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ABSTRACT

We describe how to predict detailed phonetic pronunciations
from a coarse phonemic transcription. The phonemic base forms,
obtainable from orthographic text by dictionary lookup and other
means, do not specify fine phonetic detail such as flapping, glot-
tal stop insertion, or the formation of syllabic nasals and lig-
uids. These phenomena depend on the phonemic context (often
spanning word boundaries), stress environment, speaking rate,
and dialect. We describe a procedure that builds decision trees,
trained on the TIMIT database, using some of these features to
predict pronunciation alternatives. The resulting phonetic net-
work predicts the correct pronunciation of a phoneme on test
data from the same corpus 83contains the correct phone in the
top 5 guesses 99and has a conditional entropy of .8 bits,

1. INTRODUCTION

This paper is about how to predict, in context, the likely
pronunciations of words. If we start with some text, eg., ‘I
like butter’ , we can tell something about its pronunciation
by simply looking up the words in a pronouncing dictionary and
concatentating the phonemes found, e.g., fay 1 ay k b uh t
er/ . In this paper, we use the ARPABET symbols for specifying
phonemes [1].

The phonemes are a set of base forms for representing the
sounds in a word. Replacing one phoneme in a word with another
is usually drastic enough to turn that word into a different word
(or a non-word). It is, by definition, drastic enough to do so for
some word,

There is finer kind of variation, however, that is not indicated
at the phonemic level, so-called allophonic variation. For exam-
ple, the /t/ in ‘butter’ may be pronounced as a flap, [dx], or
as a released t, [tcl t] . In this paper, we use the TIMITBET
symbols, a superset of the ARPABET symbols, for specifying
phones (2]. Which allophone of the phoneme /t/ will occur in
this word depends, in part, on the speaker’s dialect and speaking
rate. In another example, the phoneme /k/ in ‘1ike’ may be re-
leased or not (i.e., have noticable burst and aspiration). This will
depend on the context in which the word is found, e.g., whether
it is followed by another stop consonant.

Thus, phones are acoustically distinct realizations of
phonemes. The choice of a phone set is a matter of judgment,
but phoneticians have traditionally agreed that certain kinds of
variation are worth noting based on their acoustic prominence
and regularity.

Deriving a pronunciation can thus be divided into two steps
- mapping from orthography to phonemes, and then mapping
from phonemes to phones. The problem of mapping orthographic
text onto its phonemic representation will not be discussed fur-
ther, except to say it is not entirely a simple dictionary lookup,
e.g., unknown words and some homonyms (like read , which de-
pending on the tense can be pronounced as /r iy d/ or /r eh
d/), require special treatment. We use the Bell Labs text-to-
speech system to provide the transformation from orthography
to phonemes [3]. The focus of this paper is how to predict allo-
phonic variation, i.e., mapping from phonemes to phones.

To get a measure of the difficulty of this problem, con-
sider the TIMIT phonetically-labelled database. This is a hand-

labelled corpus of 6300 phonetically-rich utterances by 630 speak-
ers created at TT and MIT [2], and includes both phonetic and
orthographic transcriptions of the utterances. From the ortho-
graphic transcriptions, we have derived phonemic transcriptions

‘and aligned them with the phonetic transcriptions. From this,

we have estimated the conditional entropy of a phone given the
matching phoneme to be about 1.5 bits (in Section 6 we describe
how we treat phone insertions).

Significantly, this estimate does not include any contextual
information. Knowing what the neighboring phonemes are, what
the stress environment is, and where the word boundaries are,
will help considerably in predicting how a phoneme is realized as
a phone. Our goal, in part, is to use this kind of information to
reduce the 1.5 bits of uncertainty.

This paper will describe a method that will reduce the uncer-
tainty from 1.5 bits to about .8 bits. In another way of measuring
performance, this method predicts the correct phone from phone-
mic context about 83% of the time and the correct phone lies in
our top five guesses 99% of the time. In comparison, if we only
use the matching phoneme and no contextual information, we
able to predict the correct phone only 69% of the time and we
must look at the top ten guesses to find the correct phone 99%
of the time.

