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Abstract

 

Speech is typically perceived against a background of other sounds. Listeners are adept at extracting

target sources from the acoustic mixture reaching the ears. The 

 

auditory scene analysis

 

 account holds

that this feat is the result of a two stage process: In the first stage sound is decomposed into collections

of fragments in several dimensions. Subsequent processes of perceptual organization reassemble these

fragments, based on cues indicating common source of origin which are interpreted in the light of prior

experience. In this way, the decomposed auditory scene is processed to extract coherent evidence for

one or more sources. Auditory scene analysis in listeners has been studied for several decades and recent

years have seen a steady accumulation of computational models of perceptual organization. The

purpose of this review is to describe the evidence for the nature of auditory organization in listeners and

to explore the computational models which have been motivated by such evidence. The primary focus

is on speech rather than on sources such as polyphonic music or nonspeech ambient backgrounds,

although all these domains are equally amenable to auditory organization. The review includes a

discussion of the relationship between auditory scene analysis and alternative approaches to sound

source segregation.
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1. Introduction

 

Speech is typically perceived against a background of other sounds. The acoustic mixture reaching the

ears is processed to enable constituent sounds to be heard and recognized as distinct entities. While the

auditory system may not always succeed in this goal, the range of situations in which spoken

communication is

 

 

 

possible in the presence of competing sources highlights the flexibility and

robustness of human speech perception. The background against which a conversation is carried out is

made up of acoustic intrusions which overlap in both time and frequency with the target speech. The

background may consist of other utterances whose fundamental frequency and formant contours occupy

similar regions to those of the target. Target and background may contain similar kinds of envelope

modulations, and can arrive from similar locations in space. Sometimes, the background will be

characterized by high-intensity onsets which completely overwhelm the target conversation. Figure 1

depicts auditory spectrograms for a mixture of two digit sequences whose constituents differ in onset

time, fundamental frequency contour and formant structure but which are still sufficiently similar in

these properties to make visual separation difficult.

<Figure 1 about here>

 

1.1 Terminology

 

Bregman (1990) draws a distinction between an 

 

acoustic source

 

 – a single physical system giving rise

to a particular pattern of sound waves – and an 

 

auditory stream

 

 which denotes the abstract, conceptual

effect it has in the mind of the listener. Listeners have to solve an 

 

auditory scene analysis

 

 (ASA)

problem in order to extract one or more relevant auditory streams from the mixture of sources which

contribute to their acoustic environment.

On entering the ear, the signal undergoes several transformations, leaving the periphery as patterns of

nerve-firings which may be considered as representations of all or part of the sound. Features of these

representations which are used to achieve a particular end are called 

 

cues

 

. Different theories for the

organization of sound have varying assumptions of which features are actually employed as cues.

Sound sources may differ in all kinds of properties such as location, instantaneous fundamental

frequency, or the patterns of energy envelope modulation in different frequency bands. If it is possible

to extract these potential cues with sufficient reliability and sufficiently often, the auditory system can

 

group

 

 those parts of the mixture possessing similar values of each property. This affords listeners a basis

for organizing into a coherent whole the sound fragments which have a common origin. This style of

processing is often described as 

 

bottom-up 

 

or

 

 primitive

 

.
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In addition to primitive grouping processes, listeners can exploit prior familiarity with the patterns of

spoken language or other sources. For speech, these regularities manifest themselves at a number of

levels, from the sub-syllabic to the sentential. Speech represents a rich and redundant encoding of

information, so prior experience can help to fill in those parts of the signal that are masked or otherwise

distorted. Such top-down processes have been termed 

 

schema-driven

 

 mechanisms (Bregman, 1990).

Early auditory signal processing involves at least two forms of decomposition. First, the signal is

subject to a spectral decomposition into separate frequency bands by the cochlea – an organizational

axis maintained throughout many later processing stages. Second, it appears that different properties are

extracted in distinct auditory 

 

maps

 

 (Moore, 1987), or distributions of specific signal features over an

array of neural elements. Consequently, information arising from a single acoustic source is distributed

both across cochleotopic frequency and between several auditory brain centers. For instance, voiced

speech gives rise to a series of harmonically-related spectral peaks in the relatively narrow-band

cochlear filters at low frequencies. The upper spectrum might contain envelope modulations at the

voicing fundamental frequency (f

 

0

 

) as reflected in the temporal envelope, or equivalently as caused by

the interaction of neighboring harmonics in the response area of each broader auditory filter. This

periodicity will also appear in the fine time structure of the lower bands. Moore (1997, fig 5.6) depicts

some of these properties of the auditory filterbank response to periodic sounds. It is possible that

detection and processing of harmonic peaks, envelope, and fine structure are carried out in distinct

auditory maps.

This two-fold separation (by frequency channel and cue class) has practical appeal: since different

sources in an acoustic mixture may dominate distinct spectral regions, spectral decomposition is an

elementary first step in signal separation. Functional decomposition into distinct auditory maps allows

the deployment of special-purpose processing hardware to extract different signal properties such as f

 

0

 

and location, including the possibility of using several complementary approaches for each of these

properties.

In light of this fragmentation of the original sound into several features defined over multiple

dimensions, it is inadequate to make statements such as “sound components with a common

fundamental are grouped together.” We must also address the specifics of grouping, such as how the

components are defined, and which of several alternative mechanisms are used to extract and recognize

their common fundamental, for instance. There is the interplay between primitive and schema-driven

grouping to be examined, and it is necessary to contrast grouping of local features within auditory maps

with grouping of features corresponding to the same source represented in different maps.

 

1.2 Summary of grouping cues

 

Table 1 summarizes the many experimental investigations of grouping. The organization of the table

reflects the idea that each property of an acoustic source produces a number of auditory consequences,
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each of which represents a potential grouping cue. Darwin and Carlyon (1995) provide a quantitative

tabulation of some of these investigations and demonstrate that grouping, rather than being “all-or-

nothing”, occurs at different feature magnitudes depending on the measure used.

The availability of numerous cues for sound organization accommodates situations in which any one of

them may fail to indicate the correct grouping, but also creates a problem for higher auditory levels due

to the possibility of inconsistent or conflicting cues. Investigations of conflicts between cues such as

frequency proximity and ear of presentation (Deutsch, 1975) or onset asynchrony and mistuning

(Darwin and Ciocca, 1992; Ciocca and Darwin, 1993) can provide valuable insight into high-level

audition; we will return to this in section 5.

<Table 1 about here>

Some signal features that have been proposed as potential grouping cues do not appear in Table 1.

Foremost amongst these is the common frequency modulation imposed on the harmonics in voiced

speech. There is little evidence for an independent effect of grouping by common FM over and above

that provided by instantaneous harmonicity (Gardner and Darwin, 1986; Summerfield and Culling,

1992; Carlyon, 1994), although the presence of FM can make vowels more prominent against a

background of unmodulated sounds (McAdams, 1984).

 

1.3 Review organization

 

Section 2 provides a chronological review of important developments in auditory organization. Sections

3 to 6 reflect a systematic progression from lower to higher levels of stimulus complexity. Section 3

deals with simple tonal configurations, while section 4 examines the extensive experimental and

modeling work employing simultaneous synthetic vowels. Sections 5 and 6 explore the role of bottom-

up and top-down factors in processing natural utterances. Within each section, relevant perceptual

evidence for organization in listeners is considered, followed by details of algorithms which attempt to

replicate the effects in machines. The review concludes with a discussion of the major issues facing

CASA and its relation to other approaches to source segregation.

 

2. Auditory organization: development of the field

 

2.1 Listeners

 

Cherry (1953) provides one of the earliest accounts of the problem faced by listeners when presented

with simultaneous utterances. Speculating on what he termed the “cocktail party problem”, he

considered possible cues to its solution – location, lip-reading, mean pitch differences, different speeds,

male/female speaking voice, accents and the like. Cherry demonstrated the relative ease with which one

of a pair of simultaneous sentences could be repeated when the messages were sent to different ears. In

a refinement of this strategy, Broadbent and Ladefoged (1957) employed synthetic, two-formant speech
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to examine the roles of both ear of presentation and fundamental frequency on perceptual fusion, as

reflected by the number of voices heard by listeners. They found that fusion occurred even when the

two formants were sent to different ears, but that giving the two formants sufficiently different

fundamental frequencies prevented fusion. Their findings not only demonstrated a clear role for

fundamental frequency differences in perceptual organization, but were an early anticipation of the

interactions that occur when multiple cues for grouping are placed in opposition, a recurrent theme in

studies of grouping and segregation. Broadbent and Ladefoged were amongst the first authors to

recognize the computational problem posed by hearing, noting that perception in the presence of other

sounds represents the normal, everyday mode for spoken language processing.

A different approach to the study of everyday speech perception came with the finding by Warren

(1970) that listeners were unaware of the absence of short segments of sentences which had been

replaced by a louder noise. This phenomenon was termed the 

 

phonemic restoration effect

 

. Later work

(Warren 

 

et al

 

., 1972) generalized its application to non-speech signals. Phonemic restoration is now

considered as a special instance of a collection of auditory induction effects, including induction

between ears and across frequencies. Section 6 discusses such induction effects.

Warren’s work was an important demonstration that the auditory system was not simply a passive

conduit for sensory information, but was engaged in active interpretation, and could in consequence

generate illusions or otherwise impose structure beyond the manifest signal. Bregman and Campbell

(1971) studied the dichotomy, long exploited in music, between hearing a sequence of alternating high

and low tones as a single stream or as two streams, each composed of all the tones of one pitch. They

showed that the interpretation depended consistently on factors such as frequency difference and

repetition rate. Section 3 describes some of these “streaming” experiments.

Much of this early work on streaming employed simple tonal stimuli, although some studies used

speech-like sounds and demonstrated similar effects of factors such as spectral dissimilarity on

streaming (Cole and Scott, 1973), and pitch and formant continuity on speech coherence (Darwin and

Bethell-Fox, 1977). These studies used repeated sequences to induce segregation, raising the question

of whether grouping cues uncovered in such experiments are relevant to everyday speech perception.

Darwin’s (1981) attempt to find evidence for grouping in speech was a turning point. His experiments

were based on Cutting’s (1976) demonstration that listeners could correctly identify syllables when the

formants were presented to different ears (e.g. the lowest formant, F1, to the left ear, with the right ear

receiving F2 and F3) – even when different fundamental frequencies were used for each ear. Darwin

systematically varied f

 

0

 

 and onset time between the two ears, finding only one stimulus for which these

manipulations affected the phonetic categories perceived by listeners. This synthetic four-formant

complex had the unusual property of resembling two equally-plausible syllables: it was heard as “ru” if

all formants were integrated, but as “li” if F2 was excluded into a separately-perceived source. By
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testing which syllable was heard for a particular condition, Darwin was able to map how variations in

f

 

0

 

 and onset time determined the integration or exclusion of the F2 signal.

The demonstrations by Cutting (1976) and Darwin (1981) that phonetic interpretations could often

override conflicting cues for perceptual organization led to the realization that explorations of grouping

need to be performed in a phonetically-neutral context. Over the next few years, a series of refinements

and new paradigms enabled a much closer analysis of the role of perceptual grouping in speech, with

the spotlight on the identification of synthetic stationary vowels. Darwin (1984) exploited the fact that

moving the center of the F1 resonance of [I

 

] from 375 Hz to 500 Hz shifts its perceptual category to [E

 

]

(e.g. “bit” becomes “bet”). Manipulating the properties of the individual harmonics that define F1 and

measuring the perceived category (and hence the perceived F1 center) gave a very sensitive measure of

the extent to which the modified harmonic was integrated with the rest of the complex. These

experiments demonstrated that onset or offset asynchrony could reduce the contribution that a harmonic

makes to vowel quality. Darwin and Gardner (1986) again used the [I

 

]-[E

 

] continuum, this time showing

that a mistuned harmonic contributes less to vowel quality, resembling the way in which it can be

excluded from the computation of pitch (Moore 

 

et al.

