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stages relating successive levels of representation:

P (s0; sk)=P (sk js0)P (s0)
P (sk js0)=

P
s1 ;:::;sk�1

P (sk jsk�1) � � �P (s1js0)
(1)

Each sj is a sequence of units of an appropriate representation, for instance
phones or syllables in speech recognition. A straightforward but useful ob-
servation is that any such a cascade can be factored at any intermediate
level

P (sj jsi) =
X
sl

P (sj jsl)P (sljsi) (2)

For computational reasons, sums and products in (1) are often replaced
by minimizations and sums of negative log probabilities, yielding the ap-
proximation

~P (s0; sk) = ~P (skjs0) + ~P (s0)
~P (skjs0) � mins1;:::;sk�1

P
1�j�k

~P (sj jsj�1)
(3)

where ~X = � logX . In this formulation, assuming the approximation is
reasonable, the most likely message s0 is the one minimizing ~P (s0; sk).

In current speech recognition systems, a transduction stage is typically
modeled by a �nite-state device, for example a hidden Markovmodel (HMM).
However, the commonalities among stages are typically not exploited, and
each stage is represented and implemented by \ad hoc" means. The goal
of this paper is to show that the theory of weighted rational languages and
transductions can be used as a general framework for transduction cascades.
Levels of representation will be modeled as weighted languages, and trans-
duction stages will be modeled as weighted transductions.

This foundation provides a rich set of operators for combining cascade
levels and stages that generalizes the standard operations on regular lan-
guages, suggests novel ways of combining models of di�erent parts of the de-
coding process, and supports uniform algorithms for transduction and search
throughout the cascade. Computationally, stages and levels of representa-
tion are represented as weighted �nite automata, and a general automata
composition algorithm implements the relational composition of successive
stages. Automata compositions can be searched with standard best-path
algorithms to �nd the most likely transcriptions of spoken utterances. A
\lazy" implementation of composition allows search and pruning to be car-
ried out concurrently with composition so that only the useful portions of
the composition of the observations with the decoding cascade is explicitly
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created. Finally, �nite-state minimization techniques can be used to reduce
the size of cascade levels and thus improve recognition e�ciency [12].

Weighted languages and transductions are generalizations of the stan-
dard notions of language and transduction in formal language theory [2, 6].
A weighted language is a mapping from strings over an alphabet to weights,
while a weighted transduction is a mapping from pairs of strings over two
alphabets to weights. For example, when weights represent probabilities and
assuming appropriate normalization, a weighted language is just a proba-
bility distribution over strings, and a weighted transduction a conditional
probability distribution between strings. The weighted rational languages
and transducers are those that can be represented by weighted �nite-state
acceptors (WFSAs) and weighted �nite-state transducers (WFSTs), as de-
scribed in more detail in the next section. In this paper we will be concerned
with the weighted rational case, although some of the theory can be prof-
itably extended more general language classes closed under intersection with
regular languages and composition with rational transductions [9, 22].

The notion of weighted rational transduction arises from the combi-
nation of two ideas in automata theory: rational transductions, used in
many aspects of formal language theory [2], and weighted languages and
automata, developed in pattern recognition [4, 15] and algebraic automata
theory [3, 5, 8]. Ordinary (unweighted) rational transductions have been
successfully applied by researchers at Xerox PARC [7] and at the University
of Paris 7 [13, 14, 19, 20], among others, to several problems in language pro-
cessing, including morphological analysis, dictionary compression and syn-
tactic analysis. HMMs and probabilistic �nite-state language models can be
shown to be equivalent to WFSAs. In algebraic automata theory, rational
series and rational transductions [8] are the algebraic counterparts of WF-
SAs and WFSTs and give the correct generalizations to the weighted case
of the standard algebraic operations on formal languages and transductions,
such as union, concatenation, intersection, restriction and composition. We
believe our work is the �rst application of these generalizations to speech
processing.

While we concentrate here on speech recognition applications, the same
framework and tools have also been applied to other language processing
tasks such as the segmentation of Chinese text into words [21]. We explain
how a standard HMM-based recognizer can be naturally viewed as equivalent
to a cascade of weighted transductions, and how the approach requires no
modi�cation to accommodate context dependencies that cross higher-level
unit boundaries, for instance cross-word context-dependent models. This is
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an important advantage of the transduction approach over the usual, but
more limited \substitution" approach used in existing to speech recognizers.
Substitution replaces a symbol at a higher level by its de�ning language at
a lower level, but, as we will argue, cannot model directly the interactions
between context-dependent units at the lower level.

