A Brief Introduction to ECG Workbench

(V0.7, draft)

Author: Luca Gilardi lucag@jicsi.berkeley.edu

ECG Workbench Website: http://www.icsi.berkeley.edu/~lucag

Introduction
Welcome to ECG Workbench. This document is intended as a quick introduction to the
main features of the program. It assumes some knowledge of ECG (Embodied Construction
Grammar, see references at the end of this document for more information).
ECG Workbench is a support for the grammar writer. With ECG Workbench you can:
e Open an existing grammar and navigate its structure;
e Parse (or Analyze, in ECG terms) sentences, producing an analysis tree and a semantic
specification (SemSpec) that, among other things, can be printed.

e Create and edit a grammar, checking its syntactic and structural correctness;

How to install ECG Workbench

At this time, no automated installation procedure is available (but one will be eventually).
For now, your only option is to download the archive file for your platform, expand it in a place
where you can easily reach it: for instance, your desktop or your user folder. The executable for
your platform requires that a Java Virtual Machine, version 1.5 or better, be already installed on
your system.

Microsoft Windows Intel 64 bit , any recent version supporting Java 1.5,

Apple Mac OS X 64 bit Intel and PPC (any recent version should work);
Linux Intel 64 bit on GTK (any distribution supporting Java 1.5+)
The archive file (a zip file) contains a directory named ecg-workbench-<version number>.zip.

This directory (after having unzipped the archive) contains the executable file, the one marked

with the blue ball icon. To start ECG Workbench, double-click on the blue icon.

How to open a grammar file set

ECG Workbench (which I’ll sometimes refer to as EW or “the Workbench”) assumes
that you will be working on a single set of grammar files (or units) at a time. An ECG grammar
is usually defined in more than one file: keeping different schemas and constructions in different
files helps in keeping the grammar organized and thus easily comprehensible. Some files may
define lexical items for instance, other files may describe schemas or particular kinds of
schemas, other files may describe constructions, and so on. The workbench doesn’t assume any
particular criteria for breaking up the grammar. The ECG Workbench uses a metafile (the
preferences, or prefs, file) describing the grammar files and various other parameters used by the
ECG analyzer. The preferences file is a plain text file containing pointers to various elements
making up the grammar: the folder containing the actual grammar files, the file extensions for
different types of files, and even some example sentences. Although you probably will very
seldom need to deal with a preferences file, a description of its main aspects is given in the
Advanced Features section.

Assuming that you’ve just installed ECG Workbench, and that you have already launched
it as described above, select Grammar | Open Preferences File... and navigate to one of the

example grammars you have downloaded. To open the starter grammar (contained in the file

starter.zip, which should be downloadable off of the same web page on which you found this

file (http://www.icsi.berkeley.edu/~lucag/) and the zip file containing EW itself, select starter

.prefs, and click OK. You should see something similar to the following:

File Edit Grammar Search Window Help
es (5 Aol
%® Grammar Stru 52 = O |2 Analyzer 53 o | D Analyze ¥ = O T: Grammar Explorer &2 = O
& 7 ||sentence: | - = <‘='|=D =
(@ Individual - = 5 = starter
(&) process B [Zg starter
@ Set |&| argstruct.grm
() Interval & conceptschemas.grm
(@) entity |s| dit.grm
(@) cake |5] lecgrm
(&) animate lex.txt
&) room |& lingschemas.grm
(&) box |&| newargstruct.grm
(&) house |5] np.grm
(&) instrument |&| ontology.ont
(&) hand |5] process.grm
(@ region |&| sentence.grm
(&) STRING |5 spatialpp.grm
& ConstructionalFeatures |c| spatialschemas.grm
& MNominalFeatures B, starter.prefs
(@ RootType =
&) Possession
&) FiniteOrNonFinite
(@ HasVerbFeatures
& RD
& Intention
(& ROOT
& ForceTransfer
& Word
& BoundedRegion
& NP
& Process
& WordForm
& TrajectorLandmark
&) SpatialRelation
& AgreementFeatures
&) EventDescriptor
(& ByPhrase -

Figure 1

Figure 1 shows what the screen looks like before any input has been analyzed. The left hand

column depicts the schemas, constructions, and ontology items in the “starter’ grammar. Part of

the ontology lattice has been expanded. The right hand column shows the file structure that was

used in specifying this grammar.