 

, 1985). 

An alternative approach to the study of grouping in speech was introduced by Scheffers (1983). He

asked listeners to identify both constituents in pairs of simultaneous synthetic vowels. This double

vowel task, as it came to be known, has proved to be a fertile paradigm for the study of auditory

perceptual organization and is reviewed in section 4.

By 1990, a significant body of perceptual studies of auditory fusion and segregation had accumulated,

consolidated by Bregman’s (1990) comprehensive monograph. Many properties of sound sources

considered as potential features for organization have been investigated, including findings of the

failure of grouping under circumstances which might otherwise have been thought to promote it. For

example, changes in f

 

0

 

 lead to correlated changes in harmonic frequencies, known as common

frequency modulation (FM). Gardner 

 

et al

 

. (1989), using the “ru”-“li” paradigm, found no effect of

incoherent FM in segregating F2 from the remainder of the syllable.

More recently, researchers have investigated the relationship of grouping to other aspects of auditory

function, such as the determination of pitch, location, or phonetic quality of a sound source. Darwin and

Carlyon (1995) document the task-dependent nature of the cue manipulation required to reveal

grouping effects. For example, in the tasks of detection, identification as a separate source,

determination of pitch, vowel classification, speech separation, and lateralization, the relevant degree

of mistuning for a single harmonic varies from 1% to 10%. Similarly, the amount of onset or offset

asynchrony required over a range of tasks can vary from a few milliseconds for detection to several

hundreds of milliseconds for tasks involving pitch and vowel identification.
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2.2 Models

 

One of the earliest computational attempts at speech separation was the signal-processing approach of

Parsons (1976). Although Parsons was not motivated by auditory findings, his system served to define

– and partially solve – some of the issues which have since become central for computational auditory

scene analysis (CASA) systems operating on voiced speech. These problems include the determination

of multiple pitches, the handling of harmonics from different sources that fall close to one another, and

the tracking of fundamental frequency contours which may cross. Parsons described the separation of

voiced speech as the principal subproblem, and his system set about solving it by identifying two sets

of harmonic peaks in a standard fixed-bandwidth Fourier-transform spectrum, estimating their

underlying fundamental frequencies and tracking their evolution through time.

Lyon (1983) – influenced by Jeffress’ (1948) proposal for an interaural delay line mechanism –

presented a computational model of binaural localization and separation which performed a cross-

correlation of the outputs of cochlear simulations for opposing ears. Lyon used the term “correlagram”

to describe the cross-correlation representation (the term “correlogram” has since come to refer

primarily to an 

 

auto

 

correlation analysis) and demonstrated separation of a short speech signal from an

impulsive sound generated by striking a ping-pong ball. Weintraub (1985) was the first to design a

system with an explicit auditory motivation to tackle the more difficult problem of sentence separation.

His pitch-based separation system was inspired Licklider’s (1951) postulation of neural periodicity

sensors built from delays and coincidence detectors.

These early demonstrations illustrated the engineering potential of cues such as pitch and interaural

differences, but they lacked quantitative evaluation. One of the first studies to do so was the evaluation

by Stubbs and Summerfield (1988) of two algorithms for the separation of voices based on a difference

in fundamental frequency in a single channel. One approach operated by attenuating the pitch peak

corresponding to the interfering voice through filtering the cepstrum of the mixed signal. The other was

similar to Parsons’ (1976) harmonic selection scheme. Stubbs and Summerfield used synthetic vowel

pairs in one task and real CV words masked by synthetic vowels in another, and resynthesized signals

in which the target speech sounds had been enhanced by each algorithm. They evaluated the extent to

which the enhanced speech was more intelligible to normal listeners as well as those with hearing

impairments. 

The decade since Weintraub’s system have witnessed a proliferation of modeling attempts, many of

which are described in the following sections.
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3. The streaming effect

 

3.1 Listeners

 

A sequence of alternating high and low frequency tones can result in the perception of either one or two

coherent patterns or 

 

streams

 

 (Miller and Heise, 1950; Bregman and Campbell, 1971). Factors

influencing segregation into streams are discussed at length in Bregman (1990, chapter 2) and

summarized below:

•

 

Frequency separation

 

: If the frequency difference between alternating high and low tones is

progressively increased, the perception of a continuously alternating pitch (the “trill”) changes to

that of two separate tone streams. The frequency separation at which this occurs was termed the

“trill threshold” by Miller and Heise (1950). Using a different measure of streaming based on

rhythm, van Noorden (1975) demonstrated that the streaming effect could better be described by

two thresholds, a lower one (the “fission boundary”) below which the tones always formed a single

stream, and a larger one (the “temporal coherence boundary”) beyond which the tones always

separated into two streams. In the intervening range of frequency separations, listeners could

alternate between hearing one or two streams.

•

 

Rate of alternation

 

: Van Noorden (1975) mapped out the fission and temporal coherence

boundaries as a function of tone onset-to-onset interval. At short tone repetition times (60 ms), the

boundaries are quite close, while for larger intervals (150 ms), the boundaries are far apart.

However, the fission boundary remains low and is largely unaffected by tone repetition time,

suggesting that while it is relatively easy to try to hear two streams, it is very difficult to hold on to

a single stream at high repetition speeds.

•

 

Duration

 

: Sequences are heard as a single stream until sufficient evidence is gathered to split them.

Thus, Bregman (1978) found the segregation effect to be cumulative, with evidence accumulating

over a period of a few seconds. 

<Figure 2 about here>

Cyclic sequences of greater timbral complexity have been also been used. Bregman and Pinker (1978)

used a sequence that alternated a single tone with a pair of tones to reveal a trade-off between onset

asynchrony and frequency separation in streaming: constituents of synchronous tone pairs are more

difficult to capture into a competing stream than asynchronous pairs. Bregman and Levitan (1983) put

into opposition streaming-by-fundamental and streaming-by-timbre, demonstrating the efficacy of both

factors, albeit with a stronger effect of the fundamental. However, recent experiments with tones

defined by unresolved high harmonics show that spectral shape can have an effect on streaming stronger

than that of fundamental frequency, as discussed below (Vliegen et al. 1999).
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Rogers and Bregman (1993) discuss three alternative explanations of the streaming effect. A fourth, the

peripheral channelling interpretation of Hartmann and Johnson (1991), is described below. Rogers and

Bregman contrast Bregman’s (1990) auditory scene analysis account, which favors sequential grouping

by the Gestalt principle of frequency proximity, with those of van Noorden (1975) and Jones (1976).

Jones proposed a theory based on rule-based predictability of sequences, while van Noorden suggested

that hypothetical frequency jump detectors become adapted and unable to follow the alternating pattern

of tones.

Rogers and Bregman attempted to distinguish between the three accounts by measuring the effect of

preceding “induction” tones on the streaming of a test sequence. All induction conditions led to an

improvement in streaming effectiveness in comparison to a control condition which used low-intensity

white noise. All induction sequences consisted solely of high frequency tones, ruling out van Noorden’s

proposed adaptation of frequency jump detectors. Induction sequences which differed only in the

predictability of inducer tones performed no better than those containing irregular patterns of tones, in

contrast to the predictions of Jones’ theory. 

A second experiment, using inducer sequences which varied in number and total duration of tone

elements, demonstrated that segregation improved with the total number of tone onsets rather than the

summed tone durations in the inducer sequence. This finding runs counter to Bregman’s original

hypothesis that the inducer would set up a cumulative frequency bias for the higher tone, but was

interpreted by Roger and Bregman as an example of sequential grouping by similarity of the number of

tone onsets in inducer and test sequences.

Stream segregation has also been demonstrated using non-cyclic sequences. Deutsch (1975) used

musical scales to demonstrate the dominance of grouping by frequency proximity over ear of

presentation, while Hartmann and Johnson (1991) asked listeners to identify pairs of melodies whose

notes had been interleaved (Dowling, 1973). Hartmann and Johnson investigated the idea that streaming

could be explained purely by “peripheral channelling”, that is, that streaming was promoted by

manipulations that shifted streams into separate channels in the periphery, either spectral or spatial.

Other factors, such as loudness and duration that could have distinguished between the interleaved

streams but which did not lead to differentiation in peripheral channels, gave little advantage in

segregating the melodies, thus supporting the peripheral channelling hypothesis. However, recent work

on sequences of filtered tones carrying different pitches through the same high-frequency cochlear

channels (within which they are unresolved) show streaming effects that must rely on more centrally-

derived properties (Vliegen and Oxenham 1999). Directly comparing these sequences (whose f

 

0

 

 varies

under a constant average spectrum) with sequences in which the spectrum is varied while holding f

 

0

 

constant, showed that both variations would impair the ability of listeners to judge the relative timing

between tones – a characteristic effect of separation into different streams (Vliegen et al. 1999).
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However, consistent with the findings of Hartmann and Johnson, spectral modifications seemed to have

a stronger effect.

 

3.2 Models

 

A number of models which seek to explain streaming as an emergent consequence of early, low-level,

auditory computations have been built, starting with the simple excitation-integration model of

Beauvois and Meddis (1991, 1996). They sought to explain the perceptual coherence of tone sequences

alternating in frequency, as used by van Noorden (1975), noting that listeners tend to hear more than

one stream if the tone repetition time is sufficiently short, or if the frequency separation of the tones is

sufficiently large. Beauvois and Meddis addressed these findings with a three-channel model, with

bandpass channels centered at each of the tone frequencies and at their geometric mean. Noise was

added to the rectified output of each channel, which was then averaged with a leaky integrator. The

channel with the highest output was considered ‘dominant’, and activity in the other two channels was

attenuated by 50%. Temporal coherence was defined as the case when both flanking channels had

similar average outputs; streaming was indicated if just one of these two channels dominated. The

model exhibited temporal coherence if the tones were close enough in frequency for the central channel

to dominate, or if the repetition rate was slow enough for each flanking channel to decay sufficiently

and allow dominance to switch alternately between high and low bands. For faster rates, the internal

noise would allow just one of the flanking channels to achieve and maintain dominance, indicating

streaming; the boundary rate at which this occurred could be varied by changing the noise level.

Beauvois and Meddis demonstrate that a single setting of this parameter allows the model to explain

grouping by frequency and temporal proximity, as well as the build up of streaming over time (Anstis

and Saida, 1985). However, they acknowledge that the model cannot explain across-channel grouping

phenomena such as that of Bregman and Pinker (1978).

McCabe and Denham (1997) extended the Beauvois and Meddis model to include multichannel

processing and inhibitory feedback signals, whose strength they related to frequency proximity in the

input. This mechanism leads to the suppression of stimulus components different from those

responsible for the suppression. This residual activity is processed in a separate ‘background’ map,

which in turn has the potential to inhibit components in the foreground map. McCabe and Denham

(1997) suggest that their model can be viewed as an implementation of Bregman’s old-plus-new

heuristic, in which ‘new’ organization appears in the residual left after subtraction of ‘old’ components,

based on the assumption of continuity. In addition to the streaming data accounted for by Beauvois and

Meddis, their model caters for the influence of organization in the background on the perception of the

foreground as found by Bregman and Rudnicky (1975). Vliegen and Oxenham (1999) observe that,

being based on peripheral excitation patterns, neither of the models described above can account for

their demonstration of streaming for spectrally-matched signals with different f

 

0

 

s.
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Most of the streaming mechanisms described above require cyclic repetition in order to produce a

correlate of fission or fusion. An exception is the model of Godsmark and Brown (1999), which is based

on maintaining multiple grouping hypotheses until sufficient information arrives to disambiguate

potential organizations. Consequently, their model can handle a wide range of streaming phenomena

including context-dependent and retroactive effects (Bregman, 1990). The approach taken by

Godsmark and Brown involves training the model to produce streaming effects observed in simple tonal

configurations, then observing the more complex emergent grouping behavior on stimuli such as

polyphonic music. For example, the model produced good matches to listeners’ performance in the

interleaved melody identification task of Hartmann and Johnson (1991).