2 Theory

2.1 The Weight Semiring

As discussed informally in the previous section, our approach relies on asso-
ciating weights to the strings in a language, the string pairs in a transduc-
tion and the transitions in an automaton. The operations used for weight
combination should re
ect the intended interpretation of the weights. For
instance, if the weights of automata transitions represent transition proba-
bilities, the weight assigned to a path should be the product of the weights of
its transitions, while the weight (total probability) assigned to a set of paths
with common source and destination should be the sum of the weights of the
paths in the set. However, if the weights represent negative log-probabilities
and we are operating under the Viterbi approximation that replaces the sum
of the probabilities of alternative paths by the probability of the most prob-
able path, path weights should be the sum of the weights of the transitions
in the path and the weight assigned to a set of paths should be the minimum
of the weights of the paths in the set. Both of these weight structures are
special cases of commutative semirings, which are the basis of the general
theory of weighted languages, transductions and automata [3, 5, 8].

In general, a semiring is a set K with two binary operations, collection
+K and extension �K , such that:

� collection is associative and commutative with identity 0K ;

� extension is associative with identity 1K ;

� extension distributes over collection;

� a�K 0K = 0K �K a = 0 for any a 2 K.

The semiring is commutative if extension is commutative.
Setting K = R+ with + for collection, � for extension, 0 for 0K and

1 for 1K we obtain the sum-times semiring, which we can use to model
probability calculations. Setting K = R+ [ f1g with min for collection,
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+ for extension, 1 for 0K and 0 for 1K we obtain the min-sum semiring,
which models negative log-probabilities under the Viterbi approximation.

In general, weights represent some measure of \goodness" that we want
to optimize. For instance, with probabilities we are interested in the highest
weight, while the lowest weight is sought for negative log-probabilities. We
thus assume a total order on weights and write maxx f(x) for the optimal
value of the weight-valued function f and argmaxx f(x) for some x that
optimizes f(x). We also assume that extension and collection are monotonic
with respect to the total order.

In what follows, we will assume a �xed semiring K and thus drop the
subscript K in the symbols for its operations and identity elements. Unless
stated otherwise, all the discussion will apply to any commutative semir-
ing, if necessary with a total order for optimization. Some de�nitions and
calculations involve collecting over potentially in�nite sets, for instance the
set of strings of a language. Clearly, collecting over an in�nite set is al-
ways well-de�ned for idempotent semirings such as the min-sum semiring,
in which a + a = a 8a 2 K. More generally, a closed semiring is one in
which collecting over in�nite sets is well de�ned. Finally, some particular
cases arising in the discussion below can be shown to be well de�ned for the
plus-times semiring under certain mild conditions on the weights assigned
to strings or automata transitions [4, 8].

2.2 Weighted Transductions and Languages

In the transduction cascade (1), each stage corresponds to a mapping from
input-output pairs (r; s) to probabilities P (sjr). More formally, stages in the
cascade will be weighted transductions T : ����� ! K where �� and �� are
the sets of strings over the alphabets � and �, and K is the weight semiring.
We will denote by T�1 the inverse of T de�ned by T (t; s) = T (s; t).

The right-most step of (1) is not a transduction, but rather an informa-
tion source, the language model. We will represent such sources as weighted
languages L : �� ! K.

Each transduction S : �� � �� ! K has two associated weighted lan-
guages, its its �rst and second projections �1(S) : �� ! K and �2(S) : �� !
K, de�ned by

�1(S)(s) =
P

t2�� S(s; t)
�2(S)(t) =

P
s2�� S(s; t)

Given two transductions S : �� � �� ! K and T : �� � �� ! K, we
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de�ne their composition S � T by

(S � T )(r; t) =
X
s2��

S(r; s)� T (s; t) (4)

For example, if S represents P (sljsi) and T P (sj jsl) in (2), S �T represents
P (sj jsi).

A weighted transduction S : �� � �� ! K can be also applied to a
weighted language L : �� ! K to yield a weighted language S[L] over �:

S[L](s) =
X
r2��

L(r)� S(r; s) (5)

We can also identify any weighted language L with the identity trans-
duction restricted to L:

L(r; r0) =

(
L(r) if r = r0

0 otherwise

Using this identi�cation, application is transduction composition followed
by projection:

�2(L � S)(s) =
P

r2��
P

r02�� L(r; r
0)� S(r0; s)

=
P

r2�� L(r; r)� S(r; s)
=

P
r2�� L(r)� S(r; s)

= S[L](s)

From now on, we will take advantage of the identi�cation of languages
with transductions and use � to express both composition and application,
often leaving implicit the projections required to extract languages from
transductions. In particular, the intersection of two weighted languages
M;N : �� ! K is given by

�1(M �N)(s) = �2(M �N)(s) = M(s)�N(s) (6)

It is easy to see that composition is associative, that is, the result of any
transduction cascade R1 � � � � �Rm is independent of order of application of
the composition operators.

