
ECG Workbench (draft, v. 0.3)
The ECG Workbench (WB for short) fulfills two related functions. One is the creation

and maintenance of grammars written in the ECG formalism. The other is as a testing tool for

such grammars. The main aim is to simplify the operations of creating, testing, and revising ECG

grammars for the linguist.

Unification grammars in general and ECG grammars in particular are sets of very tightly-

coupled rules: to successfully master them requires the ability to recognize how a change in one

part can affect other parts and the grammar as a whole. As described in <BD>, the basic

components of ECG, constructions and schemas, are organized as subcase lattices—hierarchical

inheritance structures with multiple parents. The long column on the left of Figure 1 depicts a

portion of the lattices for an example grammar that we will discuss in this chapter. One can see

that the SlidePast construction is a subcase of Verb, which is a subcase of Word, which is a

subcase of RootType.

In order to provide the flavor of the kind of aid the Workbench affords the grammarian,

we will show a few examples of how the tool can be used for analyzing a sentence licensed by a

simple grammar. We will analyze a simple sentence in the Workbench. Figure 1 is how the latest

Workbench (version 0.6 at the time of this writing) typically looks when used to examine a

grammar file.

The Workbench application has only one window, which is subdivided in various tabbed

areas, called views and editors. Figure 1 shows three main areas. As already mentioned above, to

the left Grammar Structure summarizes the lattices that structure constructions, schemas, and

also the ontological model (explained below). The view to the right Grammar Explo(rer),

displays all the files comprising the grammar in use.

The central part contains one of the actual grammar description files: verbs.grm, in

which the construction for SlidePast is highlighted. Clicking on a node in the left-hand pane

automatically brings up the grammar unit containing the clicked node, highlighting the definition

Figure 1

for it. The breakdown of a grammar into files is only for the grammarian’s convenience, as

neither ECG nor the WB imposes any constraints on that. The WB allows one to add new

schemas and constructions directly by adding definitions in the central pane and these are

automatically added to the lattice representation on the left.

After a grammar is modified, it can be checked for form and meaning consistency. When

the grammar consistency checking routine finds errors in constructions or schemas, it marks

them by underlining the constructs that caused a complaint from the consistency checker. The

details of the complaint can be seen by hovering the mouse point over the underlined element.

To help with multiple file grammars, error complaints are also marked on each unit in the

column at the right-hand side. Details of all the errors can be seen by clicking on the unit nodes,

or by looking at the Problems view (not shown) which lists them all along with a detailed

description.

Sentence Analysis

As explained above, one of the uses of the software is to create and maintain grammars.

More interestingly, the Workbench’s primary use is for analyzing sentences. This is achieved by

entering a sentence (e.g., “he slid”) in the narrow Analyzer narrow window in the upper center of

(Figure 1).

The detailed analysis is carried out by a separate Analyzer program that will be discussed

in the remainder of this chapter. The sentence analyzer’s output is currently available in two

alternative forms. The first is completely textual. For each analysis, this shows the cost, the

constructions and schemas used in the analysis, the semantic constraints, and a semantic

specification (or SemSpec). More precisely, the textual output consists of the following:

• Cost: As we will describe in this chapter, the underlying analyzer uses sophisticated

numerical scoring to find the best syntactic and semantic fit for the given input.

• Constructions used: the current implementation of the ECG Analyzer employs a partially

generative model for the syntactic part of the analysis. This section lists the constructions

along with their span in parentheses (Figure

2). The numbers in square brackets are

arbitrary, but are used to denote matching

elements (bindings). For example SlidePast

covers positions 1 to 2 in the input and has

code [22]. The indentation is not part of the

output, but is shown to emphasize the tree

structure rooted at the ROOT construction.

• Schemas used: the list of all the schemas used

in the semantic part of the analysis, and also

elements in the ontology, prefixed by the @

character.

• Semantic constraints: the list of all the

bindings that took place in the analysis. Each

block shows bound roles; the last element is

the common filler. For example, for the case in Figure 4, the schema MotionPath is the

common filler for the roles eventType and profiledProcess of an EventDescriptor schema

instance, the meaning poles of two constructions, IntransitiveArgumentStructure and

SlidePast. The fact that these six elements are bound together, as indicated by the double

0 he 1 slid 2

ROOT[2] (0, 2)
 Declarative[1] (0, 2)
 He[5] (0, 1)
 IntransitiveArgumentStructure[10] (1, 2)
 SlidePast[22] (1, 2)

Figure 2: Tree with Constructions used.