 

3.3 Discussion

3.3.1 Fusion and streaming

 

We have taken streaming as the starting point for our discussion of auditory organization. However, the

construction of streams presupposes the formation of distinct ‘events’, possibly requiring the 

 

fusion

 

 of

energy in multiple frequency bands. Indeed, Bregman and Pinker (1978) set up competition between

the formation of single events by the fusion of simultaneous tones, and the capture of one of the tones

into a separate sequential stream. Factors governing fusion, such as harmonic relations and synchronous

onset, have been further investigated and modeled through double-vowel stimuli, as discussed in the

next section.

 

3.3.2 The relevance of streaming phenomena to speech organization

 

Cyclically-repeated tonal configurations are hardly typical of the sound mixtures encountered by

listeners. Consequently, it may be unwise to make inferences about the perceptual organization of

everyday signals such as speech on the basis of streaming experiments. Bregman’s rationale for the use

of cyclic sequences (Bregman, 1990, p.53) is largely one of experimental pragmatism, and he urges the

use of other methods to verify effects found using cyclic presentation. Since many explanations of

listeners’ responses to repeated stimuli would be difficult to apply to the general problem of auditory

organization, it is conceivable that different mechanisms are invoked to those which apply in more

natural settings.

An alternative way to explore grouping is to use stimuli that are somewhat closer to those present in a

listener’s environment, yet still sufficiently simple to be controllable in an experimental setting. Double

vowels are single-presentation stimuli which satisfy these constraints, and the next section looks at their

perceptual organization and at models which attempt to account for listeners’ identification

performance.
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4. Double vowels

 

4.1 Listeners

 

The finding that listeners are able to recognize simultaneously presented synthetic vowels at levels well

above chance (Scheffers, 1983) has led to a large number of perceptual studies utilizing this so-called

double vowel or concurrent vowel paradigm. Part of the attraction comes from the ease with which

stimulus manipulations thought to promote perceptual organization can be performed on vowel pairs.

For example, constituent vowels can be synthesized with different fundamental frequencies, modes of

excitation, relative intensities and interaural time or level differences. In the ‘standard’ double vowel

experiment, listeners have to identify both constituents of synthetic concurrent vowel pairs (usually

drawn from a set of 5) of a given duration (typically 200 ms). Key findings for a variety of double vowel

manipulations are: 

• Concurrent vowels synthesized with the same f

 

0

 

 can be identified at a level well above chance (Lea,

1992). When the choice is between 5 vowels, a typical result is correct identification of both

constituents in 55% of trials.

• Pairs of whispered vowels are identified at about the same rate as vowels with a common f

 

0

 

(Scheffers, 1983; Lea, 1992). Whispered vowels may be constructed to contain minimal grouping

cues, so performance in this task is usually taken as the baseline upon which improvements due to

grouping are made.

• A difference in fundamental frequency between pairs of concurrent vowels leads to an absolute

improvement of 10-15% in vowel identification performance, the effect beginning at a difference

as small as a quarter of a semitone and asymptoting by 2 semitones. This basic finding of Scheffers

(1983) has been replicated by several researchers (Assmann and Summerfield, 1990; Culling and

Darwin, 1993; Lea, 1992; Meddis and Hewitt, 1992; de Cheveigné et al, 1997a). 

• A difference in mode of excitation (voiced/whispered) between the constituent vowels leads to an

identification improvement of around 10% (Lea, 1992). Further, the whispered constituent of a

voiced/whispered vowel pair was identified significantly more accurately than when both vowels

were whispered, but the voiced component was no more intelligible than when both vowels were

voiced and on the same f

 

0

 

 (Lea, 1992).

• Identification performance varies with the harmonicity or inharmonicity of vowel pair constituents

(de Cheveigné 

 

et al

 

., 1997b). An inharmonic target vowel presented 15 dB below a harmonic

masker vowel was significantly better identified than a harmonic target behind a stronger

inharmonic masker.
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• Swapping formants between the vowels, so that each f

 

0

 

 carries the F1 of one vowel with the higher

formants of the other, allows listeners to achieve the same improvement as in the standard condition

up to a f

 

0

 

 difference of 0.5 semitones (Culling and Darwin, 1993). Applying the f

 

0

 

 difference only

to the F1s of the vowels had a similar effect. Culling hypothesized that listeners used the time-

varying excitation pattern caused by beating in the F1 region to identify constituents at times

favorable to one or other vowel (Culling and Darwin, 1994), although this scheme has recently been

called into question (de Cheveigné, in press).

• Identification improvement with f

 

0

 

 difference is smaller for brief (50 ms) stimuli than for longer

(200 ms) stimuli (Assmann and Summerfield, 1990). Repeating the same 50 ms segment 4 times

with 100 ms silent intervals did not lead to any improvement, but performance did improve when

successive 50 ms segments were presented with the same silent intervals (Assmann and

Summerfield, 1994). Some of this improvement was attributed to waveform interactions which

allow better 

 

glimpses

 

 of one or other vowel at different times, but de Cheveigné (in press) presents

results for vowels with extremely small differences in f

 

0 

 

which argue against the glimpsing

hypothesis, since the slow change in relative phase between such close frequencies does not provide

for a significant variation in glimpsing conditions during the stimulus.

• One vowel of the pair (the ‘dominant’ vowel) can be identified at near 100% accuracy for stimuli

as short as one pitch period, while identification of the non-dominant vowel improves with an

increasing number of pitch periods (McKeown and Patterson, 1995). Introducing a difference in f

 

0

 

reduces the number of pitch periods required to reach maximum performance. As well as showing

a clear effect of stimulus duration on identification of the non-dominant vowel, these results suggest

that f

 

0

 

 differences are not required for identification of the dominant vowel. The dominance effect

can be removed by adjusting levels of constituents in each pair (de Cheveigné 

 

et al

 

., 1995), a

manipulation which may be necessary to allow the conditions of interest to surface.

• Shackleton and Meddis (1992) found that spatial separation of vowels resulted in no increase in

identification performance for vowels with the same f

 

0

 

s. For different f

 

0

 

s, spatial separation led to

a small improvement. 

• In a simulated reverberant environment, Culling 

 

et al.

 

 (1994) explored the robustness of binaural

and f

 

0

 

 difference cues, concluding that f

 

0

 

 continued to be useful in reverberant fields that had

removed the benefits of interaural timing information.

• Culling and Summerfield (1995b) used a reduced form of double vowel stimulus, in which each

vowel was represented by two noise bands, to demonstrate an absence of across-frequency

grouping by common interaural delay. They went on to show that introducing an interaural

decorrelation (as opposed to a delay) improved identification of the vowels. 
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• No effects of common frequency modulation on double vowel identification have been found

(Darwin and Culling, 1990; Culling and Summerfield, 1995a).

Reviews of concurrent vowel segregation can be found in Lea (1992), de Cheveigné (1993),

Summerfield and Culling (1995) and de Cheveigné et al (1995).

Taken together, these findings suggest that listeners identify double vowels via a variety of stimulus

properties conveyed by the detailed time-frequency structure of the auditory response. Some of these

can be cast as cues for primitive perceptual grouping, but the role of factors which enable the

engagement of presumed vowel templates or schema (e.g. locally-favorable target-to-background level;

see Assmann and Summerfield, in press) needs to be carefully assessed. In fact, no firm conclusions

about mechanisms can be drawn at present, although a number of detailed proposals have been made.

These are discussed below. 

 

4.2 Models

 

The first computational model of double vowel segregation was constructed by Scheffers (1983)

himself. Scheffers’ model employed a harmonic sieve algorithm (Duifhuis 

 

et al

 

., 1982) in which each

f

 

0

 

 estimate generated a sequence of frequency intervals around each harmonic frequency for that f

 

0

 

.

Peaks in the excitation pattern of the stimulus which fall through these sieve intervals contribute to the

evidence for that f

 

0

 

, and the f

 

0

 

 with the largest weight of evidence is chosen. Scheffers developed an

algorithm which finds the pair of f

 

0

 

s which together account for the greatest proportion of peaks in the

excitation pattern. His model consistently underperformed listeners (e.g. for f

 

0

 

=0 the model correctly

identified both vowels in 27% of cases whereas listeners manage 45%), but showed a small

improvement with a f

 

0

 

 of 1 semitone (38% versus 62% for listeners). However, this improvement

disappeared at 4 semitones difference (27%) while listeners’ performance remained at 62%. 

Since Scheffers’ harmonic sieve model operates on intensity peaks in an estimate of the cochlea

excitation pattern, we consider it a ‘place’ model – even though the pattern could be derived by temporal

processing, the hallmark of a ‘time’ model. Conventional ‘time’ models compute correlates of f

 

0

 

 in the

time domain typically by autocorrelation: if the time-domain processing is applied to signals derived

from an earlier spectral analysis, the model is termed ‘place-time’. Place, place-time and pure-time

models for double vowel pitch estimation and segregation are discussed in de Cheveigné (1993). 

Autocorrelation is particularly useful for the detection of periodicity. Several different autocorrelation-

like models have been proposed for auditory computation. In 1951, Licklider suggested a structure for

periodicity detection consisting of a series of delays; delayed versions of the signal were combined with

undelayed signal in a multiplier and averaged in an integrator. The series of delay elements thus maps

out uniformly increasing delays, and the model output at any place along this delay axis represents a

running autocorrelation with the lag given by the total delay applied to the signal in that channel. 

∆

∆
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Assmann and Summerfield (1990) compared two models on the concurrent vowel segregation task. One

was a place model similar to that used by Scheffers. The other involved a place-time analysis based on

detecting periodicities using an autocorrelation of the output at each channel of a periphery model. Their

place model estimated vowel spectra by sampling the excitation pattern at harmonics of the f

 

0

 

s found

by their implementation of Scheffers’ sieve. The place-time model estimated vowel fundamental f

 

0

 

s by

finding the two largest peaks in a “summary autocorrelation” function created by summing individual

autocorrelation functions across channels. Figure 3 depicts an autocorrelogram of a vowel pair together

with its summary. Vowel spectra were then estimated by taking slices through the autocorrelation

functions at lags corresponding to the two pitches. Assmann and Summerfield evaluated the

performance of the place and place-time models (and a variant that preceded autocorrelation with a

nonlinear compression modeling the cochlea’s inner hair cells) and found that the place-time model

came much closer to accounting for listeners’ performance on the same task.

<Figure 3 about here>

Meddis and Hewitt (1992) also used an autocorrelogram analysis, but chose a different segregation

strategy. They first determined the lag of the largest peak in the summary autocorrelogram, then they

selected those channels whose individual autocorrelation functions possessed a large peak at this lag as

belonging to the ‘dominant’ voice; the remaining channels were deemed to belong to the other voice.

Meddis and Hewitt then automatically classified each vowel based on the short-lag autocorrelation

values for summary autocorrelations based on each subset. (Since the autocorrelation at very short lags

– the “timbre region” – characterizes the waveform at time scales below the pitch cycle, it is well

correlated with vowel identity.) Their vowel recognition results were very close to the results of

subjective tests performed by Assmann and Summerfield. A weakness of the Meddis and Hewitt model

is that it cannot account for separation, observed in listeners, when the entire spectrum is dominated by

one vowel (de Cheveigné et al, 1997a; de Cheveigné, in press), since no autocorrelogram channels are

allocated to the weaker vowel. 