For a more concrete example, consider the transduction cascade for
speech recognition depicted in Figure 1, where A is the transduction from
acoustic observation sequences to phone sequences, D the transduction from
phone sequences to word sequences (essentially a pronunciation dictionary)
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phones words
A D M

observations
O

Figure 1: Recognition Cascade

Transduction

singleton f(u; v)g(w; z) = 1 i� u = w and v = z
scaling (kT )(u; v) = k � T (u; v)
sum (S + T )(u; v) = S(u; v) + T (u; v)
concatenation (ST )(t; w) =

P
rs=t;uv=w S(r; u)� T (s; v)

power T 0(�; �) = 1
T 0(u 6= �; v 6= �) = 0
Tn+1 = TTn

closure T � =
P

k�0 T
k

Table 1: Rational Operations

and M a weighted language representing the language model. Given a par-
ticular sequence of observations o, we can represent it as the trivial weighted
language O that assigns 1 to o and 0 to any other sequence. Then O�A rep-
resents the acoustic likelihoods of possible phone sequences that generate o,
O �A�D the acoustic-lexical likelihoods of possible word sequences yielding
o, and O � A �D �M the combined acoustic-lexical-linguistic probabilities
of word sequences generating o. The word string w with the highest weight
in �2(O �A �D �M) is the most likely sentence hypothesis generating o.

Composition is thus the main operation involved in the construction and
use of transduction cascades. As we will see in the next section, composi-
tion can be implemented as a suitable generalization of the usual intersection
algorithm for �nite automata. In addition to composition, weighted trans-
ductions (and languages, given the identi�cation of languages with trans-
ductions presented earlier) can be constructed from simpler ones using the
operations shown in Table 1, which generalize in a straightforward way the
regular operations well-known from traditional automata theory [6]. In fact,
the rational languages and transductions are exactly those that can be built
from singletons by applications of scaling, sum, concatenation and closure.

For example, assume that for each word w in a lexicon we are given
a rational transduction Dw such that Dw(p; w) is the probability that w
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is realized as the phone sequence p. Note that this allows for multiple
pronunciations for w. Then the rational transduction (

P
wDw)

� gives the
probabilities for realizations of word sequences as phone sequences if we leave
aside cross-word context dependencies, which will be discussed in Section 3.

2.3 Weighted Automata

Kleene's theorem states that regular languages are exactly those repre-
sentable by �nite-state acceptors [6]. Generalized to the weighted case and to
transductions, it states that weighted rational languages and transductions
are exactly those that can be represented by weighted �nite automata [5, 8].
Furthermore, all the operations on languages and transductions we have dis-
cussed have �nite-automata counterparts, which we have implemented. Any
cascade representable in terms of those operations can thus be implemented
directly as an appropriate combination of the programs implementing each
of the operations.

A K-weighted �nite automaton A is given by a �nite set of states QA,
a set of transition labels �A, an initial state iA, a �nal weight function
FA : QA ! K, 1 and a �nite set �A � QA � �A � K � QA of transitions
t = (t:src; t:lab; t:w; t:dst). The label set �A must have with an associative
concatenation operation u � v with identity element �A. A weighted �nite-
state acceptor (WFSA) is a K-weighted �nite automaton with �A = ��

for some �nite alphabet �. A weighted �nite-state transducer (WFST) is
a K-weighted �nite automaton such that �A = �� � �� for given �nite
alphabets � and �, its label concatenation is de�ned by (r; s) � (u; v) =
(ru; sv), and its identity (null) label is (�; �). For l = (r; s) 2 �� � �� we
de�ne l:in = r and l:out = s. As we have done for languages, we will often
identify a weighted acceptor with the transducer with the same state set and
a transition (q; (x; x); k; q0) for each transition (q; x; k; q0) in the acceptor.

A path in an automaton A is a sequence of transitions p = t1; : : : ; tm
in �A with ti:src = ti�1:dst for 1 < i � k. We de�ne the source and the
destination of p by p:src = t1:src and p:dst = tm:dst, respectively. 2 The label
of p is the concatenation p:lab = t1:lab � � � � � tm:lab, its weight is the product

1The usual notion of �nal state can be represented by FA(q) = 1 if q is �nal, FA(q) = 0
otherwise. More generally, we call a state �nal if its weight is not 0. Also, we will interpret
any non-weighted automaton as a weighted automaton in which all transitions and �nal
states have weight 1.

2For convenience, for each state q 2 QA we also have an empty path with no transitions
and source and destination q.
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p:w = t1:w�� � �� tm:w and its acceptance weight is F (p) = p:w�FA(p:dst).
We denote by PA(q; q

0) the set of all paths in A with source q and destination
q0, by PA(q) the set of all paths in A with source q, by Pu

A(q; q
0) the subset

of PA(q; q
0) with label u and by Pu

A(q) the subset of PA(q) with label u.
Each state q 2 QA de�nes a weighted transduction (or a weighted lan-

guage):
LA(q)(u) =

X
p2Pu

A
(q)

F (p) . (7)

Finally, we can de�ne the weighted transduction (language) of a weighted
transducer (acceptor) A by

[[A]] = LA(iA) . (8)

The appropriate generalization of Kleene's theorem to weighted acceptors
and transducers states that under suitable conditions guaranteeing that the
inner sum in (7) is de�ned, weighted rational languages and transductions
are exactly those de�ned by weighted automata as outlined here [8].