Perspectives

The Workbench is organized into Perspectives, we will use only Analysis (fig. 1) and
Browsing. I’ll be using capitalized words to signal that they have a special meaning in the
context of the workbench. Perspectives are what the word suggests: different way of looking at
content—an ECG grammar. The Analysis Perspective is the default perspective and enables all
the functionalities of the Workbench. The Browsing Perspective, accessible by clicking the
button with the £ icon, shows just the Grammar Structure and Content Views with a fixed
layout, that is, you cannot close it or minimize them. The Browsing Perspective is simpler than
the Analysis. If you don’t plan to make changes to the grammar or using it, the Browsing

Perspective is definitely your best option. Otherwise stay in the Analysis Perspective.

To change to the Browsing Perspective, click on the & icon at the far left just below the
menu bar, choose Other.... A dialog will pop up; choose Browsing. From this Perspective you
can still analyze sentences by opening the Analyzer View by selecting Views | Open View |

Other..., opening the ECG folder, selecting Analyzer, and finally clicking OK.

Analyzing a sentence.
At the top you can see the Analyzer View. This is the only new View that you’ll see if you
manually opened the Analyzer View. Using the Analyzer View you can input sentences into the
ECG analyzer and obtain a semantic specification (or more than one in some cases). You can
enter sentences in the Sentence edit box; near the top left and tagged by the word Sentence. If

the preferences file specifies examples sentences—which is the case if you are using

starter.prefs—you can choose one from the drop-down list. Click on the down arrow at the far
right of the Sentence edit box, select for instance the box slid and click the Analyze button just

above the drop-down list. The resulting analysis will appear in a new Editor (the tabbed
windows appearing in the central part of the workbench window are called Editors). The new

Editor’s title will remind you that its content is relative to the sentence you just analyzed:

T . (L
File Edit Grammar Search Window Help
T | B Analysis
P Grammar Stru 52 =0 'I,g', Analyzer 2 g ¥ | D Analyze ¥ T O
@ = Sentence: the box slid .
Individual - =
@ @® process — ||£=2) the box s... &3 m]
(@) Set Sentence: "the box slid” -
(@ Interval
(@ entity
@ cake Returned analysis:
() animate =
@ room Cost: -8,458504195067558
@ box Analysis: ROOT(0, 3)
1% house Constructions Used:
(@) instrument —
© hand ROOTI2] (0, 3)
(® region Declarative[0] (0, 3)
(& STRING DeterminerMoun[12] (0, 2)
- THE[21] (0, 1)
& ConstructionalFeatures BOX[20] (1. 2)

© NominalFeatures IntransitiveArgumentStructure[10] (2, 3)

(@ RootType E SLIDEL[23] (2, 3)

&) Possession

© FiniteOrNonFinite Schemas Used:

G HasVerbFeatures EventDescriptor{1]

@R @box[5]

& Intention NominalAgreementFeatures[7]
(@ rOQT MotionPath[8]

© ForceTransfer EIS[I;EB[]]‘I]

< ‘é\'ordd dRegi VerbAgreementFeatures[15]

© BoundedRegion NominalAgreementFeatures[17]
@ ne MominalAgreementFeatures[19]
Q Process @slide[24]

& WordForm SPG[25]

& TrajectorLandmark

) R Semantic Constraints:
© SpatialRelation

© AgreementFeatures L IntransitiveArgumentStructure[10].features <-->
© EventDescriptor X
@ ByPhrase ~ || Text Output | SemSpec, cost -8.458504 |

Figure 2

More on sentence analysis

As you can see (fig. 2), at the bottom of the new Editor window there are two tabbed
panes. The one that is displayed by default (Text Output) is a textual view that shows all the
constructions and schemas used. For example, for the sentence you just analyzed, you can see
that the Constructions used are the following:

ROOT[2] (0, 3)
Declarative[0] (0, 3)
DeterminerNoun[12] (0, 2)
THE[21] (0, 1)

BOX[20] (1, 2)

IntransitiveArgumentStructure[10] (2, 3)
SLIDE1[23] (2, 3)

The numbers in parentheses are the “spans” of the sentence that the relative construction
recognized, starting from zero: o the ; box ; slid 3. Thus the Declarative construction was used to
recognize the entire sentence (it covers the words from 0 to 3), whereas IntransitiveArgument
Structure spans words 2 to 3, and so on for the other Constructions. From this output, drawing
the parse tree is straightforward.

All the numbers in square brackets are the instances (or “features’) that show up in the
other view, the SemSpec, described in the next paragraph. Still in this view, the Constructions
Used Section, is followed by another section showing the Schemas involved in the analysis, and
a final section containing all the unification bindings, not all of which fit in Figure 2.

The SemSpec tab opens a more graphical view of these last two sections. The SemSpec
tab (also at the bottom of the Analysis Editor) for the box slid contains the semantic
specification (Figure 3), that is, the Schemas involved in the analysis of the sentence together

with their relationships. The format employed is very similar to that used for printing the classic

attribute-valued matrices that’s common in the literature on unification grammars like HPSG, but

it includes some additional features.

If you have clicked on the SemSpec tab, you might be seeing see only a part of it (again,
depending on your screen’s resolution). You may need to make room for the Analysis Editor by
clicking the minimize buttons (see figure to the left) at the upper left corner of the Grammar

Explorer View. This is what you’ll see:

e
File Edit Grammar Search Window Help
=]
%® Grammar Stru #2 =0 'IIE'I Analyzer E3 ar ¥ | 2 Analyze © T O
= Sentence: the box slid -
(@ Individual - =
— |(E= B
@ process M
@ set (IDeclarative i
(@ Interval
@ entity (JlIntransitiveArgumentStructure 2
@ cake (ISLIDE1
@ animate
(&) room & MotionPath
@ box o
SPG
& house v spa: rjecton i
(&) instrument m: rajector:
(@ hand maver: 5| I
(@ region _ actionary:
(3 STRING fin: protagonist: E
& ConstructionalFeatures
& NominalFeatures m: =[] (N
(9 RootType = & EventDescriptor
@ Possession profiledParticipant: E i
& FiniteOrMNonFinite e profiledProcess:
(@ HasVerbFeatures rootconstituent: @ profiledState:
@ RrD eventType:
@ Intention speechict: E “Declarative”
(@ rROOT
& ForceTransfer m
(@ word (I DeterminerNoun !
© BoundedRegion
@ NP @THE]
& Process &RD
S] Wo-rdForm spec referent: E
& TrajectorLandmark . m: name: I
© SpatialRelation subj: ontological-category: E
& AgreementFeatures B givenness:
& EventDescriptor 2
@ ByPhrase ~ || Text Output | SemSpec 1, cost -8.458504 |

Figure 3

To make even more room, you can maximize the Editor window. You can click on the
maximize icon (")) in the same frame that contains the analysis results Editor. Here is what you

should see:

As you can see, some of the coindexed elements, which also appear in square brackets in
the Text Output tab, are highlighted in red. When you click on a boxed number, and all the ones
that have the same value will light up as well. For instance, if you click on the |5 | next to
protagonist in the Motion schema, all the other coindexed roles will be colored in red (you
might have to scroll down to see them all). If you hover over a boxed number, the value
associated with that index will be temporarily displayed. For example if you hover over the ,
which is the actionary role in the MotionPath schema, the a box with word “slide” will appear.
The SemSpec is the main link between language analysis and subsequent action, as described in
Reference 2.

Another feature of this SemSpec representation is that you can collapse any of the elements by
clicking on their headers (the grey bars containing the Schema names). If you click again on a
collapsed grey bar, the contained element will expand again. You can also print, by just selecting
File | Print from the main menu. To restore the Analysis result window to its original size, you

double-click on the title, right-click and select Restore, or click the restore icon .