More recently, Berthommier and Meyer (1997) have shown how amplitude modulation (AM)

information can be used as a basis for double vowel segregation. They computed an AM map by taking

the envelope from each of a bank of auditory filter outputs and performing a spectral analysis giving

results in the pitch range. The AM map conveys envelope modulation information as a function of

cochleotopic frequency, and can be used to group channels possessing a peak at the same modulation

frequency. However, Berthommier and Meyer note that the presence of harmonics in the AM spectrum

can cause spurious peaks, and propose a further transformation using a harmonic sieve to group these

harmonics together prior to vowel classification.

One issue which has been explored with the aid of double vowel stimuli is the question of whether

listeners exploit the periodicity of the target vowel to enhance or select that vowel, or whether the f

 

0

 

 of
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the interfering vowel is used to attenuate or cancel it – or indeed whether a combination of both

strategies is used. An f

 

0

 

-based enhancement strategy is advantageous when the target signal is periodic

and dominant, since f0 estimates will be more accurate. Conversely, cancellation ought to favor

situations with a strong periodic interfering sound.

A number of authors have considered this question in detail (Lea, 1992; de Cheveigné, 1993, 1997). Lea

argued that an enhancement mechanism should favor target vowels that were voiced rather than

whispered, regardless of the masker. By contrast, a cancellation model predicts that any kind of target

is easier to pick out if the masking interference is voiced. Lea’s experimental results support

cancellation by suggesting that listeners can exploit the periodicity of a interfering vowel to help

identify a target sound, but that they cannot use target periodicity to extract a vowel from a mix.

De Cheveigné (1993) proposed a time-domain cancellation model exploiting the property of comb

filters to produce zero output for a periodic input whose period matches the filter’s lag coefficient. It is

necessary to know the lag parameter in order to effect the cancellation, but this can be found by

searching in filter lag space for a minimum output. De Cheveigné tested a neural-style implementation

by feeding it auditory nerve responses to concurrent vowel stimuli (Palmer, 1990) and demonstrated

that it could successfully isolate the periodicities of either vowel. He later showed that the model could

account accurately for listeners’ responses in a double vowel experiment (de Cheveigné, 1997). De

Cheveigné (1993) also suggested using a cascade of two comb filters to estimate the fundamental

frequencies of both concurrent voices. He compared the scheme with the Assmann and Summerfield

(1990) technique of choosing the two largest peaks in the summary autocorrelogram. Using voiced

tokens of natural speech, and based on a criterion of the percentage of estimates falling further than 3%

away from the correct f0, he found that the comb filter cascade scheme resulted in 10% errors, while the

summary correlogram method was in error in 62% of cases.

4.3 Discussion

4.3.1 Interplay between pitch and grouping

One issue highlighted by models of double vowel segregation is the interplay between grouping and

pitch: does grouping depend on pitch identification, does grouping determine pitch, or do they both

influence each other? It is known, for instance, that onset asynchronies amongst partials of a tonal

complex can influence pitch (Darwin and Ciocca, 1992). The very different models of Meddis and

Hewitt (1992) and de Cheveigné (1993, 1997) both rely on an initial pitch determination. For Meddis

and Hewitt, this allows the grouping of channels, but the weaker pitch is based on the excluded

channels, thereby introducing a mutual dependence of pitch and grouping.
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4.3.2 The time course of double vowel segregation

Models of double vowel segregation typically operate over short time windows and have difficulty

accounting for perceptual findings of variations in double-vowel perception that depend on wider

temporal contexts such as the duration of the stimuli (e.g. the results of Assmann and Summerfield,

1994, and McKeown and Patterson, 1995). Culling and Darwin (1994) were able to explain listeners’

double-vowel identification for f0 differences below a quarter semitone without using autocorrelation:

Their model used a temporally-smoothed excitation pattern as input to a single-layer perceptron trained

to recognize one of 5 vowels, and demonstrated an increase in identification with increasing f0. They

attributed this result to the possibility of glimpsing the changing spectrum arising from the low-

frequency beating caused by the small f0 difference. These results are considered further in the

discussion of extending cues across time in the next section.

5. Accumulating grouping information across time

In this section we consider how the auditory system combines information received at different times

for the purposes of organization. It is easy to recognize a temporal aspect to grouping in “buildup”

phenomena (such as those discussed above in relation to streaming) where the organization of a

stimulus depends on its duration. Many of these phenomena might be explained simply as sluggishness

in the calculation of low-level features, but some may require a separate, central process for integrating

a grouping attribute that is based on several cues. We now examine some of the evidence for this type

of mechanism.

5.1 Listeners

The double-vowel paradigm combined sounds whose spectrum and period repeated exactly every pitch

cycle, and in this respect they are unlike most real-world sounds for which changes co-ordinated across

spectrum offer a powerful indication of common origin. In the description of grouping presented by

Bregman (1990), individual sound elements such as harmonics are grouped into sources on the basis of

various cues. Implicit in this account is a central reckoning in which each element is tracked over its

period of existence, and evidence for grouping is gathered, stored, and applied over the whole element

– even though that evidence may arise from a limited time interval. 

5.1.1 Extending a single cue across time

A single cue may influence grouping at times remote from its own temporal focus. Thus, although onset

information is present only at the beginning of a tone, the segregation of a harmonic that starts 40-80

ms before the rest of a cluster will persist for many hundreds of milliseconds – as judged from its

contribution to timbre (Darwin, 1984) or pitch (Moore et al., 1986). Thus, a single cue can exert an

influence long after it has occurred.
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An equally important role for time in low-level grouping stems from the possibility that certain cues

need a significant signal duration for their determination. An accurate pitch judgment may require

averaging over time to reduce internal noise. This may contribute to McKeown and Patterson’s (1995)

observation of increasing perceptual delay in the organization of mixtures as their pitch separation

decreases. Other cues are intrinsically dependent on time, such as the detection of cyclic repetition in

iterated frozen-noise stimuli (Guttman and Julesz, 1963; Kaernbach, 1992). Another example,

described in Mellinger (1991), is the Reynolds-McAdams oboe signal in which a small degree of

frequency modulation is applied only to the even harmonics of a signal that initially has the character

of an oboe, but subsequently splits into a clarinet-like tone (formed from the unmodulated odd

harmonics) and something like a soprano at an octave above (corresponding to the modulated

harmonics). The listener may require several hundred milliseconds of observation before the frequency

modulation can be reliably recognized and used to separate the sound into two percepts, but once the

threshold has been reached the influence is much like an instantaneous cue in that it applies immediately

to the tracked continuations of the sound.

Mistuning in double-vowel segregation and harmonic clusters provides an interesting case. In both

situations, identification (of the different vowels, or of the presence of a mistuned harmonic) becomes

more difficult as the signal duration is reduced from 200 to 50 ms for vowels (Assmann and

Summerfield, 1994) or 400 to 50 ms for harmonics (Moore et al., 1986). This suggests a time-

integration process able to make finer distinctions when given more of the signal. The alternative

explanation, proposed by Culling and Darwin (1994) is that phase interactions between slightly

mistuned harmonics give rise to ‘beating’ modulations in both kinds of stimulus. This may be a cue to

discrimination in itself, or it may offer ‘glimpses’ – moments when signal interactions make the

identification task briefly much easier. A longer stimulus has a greater chance of spanning such a

glimpse, producing better identification on average. If the benefits of glimpsing relied solely on the

single best glimpse, a shorter stimulus that happened to contain a glimpse would be equally well

segregated. This is partially supported by the result that certain 50 ms segments give better

identification scores than others (Assmann and Summerfield, 1994). However, in that study no 50 ms

segment allowed the level of discrimination that occurred with the 200 ms segments, suggesting a

benefit from temporal integration available only in the longer stimuli.

Glimpsing has also been proposed to explain the phenomenon of comodulation masking release (CMR),

in which the threshold for a sinusoidal target beneath a narrowband noise masker can be reduced by

adding noise bands separate from the target/masker band – if the added bands share the amplitude-

modulation envelope of the on-band masker (Hall et al., 1984). Although several possible mechanisms

have been indicated (Schooneveldt and Moore, 1989), at least some of the effect appears to result from

a comparison between the envelopes in the on-band and flanking frequency channels. For instance, the

auditory system could monitor the flanking noise envelopes to detect instants when the on-band masker

was briefly at a very low amplitude, giving the most favorable opportunity for ‘glimpsing’ the target
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tone, or it could apply processing similar to Durlach’s (1963) equalization-cancellation (EC) model

(Buus, 1985) to detect small differences between the envelopes. A prior auditory process would be

required to confirm that the noise bands are co-modulated and deserve to be compared. Such a process

probably involves integration along time of repeated synchrony between detailed signal features such

as amplitude peaks, or a more direct calculation of the running cross-correlation (Richards, 1987).

In these examples, temporal integration relates to a single cue only, and thus no separate grouping

property is required – the integration can be a direct part of the cue calculation, and the grouping could

be rigidly determined on the basis of the single strongest cue. By contrast, the next section considers

interactions between different cues, which point to more sophisticated grouping processes. 

5.1.2 Integrating different cues

Combining different kinds of evidence is one of the most intriguing aspects of auditory organization,

and experiments in cue competition form an important paradigm. As previously mentioned, Bregman

and Pinker (1978) constructed stimuli that set in competition the fusion of approximately simultaneous

sine tones and the streaming of sequential tones close in frequency. Other experiments have similarly

varied onset asynchrony to investigate its influence on the grouping effects of mistuning (Darwin and

Ciocca, 1992; Ciocca and Darwin, 1993) and spatial location (Hill and Darwin, 1993). In each case, one

cue could be used to compensate for changes in the other, so for instance the increased contribution to

a pitch percept of a harmonic as its mistuning falls to 3% could be reduced again by starting it 30 ms

earlier than the rest of the complex. This suggests that, at some level, both cues are mapped to a single

perceptual attribute and thereby become interchangeable.

In fact, the organization of all sounds involves the combination of different cues: any simple signal

exhibits numerous attributes relevant to grouping such as common onset, harmonicity and common

interaural properties. Although a given experiment typically investigates a single dimension while

keeping constant other aspects of the signal, the overall organization will depend both on the varying

and invariant properties. Thus the reduced threshold for detecting mistuned harmonics in longer signals

could indicate the kind of integration-along-time discussed above, but it may also reflect a dynamic

balance between a continuously-present mistuning cue and the decaying influence of the onset cue. This

is related to a demonstration by Pierce (1983), who constructed a harmonic complex with individual

components that increased abruptly in level. At the moment of the change, the boosted harmonic is

perceived as separate from the others, but over a timescale of seconds it will ‘merge’ back into the

harmonic complex as the step-change in amplitude becomes increasingly remote in time, and the

various tendencies for to integrate simultaneous sounds regain dominance. 

Many experiments have used onset manipulations to investigate the grouping aspects of harmonicity

(Darwin and Ciocca, 1992), formants (Darwin, 1984) and lateralization (Woods and Colburn, 1992).

The paradigm typically assumes that a degree of onset asynchrony can preemptively remove the
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contribution of a particular spectral region from the derived properties of the larger percept. To control

the interaction between onset and other cues, the stimuli employed are typically very short; in contrast,

the long stimuli of Pierce expose these interactions to the full.