Weighted acceptors and transducers are thus faithful implementations
of rational languages and transductions, and all the operations on these
described above have corresponding implementations in terms of algorithms
on automata. In particular, composition is implemented by the automata
operation we now describe.

2.4 Automata Composition

Informally, the composition of two automata A and B is a generalization of
NFA intersection. Each state in the composition is a pair of a state of A
and a state of B, and each path in the composition corresponds to a pair
of a path in A and a path in B with compatible labels. The total weight of
the composition path is the extension of the weights of the corresponding
paths in A and B. The composition operation thus formalizes the notion of
coordinated search in two graphs, where the coordination corresponds to a
suitable agreement between path labels.

The more formal discussion that follows will be presented in terms of
transducers, taking advantage the identi�cations of languages with trans-
ductions and of acceptors with transducers given earlier.

Consider two transducers A and B with �A = ����� and �B = �����.
Their composition A ./ B will be a transducer with �A./B = �� ��� such
that:

[[A ./ B]] = [[A]] � [[B]] . (9)
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By de�nition of L�(�) and � we have for any q 2 QA and q0 2 QB:

(LA(q) � LB(q
0))(u; w)

=
P

v2��(
P

p2P
(u;v)
A

(q)
F (p))� (

P
p02P

(v;w)
B

(q0)
F (p0))

=
P

v2��
P

p2P
(u;v)
A

(q)

P
p02P

(v;w)
B

(q0)
F (p)� F (p0)

=
P

(p;p0)2J(q;q0;u;w) F (p)� F (p0)

(10)

where J(q; q0; u; w) is the set of pairs (p; p0) of paths p 2 PA(q) and p0 2
PB(q

0) such that p:lab:in = u, p:lab:out = p0:lab:in and p0:lab:out = w. In
particular, we have:

([[A]] � [[B]])(u; w) =
X

(p;p0)2J(iA;iB ;u;w)

F (p)� F (p0) . (11)

Therefore, assuming that (9) is satis�ed, this equation collects the weights
of all paths p in A and p0 in B such that p maps u to some string v and p0

maps v to w. In particular, on the min-sum weight semiring, the shortest
path labeled (u; w) in [[A ./ B]] minimizes the sum of the costs of paths
labeled (u; v) in A and (v; w) in B, for some s.

We will give �rst the construction of A ./ B for �-free transducers
A and B, that is, those with transition labels in � � � and � � �, re-
spectively. Then A ./ B has state set QA./B = QA � QB, initial state
iA./B = (iA; iB) and �nal weights FA./B(q; q

0) = FA(q)FB(q
0). Furthermore,

there is a transition ((q; q0); (x; z); k� k0; (r; r0)) 2 �A./B i� there are tran-
sitions (q; (x; y); k; r) 2 �A and (q0; (y; z); k0; r0) 2 �B . This construction is
similar to the standard intersection construction for DFAs; a proof that it
indeed implements transduction composition (9) is given in Appendix A.

In the general case, we consider transducers A and B with labels over
�?��? and �?��?, respectively, where �? = �[ f�g. 3 As shown in (10),
the composition of A and B should have exactly one path for each pair of
paths p in A and p0 in B with

v = p:lab:out = p0:lab:in . (12)

for some string v 2 �� that we will call the composition string. In the �-
free case, it is clear that p = t1; : : : ; tm, p0 = t01; : : : ; t

0
m for some m and

ti:lab:out = t0i:lab:in. The pairing of ti with t0i is precisely what the �-free
composition construction provides. In the general case, however, two paths

3It is easy to see that any transducer with transition labels in ��� �� is equivalent to
a transducer with labels in �? ��?.
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a:a b:ε c:ε d:d

a:d ε:e d:a

a:d τ1:e d:a

τ2:ε τ2:ε τ2:ε τ2:ε

ε:τ1

a:a b:τ2 c:τ2 d:d

ε:τ1 ε:τ1 ε:τ1 ε:τ1

0 1 2 3 4

0 1 2 3

0 1 2 3

0 1 2 3 4

(a)

(b)

(c)

(d)

A

B

A'

B'

Figure 2: Transducers with � Labels

a:d ε:e
0,0 1,1 1,2

2,1 2,2

3,1 3,2

ε:e

ε:e

b:εb:ε

c:ε c:ε

3,3
d:a

τ1

τ1

τ1

τ2

τ2τ2

τ2

Figure 3: Composition with Marked �s

τ1:τ1 τ2:τ2

τ2:τ2

x:x
x:x

Figure 4: Filter Transducer
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p and p0 satisfying (12) need not have the same number of transitions. Fur-
thermore, there may be several ways to align � outputs in A and � inputs in
B with staying in the same state in the opposite transducer. This is exempli-
�ed by transducers A and B in Figure 2(a-b), and the corresponding na��ve
composition in Figure 3. The multiple paths from state (1; 1) to state (3; 2)
correspond to di�erent interleavings between taking the transition from 1
to 2 in B and the transitions from 1 to 2 and from 2 to 3 in A. In the
weighted case, including all those paths in the composition would in general
lead to an incorrect total weight for the transduction of string abcd to string
da. Therefore, we need a method for selecting a single composition path for
each pair of compatible paths in the composed transducer.

