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Practical Session III: Decision Trees
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1 Starting with WEKA

In this session, we'll experiment with building decision trees, mostly to discover patterns in pronunciation
data automatically. Before we get to actual pronunciation data, let's get familiar with the WEKA machine
learning toolkit.

The WEKA toolkit is actually a large group of JAVA classes that are bundled together. There is a large
support structure that I won't have time to go into here, and many types of machine learning algorithms
other than decision trees are available within the toolkit. For the moment, though, we'll restrict ourselves
to working with the d-tree (decision tree) algorithms.

First, let's look at a sample data �le for the \weather" problem. The main idea of this data set is to determine
whether we go outside and play dependent on the weather. The �le \weather.ar�" is the training data �le;
the particular format of the �le is called ARFF1. Here's the contents of the �le:

@relation weather

@attribute outlook {sunny, overcast, rainy}

@attribute temperature real

@attribute humidity real

@attribute windy {TRUE, FALSE}

@attribute play {yes, no}

@data

sunny,85,85,FALSE,no

sunny,80,90,TRUE,no

overcast,83,86,FALSE,yes

...

The @relation tag gives a name to the data set. The next lines in the �le de�ne the possible values for each
attribute, using the @attribute tag. There are two basic types of variables: nominal variables, such at the
outlook attribute, take one-of-n values; one can also have real-valued attributes, such as the temperature

attribute.

The �nal attribute by default2 has a special status; it's called the class attribute. This is the value that you
would like the classi�er to predict.

Finally, the data are announced in the �le via the @data tag. Each line that follows is one data sample, and
the values for each attribute are listed.

1I have no idea why.
2One can change the index of the class attribute using the -c option in WEKA.
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The decision tree algorithm in WEKA emulates the C4.5 algorithm by Ross Quinlan, a relatively famous
decision tree algorithm. It has some more bells and whistles than the bare-bones algorithm I discussed in
lecture, but is mostly the same. The WEKA implementation is called J4.8, and can be called like this:

prompt> java weka.classifiers.j48.J48 -t weather.arff

You'll get a lot of output, which should look like this:

J48 pruned tree

------------------

outlook = sunny

| humidity <= 75: yes (2.0)

| humidity > 75: no (3.0)

outlook = overcast: yes (4.0)

outlook = rainy

| windy = TRUE: no (2.0)

| windy = FALSE: yes (3.0)

Number of Leaves : 5

Size of the tree : 8

=== Error on training data ===

Correctly Classified Instances 14 100 %

Incorrectly Classified Instances 0 0 %

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 14

=== Confusion Matrix ===

a b <-- classified as

9 0 | a = yes

0 5 | b = no

=== Stratified cross-validation ===

Correctly Classified Instances 9 64.2857 %

Incorrectly Classified Instances 5 35.7143 %

Mean absolute error 0.3036

Root mean squared error 0.4813

Relative absolute error 63.75 %

Root relative squared error 97.5542 %

Total Number of Instances 14

=== Confusion Matrix ===

a b <-- classified as

7 2 | a = yes

3 2 | b = no

The �rst part shows the tree that was learned from the training data. Here we can see that the outlook
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variable was chosen as the �rst question; when the outlook was sunny or rainy, additional questions were
posed to further subdivide the data.

The classi�cation of all of the training data was perfect, as indicated by the �rst set of statistics. This is not
necessarily good, however; it may be an indication that we've over-�tted the training data. The strati�ed
cross-validation section gives a slightly more honest estimate of the error. The training data is divided into
10 sections; the d-tree is trained on 9/10 of the data and tested on the remaining 1/10th. This is repeated
9 more times, changing sections in the training data and testing data, so that all of the data is tested once.

There are various ways to control the algorithm, such as how many examples must be in each leaf (-M),
or requiring that splits on nominal attributes must be binary (-B) or subsets (-D). A full list of options is
available by typing:

prompt> java weka.classifiers.j48.J48 -h

To do: Try building d-trees with the di�erent options listed above. How does modifying the options change
the tree?

To do: Can you try to predict the outlook given the other variables?

To do: Set up a dataset that corresponds to a problem that you know the answer to, and see if the d-tree
software will learn the rule. For example: all men over 40 and all women over 70 are worried about becoming
bald. Generate some data points (10-20) that conform to your rule, and train a tree to learn the rule.

2 Training up pronunciation d-trees

I've constructed a number of di�erent ARFF data �les that we can use to train d-trees, based on a collection
of connected numbers that we have at ICSI (the OGI Numbers corpus). In particular, I'd like to focus on
the phone t because it's one of the most variable in English. The t phone in this corpus is used in words like
twenty, thirty, �fteen, and eight | the way that t can be realized is very dependent on the context.

The master ARFF �le is called mastertrain-t.arff; in it, I have placed a large number of attributes about
the context in which each t occurs. One can select particular attributes from this corpus by using:

prompt> subset-arff.pl 1,2,3,10 mastertrain-t.arff > subsetx-t.arff

where 1,2,3,10 correspond to the attribute numbers. By sub-selecting features, one can compare the e�ects
of including or leaving out di�erent attributes. I will also provide a list of di�erent \interesting" subsets.

I have also provided a set of test examples that are separate from the training corpus, in mastertest-t.arff.
You should use this �le (appropriately sub-selected) to test your trees, via the -T option to J48. This will
give you an honest estimate of the generalization capability of the tree you've constructed.

To do: try constructing trees with di�erent sets of features. Which features are useful, and which are not?
Examine the trees you build | do the rules that they come up with make linguistic sense?

3 Converting trees to FSMs (optional)

You can see what the generated pronunciations look like in practice by running the d-trees with some test
data. I've compiled a complete set of d-trees for all phones; the list of trees is given in allphones.config.
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An example data �le of test data is given for each word (e.g. twenty.data). To convert the decisions of the
trees into FSMs, I've provided another java program, Classi�er2FSM. You can run it like this:

prompt> java icsi.Classifier2FSM -a -f allphones.config -i twenty.data

This will probably provide a very bushy pronunciation graph. You can prune pronunciations at each d-tree
leaf by passing the -c option; for example, -c 0.1 will remove all phone pronunciations with a probability
of less than 0.1.

If you compile this into a binary AT&T FSM, you can also use fsmbestpath to print out the n best
pronunciations. I can provide more information about this if you're interested.

To do: Try constructing data �les by concatenating strings of numbers (like \hundred twenty three") and
build FSMs for them. (Concatenate hundred.data, twenty.data, and three.data, making sure to change
the context). Do you get di�erent results?

To do: You can replace the t tree currently in allphones.config with your own tree (if you haven't sub-
selected features). To create a classi�er �le, use the -d option to J48. Make a copy of allphones.config,
put a pointer to your �le for the t phone, and try it out!