Analyzing a sentence not in the list
Of course you can analyze other sentences, provided that the required lexical items and

constructions are defined by the grammar. Later on, in the section Exploring and modifying

the grammar, I’ll explain how to add a lexical item. For now, let’s use what is already

defined by the starter grammar. You can type a new sentence in the Analyzer Editor, replacing
the previous sentence. Let’s click on that sentence and type in a new one that will work with the

starter grammar: the cake slid into the box. Press enter (this will make the workbench

remember this sentence in the list), and then click Analyze. A new Editor pane will show up with

the results of the analysis, while the old example will remain available as another tab at the top.

Editor management — can be skipped initially

An EW Editor looks like a View since it’s a tabbed window like all Views. The
difference is that Editors are the result of operations you perform on elements in the workbench
window (like typing in a sentence and hitting the Analyze button, or clicking on a node in the
Grammar Structure View) rather than selecting from a menu. Unlike Views, Editors typically
(but not always) permit the modification of the grammar files; they are created automatically by
the Workbench depending on the operations you perform on its elements. There can be any
number of the same kind of Editors open at the same time, whereas only one instance of a certain
kind of View, say for instance the Grammar Structure View, can be open at any given time. In
the Grammar Structure View, shown on the left in Figures 1-3, Constructions are marked by the
@ icon, Schemas are marked by @, and @ identifies ontology elements.

If you analyzed the two sentences as described above, you’ll see tabs for the two Editors
containing the results of each analysis are still there. Editors are created by EW and never closed
automatically. The tabs that accumulate in the upper part have an “X” icon that you can use to
close them. At the far right, a small >> icon signals that there are more Editors than the
Workbench window can fit as tabs. If you click on the >> icon, a drop-down list containing all of
the Editors’ captions will appear. If you have a lot, typing the first letter(s) of the captions’
names will select only those beginning with the letters you typed.

If you’re used to Web browsers, you might expect forward and back buttons to navigate
back and forth to the “places” you’ve visited. There are no such buttons, in the current version of

the Workbench, but the fact that the Editors remain accessible should help you keep track of

what you did. Again, the list of all the open Editors that is always available through the >> icon

also should help navigation.

Browsing and navigation

To simplify things a bit, let’s click again on the Browsing button (below the menu bar).
The Grammar Structure View on the left shows all the grammar elements that are available—
from all the files making up the grammar—in a hierarchical view. Clicking on an arrow, or plus,
depending on our platform, on the left of an element (not on the element itself) will expand it and
show that element’s subcases. For instance, if you click on the arrow at the left of the
construction RootType (marked by @), you’ll see that, among others, it contains a node called
NP, which in turn contains WH-NP, SpecifierPlusKernel, Pronoun, UndeterminedNP, and
ProperNounNP. This is because these are all subcases of NP.

If you return to the Grammar Structure View and look for the Construction S, click on it,
and navigate to the Declarative item, click on its @ and you’ll see that its actual definition will

be shown to the right, where a new tabbed window—a new Editor showing sentence.grm in its

caption—will show up:

(9 ByPhrase
. © AgreementFeatureSet i

4 UL I

(3 ECG Workbench =HACIH X
File Edit Grammar Search Window Help
£ [Browsing | [Analysis
¥
%8 Grammar Structure &2 = 0|z Analyzer o X | ¥ =0
=
= T
Q Sentence: - E
. @ Process - o
4 (3 RootType = o=
4 @ NP & pronoun.grm & np.grm & sentence.grm 3 B
- (@ Pronoun .
. (& ProperlounMP construoction Declarative
. (@ SpecifierPluskernel = subcase of [roNSTRUCTION Declarative
(@ UndeterminedNP constructio| sybcase of 5-With-Subj
) @ WH-MP constitoel COMSTRUCTIOMAL: SentenceFeatures@SCHEMA
(3 UnknownWord £in:VE constituents
. @ Word constrainl fin: VP@CONSTRUCTION
. subj: NP@COMSTRUCTION /finherited from 5-With-5ubyj
- (9 Spatial-PP bl self.feat constraints
4 @ 5 form . celf features.mood <-- "Declarative”
4 (& 5-With-5ubj cons-traln fin.features.verbform <-- Finite ffinherited from 5-With-5ubj
(@ SubjWH-Question 5"3'1_33 -f be subj.features.persnn LS fiq.features.person _a‘_e'inherite.d from 5-With
4 @ 5-With-Aux-Inversiol meaning subj features.number <--> fin.features.number [finherited from S-W
@ Ves-No-Questi constrain subj.features.case <-- "nom” /finherited from 5-With-5Subj
. es-Mo-Questior . ~
self.m <——> fin.ed
(@ Declarative ' T 3
4 &) AgreementFeatures - =
=08
& MominalFeatures [£ Problems 22 &l Console
a & VerbFeatures 0 items .
& AuxFeatures Description Resource Path