The following construction, justi�ed in Appendix B, achieves the desired
result. For label l, de�ne �1(l) = l:in and �2(l) = l:out. Given a transducer
T , compute Marki(T ) from T by replacing the label of every transition t such
that �i(t:lab) = � with the new label l de�ned by �2�i(l) = �2�i(t:lab) and
�i(l) = �i, where �i is a new symbol. In words, each � on the ith component
of a transition label is replaced by �i. Corresponding to � transitions on one
side of the composition we need to stay in the same state on the other side.
Therefore, we de�ne the operation Skipi(T ) that for each state q of T adds a
new transition (q; l; 1; q) where �2�i(l) = �i and �i(l) = �. We also need the
auxiliary transducer Filter shown in Figure 4, where the transition labeled
x : x is shorthand for a set of transitions mapping x to itself (at no cost) for
each x 2 �. Then for arbitrary transducers A and B, we have

[[A]] � [[B]] = [[Skip1(Mark2(A)) ./ Filter ./ Skip2(Mark1(B))]] .

For example, with respect to Figure 2 we have A0 = Skip1(Mark2(A)) and
B0 = Skip2(Mark1(B)). The thick path in Figure 3 is the only one allowed
by the �lter transduction, as desired. In practice, the substitutions and
insertions of �i symbols performed by Marki and Skipi do not need to be
performed explicitly, because the e�ects of those operations can be computed
on the 
y by a suitable implementation of composition with �ltering.

The �lter we described is the simplest to explain. In practice, somewhat
more complex �lters, which we will describe elsewhere, help reduce the size
of the resulting transducer. For example, the �lter presented includes in the
composition in states (2,1) and (3,1) on Figure 3, from which no �nal state
can be reached. Such \dead end" paths can be a source of ine�ciency when
using the results of composition.
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Figure 5: Models as Automata

3 Speech Recognition

We now describe how to represent a speech recognizer as a composition of
transducers. Recall that we model the recognition task as the composition
of a language O of acoustic observation sequences, a transduction A from
acoustic observation sequences to phone sequences, a transduction D from
phone sequences to word sequences and a weighted language M specifying
the language model (see Figure 1). Each of these can be represented as a
�nite-state automaton (to some approximation), denoted by the same name
as the corresponding transduction in what follows.

The acoustic observation automaton O for a given utterance has the
form shown on Figure 5a. Each state represents a �xed point in time ti, and
each transition has a label, oi, drawn from a �nite alphabet that quantizes
the acoustic signal between adjacent time points and is assigned probability
1. 4

The transducer A from acoustic observation sequences to phone se-
quences is built from phone models. A phone model is a transducer from
sequences of acoustic observation labels to a speci�c phone that assigns to
each acoustic observation sequence the likelihood that the speci�ed phone
produced it. Thus, di�erent paths through a phone model correspond to
di�erent acoustic realizations of the phone. Figure 5b shows a common
topology for phone models. A is then de�ned as the closure of the sum of

4For more complex acoustic distributions (for instance, continuous densities) we can
instead use multiple transitions (ti�1; d; p(oijd); ti) where d is an observation distribution
and p(oijd) the corresponding observation probability.
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the phone models.
The transducer D from phone sequences to word sequences is is built

similarly to A. A word model is a transducer from phone sequences to the
speci�ed word that assigns to each phone sequence the likelihood that the
speci�ed word produced it. Thus, di�erent paths through a word model
correspond to di�erent phonetic realizations of the word. Figure 5c shows a
typical topology for a word model. D is then de�ned as the closure of the
sum of the word models.

Finally, the acceptor M encodes the language model, for instance an n-
gram model. Combining those automata, we obtain �2(O ./ A ./ D ./ M),
which assigns a probability to each word sequence. The highest-probability
path through that automaton estimates the most likely word sequence for
the given utterance.

The �nite-state model of speech recognition that we have just described
is hardly novel. In fact, it is equivalent to that presented in [1], in the sense
that it generates the same weighted language. However, the transduction
cascade approach presented here allows one to view the computations in
new ways.