The numerous factors influencing the integration of evidence derived from different processes are

apparent in experiments concerning the segregation of speech on the scale of sentences. Brokx and

Nooteboom (1982) used synthesized speech stimuli with a constant f0 throughout an utterance (i.e.

monotone pitch), and varied the frequency separation from monotone interfering speech. Unlike the

double-vowel experiments, these complete utterances contained additional cues such as the common

energy modulations within each voice, and higher-level linguistic-semantic constraints. This greater

complexity reveals an interesting trend: whereas identification improvement of static double vowels has

plateaued at 12% difference in f0 (Assmann and Summerfield, 1990), Brokx and Nooteboom saw an

approximately linear benefit of pitch separation on intelligibility out to a pitch difference of 20%. More

recent studies by Bird and Darwin (1998) have followed this trend out to 60% differences in f0.

5.2 Models

Although the time dimension provides grouping mechanisms with extra information, it adds a great deal

of complexity to the computational task when compared to the problem posed by double vowels. We

will now look at some of the models that have dealt with these issues by emulating aspects of the

organization performed by human listeners on sound scenes whose evolution is measured in seconds.

Weintraub (1985) described the first computational model explicitly motivated by experimental studies

of auditory organization. His goal was to separate mixtures of two simultaneous voices, with a view to

improving automatic speech recognition for each voice. His system used auto-coincidence (a low-

complexity version of autocorrelation) of simulated auditory nerve impulses to separate signals of

different periodicities in peripheral frequency bands. Context dependence was included in the form of

a Markov model tracking the states of each speaker as silent, voiced, unvoiced or transitional. The

optimal labelling provided by this model controlled a dual-pitch tracking algorithm and guided the

division of the signal energy into spectra for each of the two voices. Although the benefits of his system

measured through speech recognition scores were equivocal, he prepared the ground for subsequent

modeling work by identifying the problem of working solely from local features without the influence

of top-down factors.

Cooke’s (1991/1993) system decomposed the acoustic mixture into a set of time-frequency tracks

called “synchrony strands”, then grouped these components using harmonicity (for the lower frequency

resolved partials) and common amplitude modulation (for the unresolved harmonics in the upper

spectrum). Harmonic grouping employed a temporally-extended form of Scheffers’ harmonic sieve,

illustrated in figure 4. Since grouping relies on identifying each distinct element correctly, situations

where features collide and cross can lead to catastrophic mislabellings if incorrect continuations are
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tracked after the collision. However, Cooke’s algorithm can handle sounds with crossing fundamental

frequency contours because attributes such as pitch are calculated after the tracking of partials,

themselves less likely to manifest crossing due to the local spectral dominance of one or other source.

A further benefit is that the likelihood of a partial falling into an incorrect sieve ‘groove’ decreases

rapidly as the sieve extends across multiple time steps. To illustrate the generality of the approach,

Cooke’s model was tested on 100 mixtures of sentence material combined with other acoustic sources

including other sentences. In all cases, substantial improvements in signal-to-noise ratio resulted,

although, as discussed in section 7, it is not clear quite how to interpret such figures.

<Figure 4 about here>

Similar considerations motivated Mellinger (1991) in his study of musical separation. His model

tracked spectral peaks across time, grouping peaks with similar onset times or common frequency

modulation. Mellinger’s system, like real listeners, maintained an evolving organization, in contrast to

Cooke’s approach which left all processing until the end of the signal. Newly-detected harmonics had

a fixed ‘grace period’ to build up affinity with existing harmonics, after which they were added to an

existing group, or used as the basis for a new group. Mellinger used the Reynolds-McAdams oboe as

one of his test signals; the sudden change in perception from one to two sources experienced in that

sound is reflected in an abrupt change in his model’s organization, when the initial single source loses

the even harmonics to a newly-spawned group (corresponding to the soprano) which has a greater

internal coherence of frequency modulation. 

Brown (1992) also used a decomposition into partials, and introduced two further innovations. First, he

computed a local pitch for each partial by combining the summary autocorrelation function (see figure

3 of the previous section) with the local autocorrelation function in the spectral region of the partial.

This has the effect of emphasizing the relevant pitch peak in the summary, which is used to define the

underlying pitch contour for each partial. Second, Brown employed a tonotopically-organized

computational map of frequency movement to predict the local movement of partials. His system

searched for groups of elements with common pitch contours, favoring sets with common onset times.

Brown compared this approach to that obtained using frame-by-frame autocorrelation-based

segregation and found that the use of temporal context produced a substantially larger improvement in

SNR for the target sentence in a mixture.

5.3 Discussion

5.3.1 Defining an element

The outline of the auditory organization process underlying nearly all work in the field involves an

analysis of the sound signal into basic elements, defined by their locally coherent properties, from

which grouping cues may be calculated and for which grouping decisions can be made. In simple
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experimental stimuli built from sine tones and regular noise bursts, defining the boundaries and extent

of the elements is usually unambiguous. Unfortunately, this is not the case for the noisy, complex sound

scenes encountered in the real world. Modelers have often dealt with this problem by limiting their

elements to be those defined by strong spectral peaks, but the ability of listeners to organize all kinds

of signals, with or without strong spectral energy concentrations, may demand a more comprehensive

approach. Recent modeling work has attempted to cover a wider range of sounds. Ellis (1996) suggests

that a simple vocabulary of tonal, noisy and impulsive elements may encompass most perceptually-

salient signals, and Nakatani et al. (1997) present a detailed ontology of the signal attributes that

characterize different classes of sound such as speech and music. However, to analyze a particular

signal into these more complex elements is difficult and frequently gives ambiguous results.

5.3.2 Different groupings for different attributes?

Darwin and Carlyon (1995) have cautioned that grouping should not be considered an “all-or-none”

process. Certainly, the interaction of cues in grouping makes it misleading to search for a single

threshold at which a feature such as mistuning or asynchrony will lead to segregation. These thresholds

depend on the contributions of the other cues in a particular experimental paradigm. However, the

deeper point relates to results where measurements for a single stimulus continuum give different

grouping boundaries when they are based on different attributes. Thus, when a resolved harmonic is

mistuned relative to the others in a complex, subjects perceive the harmonic as distinct for detunings of

2%; however, it continues to have an influence on the pitch they perceive for the remaining complex

out to mistunings of 8% or more (Moore et al., 1985). Darwin and Carlyon see this as evidence for

separate grouping processes simultaneously at play – one for the perception of the number of sources,

and a different one for the calculation of pitch. Alternatively, the pitch calculation mechanism, even

when attempting to exclude a spectral region from a particular percept, might still allow some influence

to ‘spill over’ i.e. there may be a limit to how completely a particular harmonic can be removed from a

pitch calculation simply due to grouping effects. This explanation is at odds, however, with Ciocca and

Darwin’s (1993) results that a sufficiently large onset time difference can completely remove a

harmonic. Their experimental design further demonstrated that this was a grouping phenomena rather

than being a result of another effect such as adaptation or fatigue.

5.3.3 Expectation as the mechanism for combining information along time

This section has considered the ways in which the properties of individual elements may govern their

mutual grouping. However, the grouping process may be influenced by properties that belong not to

single elements, but that arise from the conjunction of several elements. We can consider these

influences as “expectations”, or short-term biases towards particular interpretations. For instance, in the

experiments of Hukin and Darwin (1995), a stream of captor tones preceding a harmonic complex was

able to reduce the influence of one harmonic. The captor tones set up an expectation that a similar tone

in the complex belonged with them rather than with the complex. 
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This section has mainly assumed that properties of an element at one time (e.g. its onset asynchrony)

can affect its treatment at later times, but we now see that associating grouping effects with specific

elements is too narrow a perspective: The grouping effects of the captor extend into later disconnected

elements. Thus perhaps onset asynchrony, rather than marking specific harmonics as distinct, sets up a

more diffuse expectation that affects those harmonics yet does not depend on the direct physical

continuity between the onset part of the signal and the subsequent harmonic. Although this distinction

may be largely academic if the alternatives cannot be differentiated, it raises questions of how

expectations are represented, and how they exert their influence. The following section considers in

more detail the action of influences which we consider ‘top-down’ because an abstract property affects

a more concrete percept.

6. Context, expectations and speech

Our detailed perceptions of the world often turn out to be built up from very slender supplies of sensory

information – such as the 2º cone of high-resolution image achieved by the fovea in the eye, or the

occasional spectro-temporal glimpses of target speech in a noisy environment. We are able to operate

with limited information in part because our perceptual system is extremely efficient at exploiting and

integrating constraints concerning what we know to be the plausible alternatives in any given situation.

The persistence of the physical world makes it unnecessary to scan continuously in order to have an

accurate internal image of our surroundings (in most cases). Similarly, when listening to partially-

masked speech, our experience of what comprises a grammatically or semantically reasonable utterance

may provide just enough information to construct an impression of how the original speech sounded.

These aspects of cognitive function involving knowledge and expectation are poorly understood and

difficult to research, yet they of are central importance to auditory perception. 

Progress in automatic speech recognition in the last decade has been due in a large part to successful

techniques for combining ‘bottom-up’ information derived from the input signal with ‘top-down’

constraints imposed by the recognizer’s knowledge of vocabulary and grammar. Speech perception in

humans similarly draws heavily on expectations to achieve perceptual organization. Later in this

section, we will discuss some of the emerging work on integrating models of auditory scene analysis

with speech recognition systems. First, we look at some of the experimental results demonstrating this

principle in action.

6.1 Listeners

6.1.1 Local context and “old-plus-new”

An expectation is a state of the auditory processing system that will substantially affect the

interpretation of a subsequent stimulus. As an example, consider the way in which listeners compensate

for the spectral coloration imposed on a signal by the transmission channel. A simple filter can be
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constructed to convert the vowel sound in an utterance of “bit” so that, when heard alone, a listener will

hear it as “bet” (Watkins, 1991). However, if the altered word is prefixed with a carrier phrase (“Please

repeat the word: bit”) also modified by the static coloration, the word is restored to its original phonetic

identity. Through exposure to the longer sample, the auditory system has separated the effects of source

speech and channel coloration, and has compensated for the latter in the interpretation of the target

word. We would term this an expectation because in that it reflects the action of an abstracted property

of the context (the inferred coloration) to alter the categorical perception of a concrete target signal,

which is interpreted relative to that coloration. (Note that a similar effect from an adaptation

mechanism, where each channel was normalized to remove slowly-varying coloration, would not

involve any high-level linguistic analysis of the context, and thus would not be covered by this

definition.) 

Expectation encompasses a general principle of auditory perception termed “old-plus-new” by

Bregman (1990), relating to the powerful real-world constraint of independence among sound sources.

Any abrupt change in the properties of the aggregate signal probably reflects a change in only one

source (rather than coincidental changes of multiple sources), and a change in the total spectrum that

consists of only an energy increment will be interpreted as the addition of a “new” source, with all the

existing “old” sources continuing unchanged. The signal following the change is interpreted as being

old-plus-new, and the properties of the new source are determined by finding the difference between

the signal before and after the change. 

The old-plus-new idea is illustrated in figure 5 (after Bregman, 1990, p. 344). The alternation between

narrow and broader bands of noise is heard not as switching between two different signals but as a

continuous low noise to which high noise bands (the difference between the narrow and the broad) are

periodically added. Physically, the two interpretations are equally valid, but the auditory system

irresistibly chooses division in frequency because it meets the old-plus-new criterion. The interpretation

as the alternation between the two noise bands would require the less likely event of the narrow band

of noise turning off at the very instant that the broader band turns on, although in practice we may well

have constructed the signal that way.

<Figure 5 about here>

6.1.2 Continuity and induction

The most dramatic consequences of expectations in the auditory system occur when an object or source

is perceived in the absence of any direct, local cues. In these situations, the perceived object is ‘induced’

from expectations set up by its context. 