UL k

Figure 4

Let’s look at the sentence.grm Editor tabbed window. There are a few aspects to be especially

aware of.

First of all, you can hover on many elements. In fig. 5 above is shown the hover result for

Declarative. The information shown in the hover info box (you can make it a real window that

you can stretch and copy from by hitting F2) may be different from the file content. This is

because it shows the complete structure of an element, which includes local and inherited

structure. For instance, the hint box for Declarative contains the following:

CONSTRUCTION Declarative
subcase of S-With-Subj
CONSTRUCTIONAL: UNTYPED
constituents
fin: VerbPlusArguments@CONSTRUCTION
subj: NP@CONSTRUCTION
constraints
fin.features.verbform <-- Finite
subj.features.person <--> fin.features.person
subj.features.number <--> fin.features.number
subj.features.case <-- "nom"
FORM: UNTYPED
constraints
subj.f before fin.f
MEANING: EventDescriptor@SCHEMA
constraints
self.m <--> fin.ed
self.m.speechAct <-- "Declarative"
subj.m.referent <--> self.m.profiledParticipant

//inherited from S-With-Subj

//inherited from S-With-Subj
//inherited from S-With-Subj
//inherited from S-With-Subj
//inherited from S-With-Subj

//inherited from S-With-Subj

But the text file content is a shorter, since it omits the structure defined by its supertypes:

construction Declarative
subcase of S-With-Subj
constructional
constituents
fin:VerbPlusArguments
form
constraints
subj.f before fin.f
meaning
constraints
self.m <--> fin.ed
self.m.speechAct <-- "Declarative"

The hint box thus shows all the inherited elements from the constructions that Declarative is a
subcase of. The comments (generated automatically) tell you which elements are inherited and
from which supertype. More specifically, it shows that Declarative inherits a subj role from S-

With-Subj, and also four different constructional constraints, and a meaning constraint.

Another difference between the ECG code shown by the file Editor and the hint box is in
the font case: in the first example, keywords (like construction, subcase, and so on) are all
uppercase, while in the second they are lowercase. This is because some software packages that
are part of EW take quite literally the ECG specification, which requires all the keywords be
case-insensitive. Therefore, you are free to use upper- or lowercase (and even mixed-case) letters
for the various ECG keywords. Notice though that all type identifiers (Declarative, S-With-Subj,
Pronoun, NP, Word, etc.) are instead case-sensitive.

Second, another useful feature of the Editor is that the type identifiers are hyperlinked.
Hovering the mouse cursor over a Construction or Schema identifier, this time holding down the
Ctrl (or the Option key on the Mac), will turn the identifier itself into a hyperlink. You can jump
to the type definition by just clicking on it.

Third, search and replace (local to the file shown in the title) can be done by
choosing Edit | Search (or by hitting Ctrl/Option+F).

