be a factoraswell –
onecansay‘gonna’ for ‘going to’ for theinfinitive ‘to’ but not for
thepreposition.

However, suchphenomenamay be more directly described
in termsof prosodicstructure[38], i.e. the perceived emphasis
andchunkingpatternsof speechthatarerelatedto (but not iden-
tical to) syntacticconstituents.Cross-word boundaryphonolog-
ical changes,including ‘gonna’ but also assimilationas in ‘gas
shortage,’ typically do not occurat majorprosodicphrasebound-
aries,andotherinsertion-like effectsdo occurat prosodicbound-
aries. Dilley et al. [39] found that glottalizationwasmorelikely
at vowel-initial word boundarieswhen thosewords were pitch-
accentedand/orin word-initial positionof prosodicphrasebound-
aries. The frequency of glottalization increasedwith increased
saliency of the location,suchthat glottalizationwasquite likely
(
�����

% for thefemalesubjects)if a word wasbothaccentedand
phrase-initial.Theremay alsobe an effect of enhancedphonetic
realizationvia ‘inserted’ featuresat particularlysalientregionsof
the speechsignal. In the Switchboardcorpus,thereareat least
anecdotalexamples,e.g.an off-glide of ‘ae’ is ‘enhanced’in an
emphasizedpronunciationof ‘and’ resultingin ‘ae eh n d’ (us-
ing a phoneticalphabet).We conjecturethatconditioningfeature
changeson aprosodichierarchy, startingfrom thelevel of thesyl-
lable,will beneededto betterexplain thepronunciationvariability
in speech.

The dependenceof pronunciationvariability on higher-level
linguistic structureis of great importanceto speechrecognition
systems,becauseit providesa meansof dynamicallyvaryingpro-



nunciationprobabilities. When all the observed pronunciation-
s of a word areallowed in speechrecognitiondecoding,perfor-
mancedegradesbecauseof the increasedconfusabilitybetween
words,e.g.allowing ‘ae n’ asa pronunciationfor ‘and’ increas-
es the possibility of confusing‘and’ and ‘an’. For this reason,
researchershave begunexploringmethodsfor introducinghigher-
level structurewithin the context of the standardstatistical(e.g.
HMM) recognitionparadigm,but taking advantageof multi-pass
searcharchitecturesto condition on hypothesizedword context.
But how canhigh-level structurebeincorporatedat thesametime
asthegranularityof themodelis shrinking?

The answeris really no different than for phone-level mod-
eling. In a multipasssearchframework, it is possibleto condi-
tion a word pronunciationmodelon a broadercontext, leadingto
dynamicpronunciationprobabilities,as in [22, 40, 6]. The criti-
cal, andasyet unansweredquestion,is at whatstageto introduce
higher-level context conditioningin unit design. It is impractical
to automaticallylearnstructure– whetherin termsof acoustically
derivedunitsor featureinterdependence– whenclusteringisbased
on atomicunitswith only a few (if any) observations.In thedata-
driven approach,we arecurrentlyexploring differentalternatives
in a multi-stageclusteringparadigm.

6. IMPLICATIONS FOR ACOUSTIC MODELING

In thispaper, wehaveraisedquestionsaboutthephonemeasasuit-
ablesub-word unit for speechrecognitionandarguesfor moving
to a finer-grainedrepresentation.At thesametime, we acknowl-
edgethatthereis a cleardependenceonhigherlevel structurethat
shouldbeaccountedfor via context conditioningin adynamicpro-
nunciationmodel.Alternativesfor definingfiner-grainedunitsare
describedbasedonacoustically-derivedor data-drivenapproaches
andlinguistically-motivatedfeaturecodingof thestatespace.

In theabove discussion,we assumedthat the acousticmodel
is a discretestateHMM, andthereareseveral interestingresearch
pathsto pursuewithin this framework. However, within the dis-
cretestateframework, thereis a seriousproblemof explosionof
theparameterspace,asalludedto earlier. Certainlymuchcanbe
donein theshorttermwith clever clusteringschemesandHMM-
s will long be reliedon in early stagesof a multipasssearch,but
thehugenumberof parametersassociatedwith simpleHMM ex-
tensionsto a large statespacecalls the approachinto question.
By Occam’s razor, we shouldbestriving for a moreparsimonious
model. The distinctive featurerepresentationoffers the potential
for a simplifiedmodelif the featurestreamsaresufficiently inde-
pendent,but thereis evidencethat the timing is fairly systematic
with respectto higher level structure. Resultsin robust recogni-
tion that argue for multi-rate featurestreamsfurther complicate
this picture.

Thekey pointthattheseargumentsleadto is thatmoving away
from the ‘beadson a string’ modelis not simply a pronunciation
modelor unit designissue– it is alsoanacousticmodelingprob-
lem. Changesto thepronunciationmodelaremostlikely to suc-
ceedif matchedwith an appropriateacousticmodel. Improved
acousticmodelsmay requireadditionallayersof hiddenstatesat
differenttimescales,mixedmemoryMarkov models[41], amixed
continuousanddiscretehiddenstate[42], a discreteevent model
[43], and/orotheralternatives.Activeresearchonsuchalternatives
is critical to theadvancementof speechrecognition.
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