The simplest illustration of induction is the continuity illusion (Bregman, 1990, p.28, studied earlier as

the “pulsation threshold” e.g. in Houtgast, 1972 and in Thurlow and Elfner, 1959). If a steady tone has
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a brief burst of wideband noise added to it, the energy of the noise may mask the tone, leaving the

auditory system without direct evidence that the tone is present during the noise (indeed, for

increasingly intense and/or brief noise bursts, it is impossible to say if a tone is present with any

certainty a posteriori). In these circumstances, the percept is typically of the tone continuing during the

noise despite the absence of tonal features from the stimulus during the burst. The auditory system

rejects the interpretation that the tone has ceased during the noise burst since, although it is an adequate

explanation of the stimulus, it violates the old-plus-new principle.

More complex examples of auditory induction are provided by the phonemic restoration phenomena

investigated by Warren (1970) and others. In the original demonstration, a single phoneme (the first /s/

in “legislatures”) was attenuated to silence then masked by the addition of a cough. Not only were

listeners unaware of the deleted phoneme (the speech was heard as complete), but they were unable to

specify the exact timing of the cough, making a median error of 5 phonemes. Evidently, auditory

processing had exploited the redundant information in the speech signal (coarticulatory, phonotactic

and semantic) to induce the identity of the masked (missing) segment, a process so complete that, at the

level of conscious introspection, it was indistinguishable from direct (non-restored) hearing.

Subsequent experiments showed that a keyword occurring several syllables after the masked segment

could provide the semantic constraint to restore the deleted phoneme, since listeners would reliably

perceive different restorations for stimuli that differed only in the final keyword (Warren and Warren,

1970). These results demonstrate not only the very powerful effect of expectation in the perception of

speech, but also that expectations can operate backwards in time. Induction also appears to operate

between ears (“contralateral induction”, Warren and Bashford, 1976) and across the spectrum (“spectral

induction”, Warren et al., 1997). In the latter study, the spectrum is reduced down to two narrow signal

bands with a commensurate reduction in intelligibility. The introduction of an intervening spectral band

of noise then modestly increases intelligibility. 

Speech information can be combined across regions disjoint in both time and frequency, as

demonstrated by “checkerboard noise” masking experiments of Howard-Jones and Rosen (1993). They

used stimuli in which speech was alternated with noise in several frequency bands, such that half the

bands carried unobstructed speech while masking noise was added to the interspersed remainder, and

the pattern of noisy and clear channels flipped every 50 ms to give noise interference that resembled a

checkerboard on a log-frequency spectrogram. They found that for a two-channel division (above and

below 1.1 kHz), listeners were able to tolerate a level of checkerboard noise 10 dB higher than control

conditions of noise gated in one channel but continuous in the other, demonstrating that information

from separate frequency regions was being integrated across time. For wideband pink noise gated at 10

Hz – i.e. simultaneous glimpses in high and low channels – a further 7 dB of SNR decrease was

acceptable. Their result supports the notion of a central speech hypothesis (a further kind of expectation)

that gathers information from any available source, rather than more local processes acting to integrate

information only within frequency channels. There are numerous other unnatural manipulations of
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speech from which listeners recover intelligibility: see Cooke and Green (in press) and Assmann and

Summerfield (in press) for further discussions.

6.1.3 Speech as the best explanation

The capacity to infer the presence and identity of speech with limited evidence is well demonstrated by

sine-wave speech (Bailey et al., 1977; Remez et al., 1981, 1994), in which time-varying frequencies

and levels of the first three or four speech formants are resynthesized as pure sine-tones, removing cues

to the excitation source. Although listeners hear sinewave utterances as a combination of whistles (the

interpretation that might be expected), they are often able to interpret them as speech, particularly when

so instructed. 

The combined perception of whistles and speech make sine-wave utterances similar to so-called

“duplex” phenomena (Rand, 1974; Liberman, 1982), in which some portion of the stimulus (e.g. an

isolated formant transition) is interpreted both as part of speech and as an additional source. For

instance, Gardner and Darwin (1986) showed that the application of frequency modulation to a

harmonic near to a formant in a synthetic vowel caused the harmonic to stand out perceptually although

it continued simultaneously to contribute to the vowel percept.

A third example of the powerful ability of the auditory system to interpret highly stylized stimuli as

speech comes from the “temporal compounds” described by Warren et al. (1990, 1996). The later study

employed looped vowel sequences, each formed from a random concatenation of six 70 ms synthetic

vowels. When the resulting token was played repeatedly with no intertoken silence, listeners could no

longer identify the individual vowels or their order. Instead, the sequence fused into a temporal

compound in which listeners often heard two simultaneous voices pronouncing syllable sequences.

Rather than abandoning a speech-based interpretation, the auditory system appears to reconcile the

contradictory speech cues by relaxing the constraint that they be interpreted as a single voice. Although

inter-subject agreement over the syllable identities was not particularly strong, syllables were

consistently drawn from the set commonly used in the native language of the listener; thus speakers of

different languages could have distinctly different perceptions of the same stimulus. These results make

an interesting contrast to the phonemic restoration described above: Phonemic restoration draws upon

the signal context local to the deletion, in combination with linguistic constraints, to form an

interpretation. In temporal compounds, however, the local cues are largely invalid (since the signal is

not in fact real speech), so interpretation falls back on longer-term constraints such as the listener’s

native syllabary.

Studies like these reveal the auditory system’s presumption that a signal with any speech-like character

is indeed speech, invoking a wide range of constraints derived from language structure and the content

of the message. These constraints can form a powerful basis for overcoming distortions and masking in
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the original signal. We now describe computational models that have addressed the application of

expectations and other high-level constraints in the interpretation of auditory scenes.

6.2 Models

6.2.1 Blackboards and explanation-based systems

The perceptual phenomena described above highlight the importance of stored knowledge and

expectations in permitting the interpretation of sound. A popular approach in modeling has been to use

collections of knowledge sources encapsulating specific, limited aspects of the necessary knowledge,

and able to act independently to solve the larger explanation problem. Knowledge sources typically co-

operate through a common data structure, called a “blackboard”. Several CASA systems have been built

around blackboard architectures (Carver and Lesser, 1992; Nawab and Lesser, 1992; Cooke et al., 1993;

Nakatani et al., 1998; Ellis, 1996; Klassner, 1996; Godsmark and Brown, 1999). Blackboards support

an arbitrary combination of data-driven (bottom-up) and hypothesis-driven (top-down) activity, making

them suitable for incorporating higher-level knowledge into the source separation task. For example,

the highest representational level of Klassner’s system is a set of “source-scripts”, which embody the

temporal organization of source sequences such as the regular patterning of footfalls.

One common feature of the blackboard models is the importance placed on generating consistent

explanations for all of the acoustic evidence. Nakatani et al. (1998) call their system a “residue-driven”

architecture. Events (in their case, groups of harmonically-related elements) are continuously tracked,

and predictions about the immediate future are made. These predictions are compared with the actual

outcome and the discrepancy, or residue, is computed by subtracting the prediction from the remaining

mixture. Residues require explanation, often by the creation of new trackers. In this way, their scheme

embodies the old-plus-new principle. 

Klassner’s (1996) blackboard system also focuses on discrepancies between observed signal features

and those required for consistency with the current explanation. However, in his case the discrepancies

were resolved either by modifying the explanation or by changing the parameters of the front-end

signal-processing algorithms from which the features are obtained. Since optimal values for factors

such as filter bandwidths and energy thresholds depend on the details of the conjunction of sources

present, his system places those parameters within the control of the blackboard procedures – in contrast

to the fixed single-pass signal-processing employed in other models. His system comprises a dual

search in explanation space and signal-processing parameter space to find the best explanation for a

given sound scene in terms of 39 abstract templates for everyday sounds such as “car engine” and

“telephone ring.”

Ellis’s (1996) thesis presents “prediction-driven CASA” as an alternative to the data-driven systems

described in section 5. Motivated more closely by auditory realism than the other blackboard systems,
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his system constructs accounts of the input sound in terms of “generic sound elements” to act as the link

between raw signal properties and abstract source descriptions. Most earlier systems for CASA were

limited to the separation of voiced sounds, which was reflected in their choice of representations such

as tracked partials. Ellis’s system sought to model unvoiced sources such as noise bursts or impulses

through an expansion of its representational vocabulary. The uncertainty implicit in modeling noise

signals further led to a system that could tolerate hypotheses for which direct evidence might be

temporarily obscured, a framework consistent with the induction phenomena described in section 6.1.

Periodic sounds are treated as a special case, with a correlogram-based pitch tracker triggering the

creation of “wefts” (Ellis, 1997) that provide estimates of the energy in each frequency channel for the

modulation period, as specified in the pitch track part of the element. The number and timing of events

identified by Ellis’s system were in good agreement with the sources identified by listeners in ambient

sound examples such as “city street” (see figure 6).

<Figure 6 about here>

Motivated by the goal of reproducing complex perceptual phenomena such as ambiguity and

restoration, blackboard-based systems have the potential to produce very complex behavior from the

interaction of their abstract rules. However, crafting the knowledge bases is a slow and difficult art,

which offers no obvious solution to unrestricted, full-scale problems. Progress in fields such as speech

recognition suggests the superiority of ‘fuzzier’ techniques in modeling perceptual interpretation tasks,

and in particular the value of exploiting training data to tune system parameters. There are also more

rigorously-motivated approaches to the problem of integrating widely disparate sources of knowledge.

For example, the OPTIMA system of Kashino et al. (1998) approaches the problem of analyzing

complex acoustic signals – in their case, polyphonic music – through the probabilistic framework of

Bayesian networks.

6.2.2 Integration with speech recognition

Computational auditory scene analysis offers a possible solution to the serious challenges of robust

automatic speech recognition. Current approaches to robust ASR (reviewed in Gong, 1995; Junqua and

Haton, 1996) are far less flexible than those employed by listeners; compelling evidence of this is

presented by Lippmann (1997). In addition to the variability caused by reverberation and channel

distortion, recognizers in real-life environments have to cope with the nonstationarity of both target and

interfering sources and uncertainty over the number of sources present. CASA is attractive because it

makes few assumptions about the nature and number of sources present in the mixture, relying only on

general properties of acoustic sources such as spectral continuity, common onset of components,

harmonicity, and the various other potential grouping cues described in earlier sections.

Several attempts have been made to integrate CASA with ASR. The most common approach uses

CASA as a sophisticated form of speech enhancement, relying on an unmodified speech recognizer to
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do the rest. For instance, Weintraub (1985) passed separate resynthesized signals to a hidden Markov

model speech recognizer. Similarly, Bodden (1995) used binaural preprocessing prior to ASR. The

main attraction of the speech enhancement route is that it allows use of existing criteria in assessing the

performance of a system including CASA. As an alternative to assessment via SNR improvements and

ASR recognition rates, listening tests can measure the intelligibility and naturalness of CASA-enhanced

speech.

The enhancement-only application of CASA has been much criticized of late (see, for example,

Bregman, 1995; Ellis, 1996; Slaney, 1998; Cooke and Green, in press) – although the weakness was

certainly recognized as early as Weintraub (1985). Slaney (1998) presents a “critique of pure audition”

in which he argues against a purely data-driven approach to auditory scene analysis, inspired by an

analysis of top-down pathways and processes in vision (Churchland et al., 1994). Bregman (1995) too

has warned against the “airtight packaging” of segregation as a preliminary to recognition, invoking

duplex perception of speech as an instance where recognition overrides segregation, “defeating the

original purpose of bottom-up ASA”.

<Figure 7 about here>

An alternative approach to the integration of CASA and ASR has been proposed by Cooke et al. (1994).