We can never remove all uncertainty when predicting just
from the phoneme string. In the ‘butter’ example, flapping the
/t/ is the most likely outcome (for American speakers), but other
allophones of /t/ can also occur. Therefore, when we predict a
realization, we will allow for alternatives and estimate their like-
lihoods. For example, in a task like TIMIT, our method predicts
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/ in butter will flap about 73% of the time with released
], the second most likely outcome. Thus, our predicted
ation of a phoneme string is a network of phonetic alterna-
see Figure 1).

‘There are different approaches toward predicting pronuncia-
tions. The traditional phonetician’s approach has been to write
rules that explicitly state the predicted behavior, e.g., ‘a stop
consonant is usually unexploded before another stop consonant’
or ‘a [t/ usually becomes a glottal stop before a nasal in the same
word’ [4].

Now that large, phonetically-labelled databases like TIMIT
are available, it is possible to estimate the phoneme-to-phone
mapping statistically [5,6,7]. This approach has several advan-
tages. First, it readily permits assigning likelihoods to alternative
pronunciations. Second, it permits the discovery of regularities
perhaps overlooked by heuristic means. Finally, it allows predic-
tors to be quickly retailored to new corpora - whether different
tasks, different dialects, or even different languages.

2. PREDICTION MODEL

To predict from phonemes to phones, we take a phoneme
string as input and produce phonetic realizations as output along
with their likelihoods.

Let us make this idea precise. Let x = z125...z,, be the string
of phonemes of some sentence. So that we can mark both word
boundaries and stress we augment the phoneme set to include
/#/ as a word boundary marker and split each syllabic phoneme
into an unstressed, a primary stressed, and a secondary stressed
version. Further, let y = y11,...y, be the string of corresponding
phones. We include the phone symbol [-] to indicate that a
phoneme may delete.

The most general form of our predictor is P(y|x), where
P estimates the probability that the phone sequence y is the
realization of the phoneme sequence x.

This specifies the probalitity of an entire phone sequence
y. For convenience, we want to decompose this into one phone
prediction at a time. Since

P(y|x) = Pa(ynlxv1---¥n-1)Pn-1 (¥n-11x1...4n-2)-.p2(01 %),
(2.1)
we can restate the problem as finding a suitable predictor,
Pe(Vk|X y1...¥k—1), that estimates the probability that yi is the
kth phone in the realization, given the phoneme sequence x and
the previous k-1 phones yy...y5-1.

Fq. 2.1 is more general than necessary since realistically the
kth phone will depend only on a few neighboring phonemes and
phones. Suppose that we can place the phoneme and phone
strings into alignment. In fact, forming a good alignment be-
twen phonemes and phones is easy if deletions and insertions are
permitted, using a phonetic feature distance measure and stan-
dard string alignment techniques [8]. Since we have augmented
the phone set to include a deletion symbol, the only stumbling
block to such an alignment would be if phones insert. For the
moment, assume that they don’t; we will come back to insertions
later. Thus, under this assumption we can talk about the kth
phoneme and its corresponding phone. We assume

Pr(ylx g1 Uk—1) = P(Yk|Thor - Tho1 Tk Thp1 - Thpr Y1 - Yh—1)
(2.2)
In other words, pi is stationary and depends only on the +r
neighboring phonemes.
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If we assume the kth phone does not depend any of the pre-
vious phones, we have

YR Tk TR TR T 1 o Thpr Y1 Yh—1)

= p(Yk|Thor e Tho1 Tk T g1 Thgr)  (2.3)

This is the assumption that phones are conditionally independent
given the phonemic context. A less stringent assumption would
be that the kth phone only depends on the immediately prior
phone, In this case, we must estimate

PlYK|Thmr o TE TR T g1 o T Yo Yo )

= P(Yk|Thmr e Bk 1 ERT b1 Thgr ko1 ) (2.4)

This is the assumption that phones are conditionally 1st-order
Markov given the phonemic context.