EventDescriptor[1].eventType ↔
EventDescriptor[1].profiledProcess ↔
IntransitiveArgumentStructure[10].m ↔
SlidePast[22].m
 Filler: MotionPath[3]

Figure 4: Partial bindings.

EventDescriptor[1]
Finite[4]
VerbFeatureSet[7]
NominalFeatureSet[8]
@entity[10]
MotionPath[3]
RD[6]
@maleAnimate[13]
@slide[21]
SPG[24]

Figure 3: Schemas used

arrows (↔), represents coindexation: all of them are assigned the same index as their

common filler (which is 3 in this case) by the analysis process, as will be explained.

• The semantic specification: this is a textual representation of the resulting analysis structure

(SemSpec). Numbers in square brackets index instances, the same ones listed in the two lists

above (constructions and schemas), and also shown as boxed number in the graphical

version, shown below, Figure 5. The headers are marked in the same way as in the tree-like

view on the left side of fig. 1 above: discs with a “C” label mark constructions, ones with an

“S” mark schemas. Clicking on the boxed indices lights up all those that labels with a

common binding. Figure 5 shows the same situation described in Figure 4: index [3] denotes

the roles and meaning poles listed above in Semantic constraints.

 The Grammar

The most important piece of information produced by the Analyzer is the Semantic

Specification, or SemSpec. This section describes the main principles and those aspects of the

grammar that are involved in the latter.

Figure 5

 As in all construction grammars, constructions bind together form constraints and

meaning constraints. We will first describe the components of the SemSpec in Fig. 5 and then

explain how the WB depicts the complete analysis of the sample sentence.

Schemas, used to represent the meaning constraints of

a construction, are embodied semantic schemas. As already

pointed out, constructions and schemas, and in general all

ECG primitives, are organized in inheritance structures. An

inheritance relation (a subtype) is specified in the grammar

by the subcase of keyword. Other relations are specified by

the roles keyword, which introduces a part (or feature) in the

structure within which it is used, and by the evokes keyword, which identifies an evoked

structure that is neither a subpart nor a subtype. Again, binding is specified by the double arrows

(↔). Finally, comments are signaled by double slashes (//).

The figures on the right contain the grammar specification for

the semantic schemas involved in the above analysis.

TrajectorLandmark and SPG (Source-Path-Goal) represent

conventional image schemas related by inheritance. That is,

SPG inherits all the structure from its supertype: in this case,

the roles trajector, landmark, and profiledArea.

The schema for Process, and thus the one for Motion,

describe actions that profile a protagonist. The x-net role is

typed (via the colon) to be a kind of x-schematic structure

representing a generic process (stored in the ontology). X-

schema TrajectorLandmark
 roles
 trajector
 landmark
 profiledArea

schema SPG
 subcase of TrajectorLandmark
 roles
 source
 path
 goal

schema MotionPath
 subcase of Motion
 evokes SPG as spg
 constraints
 mover ↔ spg.trajector

schema Motion
 subcase of Process
 roles
 mover: @entity
 speed // scale
 heading // place
 x‐net: @motion // modified
 protagonist // inherited
constraints
 mover ↔ protagonist

schema Process
 roles
 protagonist
 x‐net: @process

Schemas are fine-grained process structure representations. For instance, action like walking or

pushing can be represented as x-schematic structure. In the Motion schema, the mover role is

also typed to be a generic entity. In the constraints section, the mover is bound to the

protagonist role, inherited from Process. The evokes relation is shown in MotionPath, which

represents a bounded motion along a path. Such motion is specified to evoke a source-path-goal

image schematic structure, made locally available as the spg symbol. In the last line the mover,

inherited from the schema’s more abstract supertype Motion, is identified with the trajector of

the evoked source-path-goal image schema. The last two schemas

introduce descriptors. One is EventDescriptor, which, as

described in <DB> in this book, typically represents meaning of

an entire scene, as provided by the verbal argument structure (the

eventType role) and by the verb’s meaning itself (the

profiledProcess role). The second one is for referents (RD for

Referent Descriptor) and typically represents the constraints

associated with the referents of nominal and pronominal

constructions.