This scheme relies on CASA to produce an estimate of spectro-temporal regions dominated by one or

other source in a mixture, and applies missing data techniques to recognize the incomplete pattern. It

fits naturally with channel selection schemes such as that of Meddis and Hewitt (1992) discussed in

relation to double-vowel identification. Channel selection is further inspired by neurophysiological

oscillator models discussed in section 7. The missing data strategy works on the assumption that

redundancy in the speech signal allows successful recognition even when moderate amounts of the

signal are corrupted or obscured. Robust recognition performance in the face of missing data can be

obtained, and further improvements are possible when models of auditory spectral induction (Warren

et al., 1997) are incorporated (Green et al., 1995; Morris et al., 1998). In a similar vein, Berthommier

et al. (1998) incorporate CASA-style information into speech recognition by varying the weights of

separately-processed frequency bands in a multi-band recognizer (Bourlard et al., 1996).

Auditory induction – or, more generally, the effect of perceived auditory continuity – has motivated a

number of CASA systems. Ellis (1993) argued that restoration would be necessary to overcome

obscured features in data-driven systems, and his system makes the inference of masked regions a

central part of the prediction-reconciliation analysis (Ellis, 1996). Okuno et al. (1997) described a

scheme in which the residue remaining after extracting harmonically-related regions is substituted in

those temporal intervals in which no harmonic structure could be extracted, arguing that this residual is

a better guess for the continuation of the voicing than silence would be – since, at the very least, it will

permit induction in listeners faced with the resynthesized signal.
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Ellis (1999) makes a specific proposal for incorporating speech recognition within scene analysis.

Extending his prediction-driven approach, he includes a conventional speech recognition engine as one

of the “component models” that can contribute to the explanation of a scene. An estimate of the speech

spectrum, based on the labeling from the speech recognizer, is used to guide the analysis of the

remainder of the signal by nonspeech models. This re-estimation of each speech and nonspeech

component can be iterated to obtain stable estimates. 

6.3 Discussion

6.3.1 The significance of expectations

This section has focussed on the role of expectations and abstract knowledge in auditory perception,

and on efforts to model these effects. There are important implications from the demonstration that, in

the absence of adequate direct cues, the auditory system will employ information from elsewhere to

build its interpretation of a scene – and, as seen in the original Warren (1970) experiments, restored

information is consciously indistinguishable from direct evidence. Given the enormous power of high-

level constraints to restrict the range of interpretations that need be considered, the auditory system

might be inclined to rely on inference in many circumstances besides those in which information is

absolutely unavailable – it might be easier to ‘guess’ than to ‘measure’ when the confidence is guessing

is very high. Perception exists as a compromise between finding direct evidence of particular sources

and the mere absence of observed contradictory evidence.

6.3.2 Retroactivity

Certain perceptual phenomena, starting with the phonemic restorations which depended on a later

keyword (Warren and Warren, 1970), but including much simpler signals such as noise bands of

abruptly alternating bandwidths (Bregman, 1990), show that the interpretation of a sound must

sometimes wait for as much as several hundred milliseconds or longer before it can be finally decided.

Examples such as the Reynolds-McAdams oboe (Mellinger, 1991) illustrate an initial organization

which is consciously revised i.e. the listener is aware of the change in organization. Blackboard systems

such as those of Klassner (1996) and Ellis (1996) that maintain multiple alternative hypotheses can

exhibit backwards influence in certain circumstances; the system of Godsmark and Brown (1999)

explicitly increases the size of its decision window until ambiguity can be resolved. Ultimately, models

may need, in exceptional circumstances, to revise decisions that were previously considered complete,

although it is not clear at what level of abstraction this reassessment might apply.
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7. Issues in models of auditory organization

7.1 Levels of explanation

Marr’s (1982) analysis of vision identified three distinct levels of explanation for any perceptual

information processing task. At the lowest level is the implementation, concerned with the mechanism

by which particular features are calculated or processes performed. Above this lies the level of

algorithm and representation, describing a particular computational approach, capable of

implementation in a variety of ways, for instance on a digital computer or in a biological realization.

Marr placed particular emphasis on the highest level, which he termed the “computational theory”,

involving the underlying physical properties of the domain which make possible a solution to the

perceptual problem. Marr used this analysis to argue that it is vital to be clear about which level any

explanation is targetted, and that it is damaging to conduct research into perceptual systems without

being clearly aware of the computational theory. He cited examples of research which he considered

essentially wasted effort owing to the absence of a computational theory. 

Numerous researchers in audition have found inspiration in Marr’s work. For instance, Unoki and

Akagi (1999) make a careful effort to formulate Bregman’s principles mathematically to meet Marr’s

requirements for a computational theory. It has, however, proved difficult to find consensus over the

precise nature of a computational theory to underly auditory organization (or, for that matter, vision),

and it remains an open question to find a suitable formalization of profound constraints such as the

continuity and independence of acoustic sources.

7.2 The goal of computational auditory scene analysis

The common goal of CASA systems is the intelligent processing of sound mixtures, but individual

systems differ both in the kind of sounds that are handled and in the information about them which is

extracted. Some approaches seek to pluck a particular signal out of an interference whose properties are

essentially ignored (e.g. the enhancement of the target voice in Brown, 1992), while others are

concerned with making a complete explanation of all components in the acoustic mixture (e.g. Ellis,

1996). The former ‘target enhancement’ approach pursues algorithms able to handle a very wide range

of condition since it makes the fewest assumptions (e.g. only that the interference will be lower in

energy than the target over a significant portion of the time-frequency plane). By contrast, ‘complete

explanation’ accepts the added complexity of characterizing portions of the signal that are to be

discarded, in the belief that this is necessary to reproduce human-style context-adaptive processing in

which the interpretation of a target is influenced by non-target components. Such influences include the

requirement of a plausible masker (Warren et al., 1972). 
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7.3 Evaluation

Systems that resynthesize an enhanced version of the target sound are amenable to evaluation via

listening tests. Most CASA systems possess one or more internal source representations which can be

used for resynthesis. It has been argued that an adequate model should represent all the perceptually-

significant information about a sound, and be able to resynthesize sources without further reference to

the original mixture (Ellis, 1996). This approach should in theory be able to separate sounds even when

they overlap in both time and frequency – something that resynthesis based on selective filtering (such

as Brown, 1992) cannot achieve. However, the distortions associated with highly nonlinear analysis and

resynthesis techniques present formidable challenges in creating high-quality output. Mistakes in

grouping assignments often become very prominent in resytheses; although this can be uncomfortable

for the modeler, it also carries a diagnostic benefit.

The systems of Cooke (1991/1993) and Brown (1992) were both evaluated through a calculation of the

SNR improvement on test mixtures. Since energy in an output signal cannot be directly associated with

a single input component, both evaluations posed a correspondence problem. Cooke classified his

“strand” elements according to their similarity to elements derived from the separate input components,

whereas Brown was able to calculate the attenuation from his time-frequency mask for target and

interference presented in isolation. Ellis (1996) sought a more perceptual measure of separation success

by conducting listening tests in which subjects were asked to rate, on a subjective scale, the resemblance

of resynthesized components to the individual sources they heard in the full original mixture. 

Other approaches to evaluation include speech recognition and intelligibility scores (Weintraub, 1985;

Bodden, 1995; Okuno et al., 1997), and simulations or equivalents of psychoacoustic tests such as

forced-choice discrimination.

Unlike large-vocabulary automatic speech recognition or message understanding, computational

auditory scene analysis lacks a formal evaluation infrastructure at present. This makes it difficult to

gauge strengths and advances both within the CASA community and between the various alternative

approaches to the problem of understanding sound mixtures. One suggestion for evaluation comes from

Okuno et al. (1997), who propose the simultaneous transcription of three speakers, so chosen because

it guarantees that the average SNR will be below zero. This challenge problem is interesting because it

will clearly reward the integration of scene analysis with speech recognition systems, although its focus

on speech may bypass the issues of ‘environmental sound’ recognition that some see as more

fundamental (Ellis, 1996).

7.4 Neurophysiological plausibility

A contentious question in neurophysiology is how, in neural systems, features from the same source are

marked as belonging together. Von der Malsburg and Schneider (1986) called this the “binding

problem” and suggested a computational solution in which neurons encoding a common environmental
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cause are grouped by synchrony of their temporal response. This elegant proposal allows grouping to

be represented “in place” without the need for separate neural structures dedicated to representing the

results of grouping. Their model consists of networks of neurons whose outputs are characterized by an

oscillatory pattern. They demonstrate binding of responses, marked by a common phase of oscillation,

in a simple auditory example in which common onset and simultaneous activity in different frequency

bands give rise to grouping between the channels. Their proposal also allows an attentional mechanism

to strobe the temporal pattern and get an unobstructed, if incomplete, view of the attended source (Crick,

1984). These ideas have been actively researched in vision, where a similar binding problem exists for

object segregation. These investigations have received added impetus from physiological studies which

appear to show that visual stimuli can elicit synchronized oscillations across disparate regions of the

visual cortex (Gray et al., 1989). Although specific evidence of visual binding through oscillations has

yet to appear, the mechanism retains its attraction.

Liu et al. (1994) applied neural oscillator models to speech recognition. Strictly, their model does not

involve auditory processing, but can nevertheless be interpreted as a mechanism for schema-driven

grouping. The model encodes local peaks in a sharpened mel-scale LPC spectrum as independent sets

of oscillations which they assume correspond to vowel formants. These oscillations interact with an

associative memory in which formant-vowel associations are hard-wired. Reciprocal top-down and

bottom-up activation leads to synchronized oscillations in those spectral regions which globally

correspond to a known vowel.

Recently, a number of studies have sought to construct an account of auditory grouping phenomena in

terms of neural oscillators (see Brown et al., 1996, for a review). Brown and Cooke (1998) presented

an oscillator model which encompasses a number of streaming phenomena, including grouping by

frequency and temporal proximity, the temporal build-up of streaming, grouping by common onset, and

grouping by smooth frequency transitions. The same model, operating on a different input

representation, can also account for grouping by common fundamental (Brown and Cooke, 1995), and

at the same time provides an adequate explanation for the interaction of onset asynchrony and

harmonicity (Ciocca and Darwin, 1993). Wang and Brown (1999) recently extended the oscillatory

framework to sentence-level segregation.

Neural oscillators have been particularly successful at modeling the interaction of cue combinations,

such as common onset and proximity. This is partly due to the limited vocabulary of neural

architectures, in which information can only be represented as activations and weights, and thus

different cues are necessarily expressed in forms that can be combined. By contrast, a traditional

symbolic model of grouping might represent periodicity and onset time attributes quite separately,

requiring both to be further mapped to some ‘grouping strength’ axis before their interaction could be

considered. 
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7.5 Adaptation to context and handling ambiguity

A single fragment can serve widely differing roles depending on its surroundings and other

predispositions of the interpreting system. Auditory organization models must ultimately include a

stage of processing that varies according to some notion of context, but there is a wide range of practice

in where this stage is placed. Ambiguous signals, whose correct interpretation is not immediately clear,

form an interesting test of context-adaptation.

Double-vowel identification models may have a simple processing sequence with no adaptation or

feedback. However, once the time dimension is incorporated, the organization of the acoustic

information at each instant will depend on the immediately preceding context. At the very least, the top-

level groupings must reflect the accumulation of grouping cues between the different sound elements

generated by the lower levels of processing, as in Cooke (1991/1993) and Mellinger (1991). 

Other systems have intermediate representations, which, for an identical signal, can vary in response to

contextual factors. In Weintraub (1985), these factors are the inferred presence of one or two voiced or

unvoiced speakers, which determines how many pitches will be extracted and how their associated

spectra will be derived. The system of Ellis (1996) is concerned with signals that may lack any

periodicity cues, in which case the division of energy into representational units can only be made

according to the prevailing scene interpretation. Finally, in Klassner’s (1996) system, the dependence

of the feature extraction routines on the high-level analysis means that the representation of the same

signal may vary considerably as a result of neighboring source hypotheses.