For instance, because composition is associative, the computation of
argmaxw �2(O ./ A ./ D ./ M)(w) can be organized in a variety of ways.
In a traditional integrated-search recognizer, a single large transducer is
built in advance by R = A ./ D ./ M , and used in recognition to compute
argmaxw�2(O ./ R)(w) for each observation sequence O [1]. This approach
is not practical if the size of R exceeds available memory, as is typically the
case for large-vocabulary speech recognition with n-gram language models
for n > 2. In those cases, pruning may be interleaved with composition to
to compute (an approximation of) ((O ./ A) ./ D) ./ M . Acoustic observa-
tions are �rst transduced into a phone lattice represented as an automaton
labeled by phones (phone recognition). The whole lattice typically too big,
so the computation includes a pruning mechanism that generates only those
states and transitions that appear in high-probability paths. This lattice
is in turn transduced into a word lattice (word recognition), again possibly
with pruning, which is then composed with the language model [11, 17].
The best approach depends on the speci�c task, which determines the size
of intermediate results. By having a general package to manipulate weighted
automata, we have been able to experiment with various alternatives.

So far, our presentation has used context-independent phone models. In
other words, the likelihood assigned by a phone model in A is assumed con-
ditionally independent of neighboring phones. Similarly, the pronunciation
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of each word in D is assumed independent of neighboring words. Therefore,
each of the transducers has a particularly simple form, that of the closure
of the sum of (inverse) substitutions. That is, each symbol in a string on
the output side replaces a language on the input side. This replacement of
a symbol from one alphabet (for example, a word) by the automaton that
represents its substituted language from a over a �ner-grained alphabet (for
example, phones) is the usual stage-combination operation for speech rec-
ognizers [1].

However, it has been shown that context-dependent phone models, which
model a phone in the context of its adjacent phones, provide substantial im-
provements in recognition accuracy [10]. Further, the pronunciation of a
word will be a�ected by its neighboring words, inducing context dependen-
cies across word boundaries.

We could include context-dependent models, such as triphone models,
in our presentation by expanding our `atomic models' in A to one for every
phone in a distinct triphonic context. Each model will have the same form
as in Figure 5b, but it will be over an enlarged output alphabet and have
di�erent likelihoods for the di�erent contexts. We could also try to directly
specify D in terms of the new units, but this is problematic. First, even
if each word in D had only one phonetic realization, we could not directly
substitute its the phones in the realization by their context-dependent mod-
els, because the given word may appear in the context of many di�erent
words, with di�erent phones abutting the given word. This problem is com-
monly alleviated by either using left (right) context-independent units at
the word starts (ends), which decreases the model accuracy, or by building
a fully context-dependent lexicon and using special machinery in the recog-
nizer to insure the correct models are used at word junctures. In either case,
we can no longer use compact lexical entries with multiple pronunciations
such as that of Figure 5c. Those approaches attempt to solve the context-
dependency problem by introducing new substitutions, but substitutions are
not really appropriate for the task.

In contrast, context dependency can be readily represented by a simple
transducer. We leave D as de�ned before, but interpose a new transducer
C between A and D that convert between context-dependent and context-
independent units, that is, we now compute argmaxw �2(O ./ A ./ C ./
D ./ M)(w). A possible form for C is shown in Figure 6. For simplicity,
we show only the portion of the transducer concerning two hypothetical
phones x and y. The transducer maps each context-dependent model p=l r,
associated to phone p when preceded by l and followed by r, to an occur-
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y/y_x:y

y/y_y:y

Figure 6: Context-Dependency Transducer

rence of p which is guaranteed to be preceded by l and followed by r. To
ensure this, each state labeled p:q represents the context information that
all incoming transitions correspond to phone p, and all outgoing transitions
correspond to phone q. Thus we can represent context-dependency directly
as a transducer, without needing specialized context-dependency code in the
recognizer. More complex forms of context dependency such as those based
on classi�cation trees over a bounded neighborhood of the target phone can
too be compiled into appropriate transducers and interposed in the recog-
nition cascade without changing any aspect of the recognition algorithm.
Transducer determinization and minimization techniques [12] can be used
to make context-dependency transducers as compact as possible.

4 Implementation

The transducer operations described in this paper, together with a variety of
support functions, have been implemented in C. Two interfaces are provided:
a library of functions operating on an abstract �nite-state machine datatype,
and a set of composable shell commands for fast prototyping. The modular
organization of the library and shell commands follows directly from their
foundation in the algebra of rational operations, and allows us to build new
application-speci�c recognizers automatically.

The size of composed automata and the e�ciency of composition have
been the main issues in developing the implementation. As explained earlier,
our main applications involve �nding the highest-probability path in com-
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posed automata. It is in general not practical to compute the whole compo-
sition and then �nd the highest-probability path, because in the worst case
the number of transitions in a composition grows with the product of the
numbers of transitions in the composed automata. Instead, we have devel-
oped a lazy implementation of composition, in which the states and arcs of
the composed automaton are created by pairing states and arcs in the com-
position arguments only as they are required by some other operation, such
as search, on the composed automaton [18]. The use of an abstract datatype
for automata facilitates this, since functions operating on automata do not
need to distinguish between concrete and lazy automata.