These last two models are the ones that we will explore -
one that assumes an independence model of phones and the other
that assumes a Markov model. We must also come back to the
question of what to do when phones insert.

3. CLASSIFICATION TREES

We now discuss the question of how, in general, we will esti-
mate the phoneme-to-phone mapping probabilities specified in
the previous section. The simplest procedure would be to col-
lect n-gram statistics on the training data. A bi-phonemic or
possibly tri-phonemic context would be the largest possible with
available training data if we want statistically reliable estimates.

We believe that a straight-forward n-gram statistics on the
phonemes are probably not ideal for this problem since the con-
textual effects that we are trying to model often depend on a
whole class of phonemes in a given position, e.g., whether the
preceding phoneme is a vowel or not. A procedure that had
all vowels in that position clustered into one class for that case
would produce a more compact description, would be more eas-
ily estimated, and would allow a wider effective context to be
examined.

Thus intuitively we would like a procedure that pools to-
gether contexts that behave similarly, but splits apart ones
that differ. An attractive choice from this point of view is a
statistically-generated decision tree with each branch labelled
with some subset of phonemes for a particular position. The
tree is generated by spliting nodes that statistical tests, based
on available data, indicate improve prediction, but terminating
nodes otherwise.

An excellent description of the theory and implementation of
tree-based statistical models can be found in Classification and
Regression Trees [9]. The interesting questions for generating
a decision tree from data — how to decide which splits to take
and when to label a node terminal and not expand it further —
are discussed in these references along with the widely-adopted
solutions.

Suffice it to say here the result is a binary decision tree whose
branches are labelled with binary cuts on the continuous features
and with binary partitions on the categorical features and whose
terminal nodes are labelled with continuous predictions (regres-
sion tree) or categorical predictions (classification tree). By a
continuous feature or prediction we mean a real-valued, linearly-
ordered. variable (e.g., the duration of a phone, or the number of
phonemes in a word); by a categorical feature or prediction we



mean an element of an unordered, finite set. (e.g., the phoneme
set).

4. BASELINE MODEL

In Section 2 we developed two models for predicting the prob-
ability that a particular phone is the realization of a phoneme.
One used the phoneme context as the predictor input. The other
used that plus the previous phone as input. In this section, we
describe the implementation of the first model. We still exclude
the treatment of insertions at this point. We will call this our
baseline model. In later sections, we will describe refinements to
this model.

In the exposition in Section 2, we combined word boundary
and stress information into the phoneme set itself. When we
actually input the features into the tree classification procedure
we have found it more convenient to keep them separate.

We include £r phonemes around the phoneme that is to be
realized (typically, » = 3). This is irrespective of word bound-
aries. We pad with blank symbols at sentence start and end.

Since there are 40 different phonemes, if we directly in-
put each phoneme into the tree classification routine, 20 pos-
sible splits would have to be considered per phoneme posi-
tion at each node, since, by default, all possible binary par-
titions are considered. This is clearly intractable, so instead
we encode each phoneme as a feature vector. A manage-
able choice is to encode each phoneme as a four element vec-
tor: (conscnant-manner, consonant-place, vowel-manner,
vowel-place). Each component can take one of about a dozen
values and includes ‘n/a’ for ‘not applicable’. For exam.
ple, /s/ is encoded as (voiceless-fricat ive, palatal, n/a,
n/a) and /iy/isencoded as (n/a, n/a, y-diphthong, high-
front)

If the phoneme to be realized is syllabic, then we also input
whether it has primary or secondary stress or is unstressed. We
use stress as predicted by the Bell Labs text-to-speech system;
this is essentially lexical stress with function words de-accented.
If the phoneme is not syllabic, we input both the stress of the
first syllabic segment to the left and to the right if present within
the same word (and use ‘n/a’s’ if not),

To encode word boundaries, we input the number of
phonemes from the beginning and end of the current word to
the phoneme that is being realized.