Greater degrees of context-adaptation imply more sophisticated approaches to ambiguity and to the

timing of decisions about organization. The rigid signal models and powerful signal processing of

Nakatani et al. (1998) permit each signal frame to be incorporated into the representation as soon as it

is acquired. Other systems can delay making grouping decisions for newly-detected energy to allow the

accumulation of disambiguating information. In Mellinger (1991), the delay is a fixed latency before a

new harmonic is assigned to a cluster. Brown (1992) operated in two passes, with the grouping

decisions made upon the intermediate elements only when they were completely formed, and all

information was available. Weintraub (1985) had a different two-pass structure, with the voice

extraction depending on the overall best path from the initial dynamic-programming double-voice-state

determination.

Rather than waiting for a unique solution to appear, some systems handle ambiguity by pursuing

multiple hypotheses (Ellis, 1996; Klassner, 1996; Godsmark and Brown, 1999). Although this approach

is computationally expensive, it perhaps resembles listeners by maintaining a set of ‘current beliefs’ for

a partially-observed signal; in real-world situations, one may not have the luxury of waiting for signal

to end before commencing analysis. Listeners’ interpretation of complex signals might be best

understood via the incremental influence of each additional signal cue (as in the alternating noise bands
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of figure 5); ultimately, a correct understanding of human sound organization will probably include a

combination of deferral, alternative hypotheses and hypothesis revision.

7.6 Representing and employing constraints

Since the problem of separating one signal into multiple subcomponents has, in its simplest form,

infinitely many solutions, the problem of auditory scene analysis may be viewed as defining and

applying suitable constraints to choose a preferred alternative. The nature of these constraints, and the

ways in which they are encoded and applied, forms a further axis on which to distinguish between the

computational models.

Each of the cues in the summary of table 1 corresponds to a constraint, i.e. an assumption of restrictions

on the form of sound emitted by real-world sources. Thus the cue of harmonicity arises because many

sound sources generate matched periodic modulation across wide frequency ranges, and the consequent

constraint is that frequency bands exhibiting matched modulation patterns should be regarded as

carrying energy from a single source. 

In Brown’s (1992) system, harmonicity and synchronized onset are expressed directly in the

intermediate representation, and thus the ‘knowledge’ of the constraints is implicit in the computational

procedure rather than being explicitly represented. By contrast, many perceptually important

constraints – such as characteristic patterns of an individual’s native tongue – are more arbitrary, and

must be acquired and recalled, rather than simply computed. This is seen in the templates of Klassner

(1996), which allow his system to have a somewhat abstracted idea of what, for instance, a telephone

ring or a hairdryer sounds like. The system then uses the constraint that any scene must be explained in

terms of known objects as a way to overcome the intrinsic uncertainty of a complex mixture. Unoki and

Akagi (1999) formalize Bregman’s ‘heuristic regularities’ as a series of constraints, which they deploy

in their general-purpose auditory scene analysis system.

One glaring difference between computational models and real listeners is the ability of the latter to

learn many of their constraints simply through exposure to the world. Future computer models may

exhibit this kind of learning, but await a more detailed understanding of the nature of this process.

7.7 Comparison with other approaches to source separation

CASA is not the only approach to the source separation problem. Three distinct alternatives are non-

auditory signal processing methods, model-based source decomposition and blind separation. 

Non-auditory signal processing methods typically make use of similar or identical cues to those

employed in CASA systems, but operate without auditory inspiration or constraint. For instance, in

systems of this kind (Parsons, 1976), the harmonicity cue can access frequency spectra (based perhaps

on narrowband FFTs) which have a larger number of resolved harmonics than is available with auditory
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frequency resolution. Denbigh and Zhao (1992) describe another narrow-band pure signal processing

system which combines binaural and fundamental frequency cues.

Model-based source decomposition involves finding the optimal explanation for a number of

simultaneous sources in terms of prior models for each of the sources. In HMM decomposition (Varga

and Moore, 1990), a mixture of two sources is decoded by determining the most probable pairing of

HMM states as a function of time. HMM decomposition requires models for all constituent sources and

is computationally expensive when both source models have a realistic number of states. The technique

also requires the number of sources to be fixed in advance. Model-based decomposition can be

considered as an implementation of a totally schema-driven approach to CASA.

Blind separation (BS) techniques are motivated by the statistical independence of sources in a mixture

(Comon, 1994; Bell and Sejnowski, 1995). They attempt to invert the mixing process without prior

knowledge of the statistical distribution of the component signals. At present, BS is very effective under

certain conditions. These include the assumption that the number of component signals is known and

fixed, that their temporal alignment is known, that the mixing process is linear and constant, and that

there are at least as many sensors as signals. This collection of conditions represents an ideal which is

never obtained in natural listening conditions. Consequently, much current research effort in blind

separation is aimed at relaxing some of these constraints (e.g. Torkkola, 1998; Lee et al, 1997). 

Van der Kouwe et al (1999) compared CASA and BS approaches to speech separation using the corpus

of sound mixtures developed by Cooke (1991/1993). They measured the SNR of the target speech

signals before and after segregation, and found that while the chosen BS algorithm (Cardoso, 1997)

typically produced a larger improvement than the representative CASA system (Wang and Brown,

1999) on broadband noise sources, the CASA system worked best on narrowband noise sources such

as tones and sirens. However, a meaningful comparison is difficult since the BS system utilized pairs

of signal mixed in differing proportions (to simulate a pair of sensors), while the CASA system required

just the single mixed signal. Van der Kouwe et al concluded that CASA systems operated under fewer

constraints (and hence are applicable in a wider range of listening situations) than current blind

separation algorithms.

7.8 Conclusion

In the past three decades, auditory organization has come to be recognized as an essential aspect of

everyday listening. Experimental investigations have employed increasingly complex stimuli ranging

from repeated tone sequences to double vowels. Further work is required to improve our understanding

of sound separation of arbitrary sources in realistic environments. Nevertheless, systems which draw

inspiration from the perceptual task faced by listeners have shown some success on difficult problems.

Applications in domains such as robust automatic speech recognition and automated polyphonic music
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understanding are starting to appear. The goal of general-purpose automated sound scene understanding

remains a challenging computational problem. 
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Appendix A: Resources for auditory scene analysis

In addition to Bregman’s (1990) book, useful reviews of auditory organization can be found in Darwin

and Culling (1990), Darwin and Carlyon (1995), Moore (1997, ch. 7) and Handel (1989). In addition,

Volume 336 (1992) of the Philosophical Transactions of the Royal Society of London, Series B is

devoted to the psychophysics of concurrent sound perception.

In 1995, the first international conference specifically concerned with computational models of auditory

scene analysis processes was held in Montreal as a research workshop associated with the International

Joint Conference on Artificial Intelligence. The proceedings of that meeting (Montreal, 1995) and

subsequent book (Rosenthal and Okuno, 1998) provide an illustrative cross-section of the diverse

approaches to CASA which now prevail. A second CASA Workshop (Nagoya, 1997) documents

further recent advances in this area. Revised papers from that meeting constitute a special issue of

Speech Communication (1999, Vol. 3/4). A third CASA workshop was held in Stockholm in August

1999. Other computational perspectives can be found in Cooke and Brown (1994), Summerfield and

Culling (1995), Duda (1994), Bregman (1995) and Slaney (1998).

Demonstrations: A CD entitled Demonstrations of auditory scene analysis (Bregman and Ahad, 1995)

contains many audio examples demonstrating the principles governing auditory scene analysis. The CD

can be ordered from The MIT Press, 55 Hayward Street, Cambridge, MA 02142, USA. Interactive

software demonstrations of many of the effects described in this review are part of the MATLAB

Auditory Demos package which may be downloaded from http://www.dcs.shef.ac.uk/~martin.

Corpora: To date, computational auditory scene analysis has not required corpora of the scale typically

used in automatic speech recognition. Existing speech and noise corpora have been used to create

acoustic mixtures suitable for computational auditory scene analysis. For instance, the NOISEX

database (Varga et al., 1992) provides a limited set of noise signals. Corpora produced by post-hoc

signal combination are less than ideal, and demonstrate none of the conversational effects or
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compensations which occur in real spoken communication. Two corpora of conversational speech

which address this limitation are available. The Map Task corpus (Thompson et al., 1993) provides

recordings of several two-person conversations and contains a limited amount of overlapping speech.

The ShATR (Sheffield-ATR) corpus (Karlsen et al., 1998), designed specifically for research in

computational auditory scene analysis, involves five participants solving two crossword puzzles in pairs

(the fifth person acts as a hint-giver). This task generates overlapped speech for nearly 40% of the

corpus duration. Eight microphones provides simultaneous digital recordings from a binaurally-wired

mannikin, an omnidirectional pressure zone mike and 5 close-talking microphones, one for each

participant.

More information is available on these databases at the following URLs:

NOISEX: http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html

Map Task: http://www.hcrc.ed.ac.uk/dialogue/maptask.html

ShATR: http://www.dcs.shef.ac.uk/research/groups/spandh/pr/ShATR/ShATR.html

100 mixture set used in many CASA studies: http://www.dcs.shef.ac.uk/~martin
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Figure captions

Figure 1: Auditory spectrograms of spoken digit sequences. Upper: “zero zero three six three”. Middle:

“seven three seven five nine”. Lower: mixed signal. Grey-levels are proportional to log-energies at the

output of a bank of 64 gammatone filters, equally spaced on an auditory scale (ERB-rate) from 50 to 6500

Hz.

Figure 2: Stimulus configuration for the streaming experiments of van Noorden (1975). The sequences of

alternating sinusoidal signals are presented with differing frequency separations (∆f) between the tones, and

differing repetition periods (tone repetition time or TRT).

Figure 3: Autocorrelogram of a synthetic double vowel pair ([«Õ] on a fundamental of 126 Hz and [A] with

a fundamental of 100 Hz). The summary correlogram (lower panel) shows a strong peak at an

autocorrelation lag of 10 ms, corresponding to periodicities in the signal at harmonics of 100 Hz. A smaller

peak at 7.9 ms corresponds to harmonics of 126 Hz.

Figure 4: Time-frequency representation and grouping cues used in Cooke (1991/1993). Upper: synchrony

strands and grouping indications for a natural syllable. Strands corresponding to resolved harmonics are

visible in the low frequency region. In the mid-high frequency region, strands represent formants F2-F4.

The line width encodes instantaneous amplitude, and a clear pattern of amplitude modulation is visible.

Lower: synchrony strand representation of the lower spectral region for a completely-voiced utterance,

overlaid by a time-frequency harmonic sieve (thin lines). Strands which fall between pairs of sieve lines are

deemed to belong to the same source. 

Figure 5: The old-plus-new principle: Schematic representation of the alternating narrow- and broad-band

noise stimuli, and its perceptual organization.

Figure 6: Example figure adapted from Ellis (1996). The top panel shows a 10 s excerpt of “city-street

ambience” represented by an auditory spectrogram as well as a periodogram (summary autocorrelation as

a function of time) indicating the dominant periodicites at each point in the signal. The partial spectrograms

below (labelled as Wefts, Clicks and Noise) are the generic elements postulated by the system to construct

an explanation for the input mixture. Weft elements have both a partial spectrogram, showing their energy

distribution, and a pitch track indicating their periodicity; Noise and Click elements are aperiodic.

Figure 7: The upper panel shows an auditory spectrogram for the utterance “Give me cruisers deployed

since twenty two December” mixed with Lynx helicopter noise at a global SNR of 18 dB. Dark regions of

the lower panel indicate those areas where the local SNR is positive. Attempts to recognize the mixture with

a conventional recognizer yielded “Is Hornes four December” while use of missing data techniques via the

lower mask produced “Give cruisers deployed seventh December”.
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Table caption

Table 1: Summary of grouping cues
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