The e�ciency of composition depends crucially on the e�ciency with
which transitions leaving the two components of a state pair are matched to
yield transitions in the composed automaton. This task is analogous to doing
a relational join, and some of the sorting and indexing techniques used for
joins are relevant here, especially for very large alphabets such as the words
in large-vocabulary recognition. The interface of the automaton datatype
has been carefully designed to allow for e�cient transition matching while
hiding the details of transition indexing and sorting.

5 Applications

We have used our implementation in a variety of speech recognition and
language processing tasks, including continuous speech recognition in the
60,000-word ARPA North American Business News (NAB) task [17] and
the 2,000-word ARPA ATIS task, isolated word recognition for directory
lookup tasks, and segmentation of Chinese text into words [21].

The NAB task is by far the largest one we have attempted so far. In our
1994 experiments [17], we used a 60,000-word vocabulary, and several very
large automata, including a phone-to-syllable transducer with 5� 105 tran-
sitions, a syllable-to-word (dictionary) transducer with 105 transitions and a
language model (5-gram) with 3:4�107 transitions. We are at present exper-
imenting with various improvements in modeling and in the implementation
of composition, especially in the �lter, that would allow us to use directly
the lazy composition of the whole decoding cascade for this application in a
standard time-synchronous Viterbi decoder. In our 1994 experiments, how-
ever, we had to break the cascade into a succession of stages, each generating
a pruned lattice (an acyclic acceptor) through a combination of lazy compo-
sition and graph search. In addition, relatively simple models are used �rst
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(context-independent phone models, bigram language model) to produce a
relatively small pruned word lattice, which is then intersected with the com-
position of the full models to create a rescored lattice which is then searched
for the best path. That is, we use an approximate word lattice to limit the
size of the composition with the full language and phonemic models. This
multi-pass decoder achieved around 10% word-error rate in the main 1994
NAB test, while requiring around 500 times real-time for recognition.

In our more recent experiments with lazy composition in synchronous
Viterbi decoders, we have been able to show that lazy composition is as fast
or faster than traditional methods requiring full expansion of the composed
automaton in advance, while requiring a small fraction of the space. The
ARPA ATIS task, for example, uses a context transducer with 40,386 tran-
sitions, a the dictionary with 4,816 transitions a class-based variable-length
n-gram language model [16] with 359,532 transitions. The composition of
these three automata would have around 6 � 106 transitions. However, for
a typical sentence only around 5% of those transitions are actually visited
[18].

6 Further Work

We have been investigating a variety of improvements, extensions and ap-
plications of the present work. With Emerald Chung, we have been re�ning
the connection between a time-synchronous Viterbi decoder and lazy com-
position to improve time and space e�ciency. With Mehryar Mohri, we
have been developing improved composition �lters, as well as exploring on-
the-
y and local determinization techniques for transducers and weighted
automata [12] to decrease the impact of nondeterminism on the size (and
thus the time required to create) composed automata. Our work on the im-
plementation has also been in
uenced by applications to the compilation of
weighted phonological and morphological rules and by ongoing research on
integrating speech recognition with natural-language analysis and transla-
tion. Finally, we are investigating applications to local grammatical analysis,
in which transducers have been often used but not with weights.
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A Correctness of �-Free Composition

As shown in Section 2.4 (10), we have

(LA(q) � LB(q
0))(r; t) =

X
s2��

X
p2P

(r;s)
A

(q)

X
p02P

(s;t)
B

(q0)

F (p)� F (p0) .(13)

Clearly, for �-free transducers the variables r; s; t; p and p0 in this equation
satisfy the constraint jrj = jsj = jtj = jpj = jp0j = n for some n. This
allows us to show the correctness of the composition construction for �-free
automata by induction on n. Speci�cally, we shall show that for any q 2 QA

and q0 2 QB

LA./B(q; q
0) = LA(q) � LB(q

0) : (14)

For n = 0, from (13) and the composition construction we obtain

(LA(q) � LB(q0))(�; �) = FA(q)� FB(q0)
= FA./B(q; q

0)
= FA./B(�; �)

as needed.
Assume now that LA./B(m;m0)(u; w) = (LA(m) �LB(m0))(u; w) for any

m 2 QA, m0 2 QB, u 2 �� and w 2 �� with juj = jwj < n. Let r = xu
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and t = zw, with x 2 � and z 2 �. Then by (13) and the composition
construction we have

(LA(p) �LB(q))(xu; zw)
=
P

y2�

P
v2��

P
p2P

(xu;yv)
A

(q)

P
p02P

(yv;zw)
B

(q0)
F (p)� F (p0)

=
X

(q;(x;y);k;m)2�A

X
(q0;(y;z);k0;m0)2�B

k � k0 � (
P

v2��
P

l2P
(u;v)
A

(m)

P
l02P

(v;w)
B

(m0)
F (l)� F (l0))

=
X

((q;q0);(x;z);j;(m;m0))2�A./B

j � (
P

v2��
P

l2P
(u;v)
A

(m)