Fourth, a global search and replace is possible from the top Search menu or by hitting

Ctrl/Option+H. This will open the following dialog:

f (3 Search =RUCIEL X

2 File Search

Containing text:

construction Declarative + [Case sensitive

{* = any string, 7 = any character, \ = escape for literals: * 1) [C] Regular expression

File name patterns:

*.grm - [

Patterns are separated by a comma (* = any string, 7 = any character)

[7] Consider derived rescurces

Scope

@ Workspace Selected resources (0) Enclosing projects

[Replace... ” Search ” Cancel]

Figure 5
Ignoring the Scope group at the bottom, many of the other options are self-explanatory. You can
choose the file types to search by pressing Choose... and ticking off all the files that are
recognized by the Workbench as valid grammar files. Hitting Replace will open a dialog that
will prompt you to enter the substitution string, and an optional preview of the result, before the
actual substitution takes place. By hitting Search, the Workbench will find all occurrences of in
all open grammars (only one if you just opened starter). A new tabbed Search View will be

opened at the bottom, as follows:

(3 ECG Workbench = | B S
File Edit Grammar Search Window Help
£ [E Browsing | [Analysis
&8 Grammar Structure &2 = 0|z Analyzer o X | ¥ =0
=
=
Sentence: - E
& Process - o
{3 RootType = o=
@ NP & pronoun.grm & np.grm | sentence.grm &3 & singularnouns B
Q Proncun sub]j.m.referent <--> self.m.profiledParticipant -
(@ ProperhounMP
(@ SpecifierPluskernel
@ UndeterminedMP = construction Declarative
@WH-NP subcase of 5-With-5ubj
9 UnknownWerd constructional
constitonents
9 Word .
. fin:VP
(@ Spatial-PP .
5 constraints
@ . i _self.features.mood <-- "Declarative” B ol
(@ 5-With-Subj 4 1 r
(& SubjWH-Question = - =
@ S-With-AuxInversio 2l Problems | El Console | 4" Search &3 8
(@ Ves-Mo-Questior L qF | b 4 %| + E|| =7 o N
(@ Declarative ‘Verb' - 50 matches in workspace (*.grm)
@ AgreementFeatures 1= base? o~
(@ ByPhrase (g base? [
e Agre_ement!featureSet 5 _aux.grm (7 matches) 7
@ SpatialRelation = 19: subcase of HasVerbFeatures, Word
© Modifier % 37: auxfeatures.expectedVerbForm <--> vp features.verbform
@ SentenceFeatureSet - = 71: auxfeatures.expectedVerbForm <--> vp features.verbferm
1 [1 Jo» = 96: self features.expectedVerbForm <-- Participle -
Writable Insert 26:25
Figure 6

You can reach all the occurrences found by clicking on the lines indicated by the right-pointing
arrows. The two up and downward arrows will walk you through all the matches. As with any

other View, you can drag the Search view from the bottom to the sides, or minimize it.
Exploring and modifying the grammar

Now return to the Analysis Perspective. A click on the Analysis button will restore all the
Views that were defined there if you switched to the Browsing Perspective. Let’s take a look at
the Grammar Explorer View on the right of Figure 1. This shows all the files that are part of the
grammar, the ones that are named by the preferences file. In the Grammar Explorer View,

double-clicking any of these files will open an Editor in the central part of the workbench.

The file Editor features syntax highlighting and supports cut and paste, search and
replace, both regular and incremental, and undo and redo of operations. The key combinations
needed should be the ones you’re familiar with on your platform—see the Help menu, to see a
comprehensive list of all the key bindings. As already mentioned, holding down the Ctrl/Option
key and hovering the mouse pointer over type identifiers opens their definition, and just hovering
over them opens a tooltip showing their complete definition (i.e., the one including all the
inherited features).

Modifying the grammar, actually

Let’s try to add a lexical item, for instance Door, in the Analysis Perspective. In the
starter grammar, many lexical items are defined in lex.grm. Using Grammar Explorer in the
right pane, open the starter folder (by clicking on the triangle or plus at its left), scroll down to

the lex.grm node and double-click on it. This should be what you see:

Eile Edit Grammar

s (EAabes)

Search Window Help

=

8

©® Grammar Stru 2

8

-

& AgresmentFeatures
(¥ RootType
(# HasVerbFeatures
& Intention
(& ROOT
& BoundedRegion
@ np
& Possession
@ Word
(@ TO-Infinitive-Markes
(9 SpatialPreposition
(& Noun
(@ CommonMoun
(3 ROOM
(@ CAKE
(9 House
{3 HAND
@ BOX
@ Verb