We do not input the syllabification directly since we do not
have that information readily available. But, because we typ-
ically use a wide phonemic context, the syllabification is often
implicitly present. If we had the syllabification, however, we
would include it since it might help in some cases. We note,
nonetheless, that Randolph(7], who included the syllabification
in a tree classifier of TIMIT stop allophones, achieved classifica-
Lion rates nearly identical to what we achieve on that data using
the feature set describe here,

Our output set is simply a direct encoding of the phone set
plus the symbol [-] if the phoneme deletes. Computation time
grows only linearly with the number of output classes so this
direct encoding presents no problem similar to the exponential
growth found with size of the input feature classes.

We now describe the results of this baseline model on the
TIMIT database. The phonetic transcription of 3024 sentences
from the TIMIT ‘sx’ an ‘s’ sentences were aligned with their

phonemic transcription as predicted by the Bell Labs text-to-
speech system from their orthographic transcription. For each
of the resulting 100702 phonemes, the phonemic context was en-
coded as described in previous section. A classification tree was
grown on this data and the tree size was chosen to minimize pre-
diction error in a 5-fold cross-validation. The resulting tree had
approximately 300 nodes.

This tree was then used to predict phonetic realizations of an
independent 336 sentences from the TIMIT ’sx’ and 'sj’ sentences,
The result was 84.1% correct prediction and a conditional entropy
ol .77 bits.

5. MARKOV MODEL

To judge the 84.1% performance obtained by our baseline
model, we have to look at the errors. They can be divided into
two categories: those in which the prediction was, in fact, the
most likely outcome, but the speaker of the test sentence used a
less likely alternative pronunciation (e.g. he didn’t flap the /t/
in ‘pretty’), and those cases in which the model is imperfect
and an implausible pronunciation is predicted. The first kind
of uncertainty is inherent to the problem, the second kind is
something we should try to fix.

Using the baseline model, we find the major latter kind of
error occurs near a deletion. For example, ‘are’, phonemically
/aa r/,is often realized as [axr] in fluent speech. In the training
data this is modelled as /aa/ — [axr] and /r/ — [-]. But,
the baseline model may predict the pronuncations [aa -] and
[axr r] for /aa r/, which are unlikely for most TIMIT speakers.
Similar problems occur with /n/ » /m/ and /1/ in contexts where
they are likely to syllabify.

The problem is that in these cases the realization of the pre-
vious phoneme strongly influences the realization of the current
phoneme. This suggests we should use the second model outlined
in Section 2 - the Markov model. The idea is that we augment
the feature set with the previous phone that was output. During
training, we use the actual phone uttered. During testing, we
use dynamic programming to maximize Eq. 2.1 (with Eq. 2.1 &

’q. 2.4) over all phones.

We encode the previous phone with a scheme similar to that
for phonemes, but add a few extra categories to fully specify all
the phones.

The result is an improvement to 85.5% correct predictions
on the TIMIT test set described in Section 5. Significantly, the
implausible predictions like those described above near a deletion
are judged to have very low probability with this newer model

6. TREATMENT OF INSERTIONS

There are two ways to deal with the insertion of phones.
The first way is add a second model that predicts the phone
insertions. Consider a phone Sequence zpyy21Yz22...Yn 2, that is
the realization of phoneme sequence z;z,...z,.
as the realization of phoneme x;
between phoneme y; and Yig1-

We view phone y;
and view phone z; as an insertion
In a realistic example, there will
be only an occasional insertion, so most of the z insertions will
marked as [-]’s. This scheme allows only one phone to insert
after a phoneme; however, it is clear this can be generalized. In
practice, contiguous insertions seldom occur. For example, for
100702 TIMIT phonemes, there were 13907 single insertions but
only 352 multiple insertions.

The second way to deal with insertions is to augment the



output set to include phone pairs. For example, the phoneme /t/
can be realized as the pair of phones [tcl t]. The insertion tree
approach accounts for this by treating one of these phones as an
insertion. Instead, we might add [tcl+t] to our ‘phone’ set. The
advantage of this approach is we can use the methods described in
Section 4 and 5 without any need to predict insertions separately.
The potential disadvantage is that we could conceivably need to
square the size of our output phone set.