P
l02P

(v;w)
B

(m0)
F (l)� F (l0))

=
P

((q;q0);(x;z);j;(m;m0))2�A./B
j � (LA(m) �LB(m0))(u; w)

=
P

((q;q0);(x;z);j;(m;m0))2�A./B j � LA./B(m;m0)(u; w)

=
P

((q;q0);(x;z);j;(m;m0))2�A./B
j � (

P
g2P

(u;w)
A./B

(m;m0)
WA./B(g))

=
P

h2P
(xu;zw)
A./B

(q;q0)
WA./B(h)

= LA./B(q; q
0)(xu; zw) :

This shows (14) for �-free transducers, and as a particular case

[[A ./ B]] = [[A]] � [[B]] ,

which states that transducer composition correctly implements transduction
composition.

B General Composition Construction

For any transition t in A or B, we de�ne

Marki(t) =

(
�i if �i(t:lab) = �

�i(t:lab) otherwise
,

where each �i is a new symbol not in �. This can be extended to a path
p = t1; : : : ; tm in the obvious way by Marki(p) = Marki(t1) � � �Marki(tm). If
p and p0 satisfy (12), there will be m;n � k such that p = t1; : : : ; tm, p0 =
t01; : : : ; t

0
n, v = y1 � � �yk and v = p:lab:out = p0:lab:in. Therefore, we will have

Mark2(p) = u0y1u1 � � �uk�1ykuk where ui 2 f�2g
� and ju0 � � �ukj = m � k,

and Mark1(p0) = v0y1v1 � � �vk�1ykvk where vi 2 f�1g� and jv0 � � �vkj = n�k.
We will need the following standard de�nition of the shu�e s ? s0 of two

languages L; L0 � ��:

L ? L0 = fu1v1 � � �ulvlju1 � � �ul 2 L; v1 � � �vl 2 L0g .
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Then it is easy to see that (12) holds i�

J = (fMark2(p)g ? f�1g
�) \ (fMark1(p

0)g ? f�2g
�) 6= ; . (15)

Each composition string v 2 J has the form

v = v0y1v1 � � �vk�1ykvk (16)

for yi 2 � and vi 2 f�1; �2g
�. Furthermore, by construction, any string

v00y1v
0
1 � � �v

0
k�1ykv

0
k, where each v0i is derived from vi by commuting �1 in-

stances with �2 instances, is also in J .
Consider for example the transducers A shown in Figure 2a and B shown

in Figure 2b. For path p from state 0 to state 4 in A and path p0 from state
0 to state 3 in B we have the following equalities:

Mark2(p) = a�2�2d
Mark1(p

0) = a�1d

(fMark2(p)g ? f�1g
�) \ (fMark1(p

0)g ? f�2g
�) =

8><
>:

a�1�2�2d;

a�2�1�2d;
a�2�2�1d

9>=
>;

Therefore, p and p0 satisfy (12), allowing [[A]] � [[B]] to map abcd to dea. It is
also straightforward to see that, given the transducers A0 in Figure 2c and
B0 in Figure 2d, we have

fMark2(p)g ? f�1g
� = fp:lab:outjp 2 PA0(0)g

fMark1(p0)g ? f�2g� = fp0:lab:injp0 2 PB0(0)g

Since there are no � labels on the output side of A0 or the input side of B0,
we can apply to them the �-free composition construction, with the result
shown in Figure 3. Each of the paths from the initial state to the �nal
state corresponds to a di�erent composition string in fMark2(p)g ? f�1g

� \
fMark1(p

0)g ? f�2g
�.

The transducer A0 ./ B0 pairs up exactly the strings it should, but it
does not correctly implement [[A]] � [[B]] in the general weighted case. The
construction described so far allows several paths in A0 ./ B0 corresponding
to each pair of paths from A and B. Intuitively, this is possible because �1
and �2 are allowed to commute freely in the composition string. But if one
pair of paths p from A and p0 from B leads to several paths in A0 ./ B0,
the weights from the �-transitions in A and B will appear multiple times in
the overall weight for going from (p:src; p0:src) to (p:dst; p0:dst) in A0 ./ B0.
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If the semiring sum operation is not idempotent, that leads to the wrong
weights in (10).

To achieve the correct path multiplicity, we interpose a transducer Filter
between A0 and B0 in a 3-way composition ./ (A0;Filter; B0). The Filter
transducer is shown in Figure 4, where the transition labeled x : x represents
a set of transitions mapping x to itself for each x 2 �. The e�ect of Filter
is to block any paths in A0 ./ B0 corresponding to a composition string
containing the substring �2�1. This eliminates all the composition strings
(16) in (15) except for the one with vi 2 f�1g

�f�2g
�, which is guaranteed

to exist since J in (15) allows all interleavings of �1 and �2, including the
required one in which all �2 instances must follow all �1 instances. For
example, Filter would remove all but the thick-lines path in Figure 3, as
needed to avoid incorrect path multiplicities.
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