@ Aux
(@ Pronoun

(¥ NPSpecifier

(@ PossessivePronoun
& WordForm
& rRD

& MominalFeatures

s

m

-

15 Analyzer 22 % X | Q Analyze ¥ = O
Sentence: he slapped his hand at the box -
5] lexgrm 3 |&| lingschemas.g 1»2 =8

general construction Word
form : WordForm

general construction Noun
subcase of Word
constructional:NominalFeatures
meaning: @entity

m. |

construction BOX
subcase of CommonNoun
form
constraints
self.f.orth <-- *
meaning: ([@box

construction HOUSE
subcase of CommonNoun
form
constraints
self.f.orth <--
meaning: ([@house

"house"

construction HAND
subcase of CommonNoun
form
constraints
self.f.orth <--
meaning: (@hand

"hand"

s Grammar EBxplo &2 =0
=R
T=F starter
[#g starter

4

[nl

Y ERERIE

[[ed [l [ed [ed [ed [[m

n

L]

argstruct.grm
conceptschemas.grm
dit.grm

lex.grm

lex.bt
lingschemas.grm
newargstruct.grm
np.grm
ontelogy.ont
process.grm
sentence.grm
spatialpp.grm
spatialschemas.grm

arter.prefs

Tl b

Writable

‘ Insert

‘39:18

Figure 7

The left column shows the grammar structure window with the Noun node expanded to show

the 4 CommonNoun items in our Starter grammar. The center pane contains an editable version

of the ECG definitions of all the words in lex.grm and some grammatical constructions like

Worn and Noun.

The easiest way to define a new lexical item is to copy and modify an old one. Modifying the

construction for box seems the right thing to do. You can scroll through the code file in the

middle pane to find the code for Box. Alternatively, you can use the Edit | Find/Replace menu to

search the file, or, even simpler, use the Outline View (see below). Select the construction for

Box, copy it (by selecting with Edit | Copy or by pressing Ctrl+C, (or Option+C on the Mac) and
press Ctrl+V (or Option+V on the Mac). Now you have two Box constructions.

Just as a small exercise, we can show that the grammar checker rejects what we have
done: we can’t have two constructions with the same name in the same grammar. To test that,
you need to save the file you’ve just modified if you haven’t done so yet (File | Save from the
menu or Ctrl+S on the keyboard), and then check the grammar by selecting Grammar | Check
(or hitting Ctrl+Shift+C). The errors will be marked on the text in the center pane. You can hover
with your mouse over the underlined element or the © icon next to the position in which the
faulty construction is: There are at least two definitions of the construction: BOX. Take a look at
the Grammar Explorer in the right pane: you’ll see various red icons signaling various (possibly
spurious) errors that the grammar checker generated because it was unable to finish checking the
lex.grm file. You can go ahead and change the second Box into Door, and also the assignment to
the self.f.orth role from “box” to “door.” Save and check the grammar again: everything should
grammatically check fine now.

You will probably have noticed that there’s still an inconsistency in the Door
construction: the referent is still an object of type box (in @box, the “@” sign signals that box is
actually an element in the ontology). Try to change @box into @door in the new construction,
and then save and check the grammar. At this point the following error should be showing next
to your new Door construction: “Construction Door does not have a consistent inherited type for
its MEANING pole out of the inherited types: [entity, door].” This rather cryptic message means
that there’s something wrong in the meaning pole of your new construction and you have to add

the appropriate element to the ontology.