Tortunately, in practice, only a few phone pairs are found
commonly. In particular, a stop consonant closure pairs with its
release, and a glottal stop inserts before a vowel (e.g., phrase
initially). We used the 37 most common phone pairs to augment
our phone set. This set accounts for 95% of the insertion tokens
in the TIMIT database.

A classification tree grown using this output set and the
model of Section 5 predicts the realization of a phoneme correctly
83.3% of the time and has a conditional entropy of .82 bits. Note
that the classification rate is lower here than in the previous mod-
els since this model must also predict phone insertions. Figure 1
shows an example of the output network for the sentence ‘Don
had your pretty red begonia in a little pot.’.

We can use dynamic programming to find efficiently the high-
est probability path through the network in Figure 1. In the cases
where the outcome does not depend on the previous phone this
simply means we are selecting the leftmost phone prediction dis-
played since it has the highest probability. When, however, it
does depend on the previous phone, then we are dealing with
a transition probability and must find which of several possible
paths is best. The best result, in this case, is [d aa n hh ae
del jh axr pcl p r ih dx iy r eh decl b ix gcl g ow n
y ax ix n ax 1 ih dx el pcl p aa tcll.

7. DISCUSSION OF RESULTS

The example pronunciation network in Figure 1 illustrates
several features of this scheme. The first column in that figure
gives the phoneme to realize. Pairs of probabilities and phones
follow. For example, the initial phoneme, /d/, is predicted to
realize as the phone [d], i.e., d release. with a 91% probability.
Realizations with less than 10% probability are pruned from this
figure.

On the other hand, the phoneme /d/ in ‘had’ is predicted
torealize as [dcl jh] with 51% probability and as [dcl d] with
37% probability. This is an example where an alternative pro-
nunciation is quite likely.

Some realizations depend on the realization of the previous
phoneme. For example, the phoneme /y/ in ‘your’ will delete
with 73% probability if the previous /d/ was realized as [dcl
jh] but will appear with 90% probability as [y] if the /d/ was
realized as [dcl d].

Finally note that several non-trivial transformations have
been captured - the flapping of the /t/ in ‘pretty’, the realiza-
tion of /uh 1/ in ‘little’ as a syllabic 1, and the combination
of ‘had’ and ‘your’ giving rise to the affricate [jh].
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PHONEME

PHONE1 PHONE2 PHONE3 CONTEXT

d 0.914d

aa 0.92 aa

n 0.98n

hh 0.74 hh 0.15 hv

ae 0.73 ae 0.19¢h

d 0.51 del jh 0.37 del jh

¥ 0.90 y (if d—dcl d)
0.84 - 0.16 y (if d—dcl jh)

uw 0.48 axr 0.29 er

r 0.99 -

P 0.89 pel p

T 0.99r

ih 0.86 ih

L 0.73 dx 0.11telt

iy 0.90 iy

r 0.99r

eh 0.8T eh

d 0.80 del 0.15dcl d

b 0.93bel b (if d—del d)
0.96 b (if d—del)

ih 0.58 ix 0.24 iy 0.15ih

Z 0.85gcl g 0.15 gel

ow 0.94 ow

n 0.98n

¥ 0.90y

ax 0.70 ax 0.12ah

ih 0.46 ix 0.25ih

n 0.56n 0.44 nx

ax 0.53 ax 0.16 ix

1 0951

ih 0.86ih

t 0.73 dx 011t t

uh 0.89el

1 0.98 -

P 0.99 pel p

aa 0.92 aa

L 0.57 tel 0.26tcl t

Figure 1. Pronunciation network for ‘Don had your pretty
red begonia in a little pot.’ The first column gives the
phoneme to realize. Pairs of probabilities and phones follow. For
example, the initial phoneme, /d/, is predicted to realize as the
phone [d], i.e., d release. with a 91% probability. Realizations
with less than 10% probability are pruned from this figure.
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