With these semantic structures in hand, we can

examine the constructions that lead the compositional

process generating the analysis shown above in Figure

5. The Verb construction takes advantage of multiple

inheritance. Its ancestors, Word and HasVerbFeatures,

not shown, define form constraints for words (the fact

schema EventDescriptor
 roles
 eventType: Process
 profiledProcess: Process
 profiledParticipant
 profiledState
 spatialSetting
 temporalSetting
 speechAct

schema RD
 roles
 ontological‐category
 givenness
 referent
 number

construction SLIDEPAST
 subcase of Verb
 form
 constraints
 self.f.orth ← "slid"
 meaning: MotionPath
 constraints
 self.m.x‐net ← @slide

general construction Verb
 subcase of Word, HasVerbFeatures
 meaning: Process

that a word has a certain graphical or phonetic representation), and for verbal agreement features

such as number and person. The SlidePast constrains its form and meaning poles, which are

referred to via the usual dotted notation by the f and m pseudoroles respectively: the orth role

(for orthography) is set to the atomic value “slid” using the left-arrow (←). On the meaning side,

the construction’s meaning is typed as MotionPath, illustrated above. The x-schematic motor

program is also set in the constraints line to be the @slide x-net.

As can be seen from the Construction list shown on the left of Fig. 5, one construction

under ROOT is the Declarative, which spans the whole sentence. It brings together subject, an

NP construction that is the supertype of the pronominal constructions like the one for He (not

shown), and a verb of type VerbPlusArgument, of which IntransitiveArgumentStructure, the

construction actually chosen by the Analyzer’s best fit process.

The elements of the SemSpec are then bound together as follows. The

VerbPlusArgument construction binds the Verb’s meaning pole with the evoked Event

construction Declarative
 subcase of S‐With‐Subj
 constructional
 constituents
 subj: NP // inherited
 fin: VerbPlusArguments
 form
 constraints
 subj.f before fin.f
 meaning
 constraints
 // inherited
 subj.m.referent ↔ self.m.profiledParticipant
 self.m ↔ fin.ed

self.m.speechAct← "Declarative"

general construction NP
 subcase of RootType
 constructional: NominalFeatures
 meaning: RD

general construction ArgumentStructure
 subcase of HasVerbFeatures
 meaning: Process
 evokes EventDescriptor as ed
 constraints
 self.m ↔ ed.eventType

general construction VerbPlusArguments
 subcase of ArgumentStructure
 constructional
 constituents
 v: Verb
 constraints
 self.features ↔ v.features
 meaning: Process // inherited
 constraints
 v.m ↔ ed.profiledProcess
 evokes EventDescriptor as ed // inher’d
 self.m ↔ ed.eventType // inherited

Descriptor’s profiledProcess. At the same time it binds its own meaning pole (self.m) with the

ED’s eventType. The Declarative construction finally binds that this same Event Descriptor to its

meaning pole. Besides, it also constrains the subject’s referent (a role of the Referent Desciptor

schema, see above) to be the same as its profiledParticipant role. At the form side, it simply

constrains the subject to come before the

verb.

The last piece of the analysis is the

argument structure chosen by the best fit

process: IntransitiveArgumentStructure.

This constrains the protagonist of the action,

or of the motion in this case, to be the

EventDescriptor’s profiledParticipant. The

EventDescriptor structure represented by ed, inherited from VerbPlusArguments. In the last line

it also says that its meaning is the verb’s meaning. This, together with the constraint v.m ↔

ed.profiledProcess described above for VerbPlusArguments, implies that the even described by

the intransitive argument structure is the same as the one described by the verb (see the

description above for the EventDescriptor schema).

construction IntransitiveArgumentStructure
 subcase of VerbPlusArguments
 constructional
 constituents // inherited
 v: Verb // inherited
 constraints // inherited
 self.features ↔ v.features // inherited
 constraints
 self.features.verbform ← FiniteOrGerund
 meaning: Process
 constraints
 self.m.protagonist ↔ ed.profiledParticipant
 self.m ↔ v.m
 evokes EventDescriptor as ed // inher’d
 self.m ↔ ed.eventType // inherited