To do this, go to the Grammar Explorer, find the node for ontology.ont, and double click on it.
Go to the Editor, select, copy and paste a new box type definition, replace box with door in the
copied code. Save and check the grammar; everything should be fine again. As a last check, let’s
try to use the new word in a small sentence. Go to the Analyzer tab in the upper part of the
window. In the edit field labeled “Sentence” type he slapped at the door, hit enter, and then
Analyze. A new Analysis Editor should appear; click on the SemSpec tab at its bottom, and
maximize the newly created Editor window (as described above, by double-clicking on its

&

caption, by hitting Ctrl/Option+M, or clicking on the = icon). Here is the result:

(® ECG Workbench

File Edit Grammar

s ()

Search Window Help

9% Grammar Stru 52

= O |[I2 Analyzer 22

@v

© TrajectorLandmark
@ NP

& WordForm

@ ROOT

(9 ByPhrase

D Intention

@ Possession

© ConstructionalFeatures
@ AgreementFeatures
@ ForceTransfer

@ EventDescriptor
@ BoundedRegion
© Process

@ SpatialRelation

9 RD

@ FiniteOrMonFinite
@ Individual

@ NominalFeatures
@ word

(@ HasVerbFeatures
(@ RootType

v
fin:
np:

rootconstituent:

(JActiveTransitiveProfiledCauser

m: actionarny:

process2:

routine:
protagonist:

9sLapr1

& AgentivelmpactAction

protagonist2:
95 I I. I.
actedUpon:

processl: effector:
acton
protagonist:
instrument:

& MotorControl
effector:

O EffectorMationPath
processl:
target:

protagonist:

(9DeterminerNoun

spec |GTHE

(IDoor
3 34
o Bl
m:
O CauseEffectAction

protagonist2:

Sentence: he slapped the door
|5 ontelogy.ont ﬁ'i__éll he slappe... ﬁ-@ he slappe... ﬁ:-% he slappe...
(9root ol
(IDeclarative

m

Text Qutput | SemSpec 1, cost -10.250264

Figure 8

of the action “door” is also visible. This last example terminates this small tutorial. If you have

problems or comments, please email me, the author (see at the beginning of this document).

As before, the various roles associated with the agent “he” are all highlighted and here the object

Some advanced features
This section gathers together a few tricks for power users. One that’s quite useful is to
press F2 to turn a tooltip into a floating window (or simply moving the mouse cursor into it), and

copy the text from there.

Preferences

Preferences are not to be confounded with the preferences file, which, as we’ve seen
above , describes a grammar. The dialog window accessible through the menu Window |
Preferences allows you to define a wealth of parameters that affect the Workbench. To the left
all the preference topics are organized hierarchically. Clicking on a topic will determine the
content of the right hand side. Below the General topic is shown. One interesting setting is the
possibility to open files (those shown in the Grammar Explorer View) with a single click instead

of a double click. This is done choosing Single click in the Open mode group below.

.
(3 Preferences

type filter text

4 General
4 Appearance
Colors and Fonts
Label Decorations
Compare/Patch
Content Types
a Editors
File Associations
- Text Editors
Keys
Perspectives
Search
- Workspace
4 Install/Update
Automatic Updates
- Team

General - v v

[T] Always run in background
[Keep next/previous editor, view and perspectives dialog open
[Show heap status
Open mode
@ Double click
() Single click
Select on hover
Open when using arrow keys

Mote: This preference may not take effect on all views

’ Restore Defaults] ’ Apply]

| ok || Cance |

Figure 9

If you want to change the Editors’ font, you can click Colors and Fonts. Another list will appear

on the right: open the Basic node, select Text Font, and click on the Edit button. Here you can

choose the font you like. Another very useful feature is Automatic Update. If you click on the

checkbox, the Workbench will look automatically for new updates according to the schedule you

choose.

Install/Update
Automatic Updates
Team

(3 Preferences =RNNCN X |
type filter text Automatic Updates - h
General

[¥[iAutomatically find new updates and notify me

Update Schedule
@ Look for updates each time platform is started

(") Look for updates on the following schedule:

Every day 1:00 AM

Download Options
i@ Search for updates and notify me when they are available

(") Download new updates automatically and notify me when ready to install them

[Restore Qefaults] [Apply

| ok || cCancel

Key combinations

Figure 10

There are lots of key combinations that are useful. Some are contained in the menus, but most

are not. A few are (replace Ctrl with the Option key on the Mac)

e To duplicate text (like you did with Table above) you don’t need to copy and paste: you

can just select the text to duplicate and type Ctrl+Alt+Down Arrow.

e To delete a line, just use Ctrl+D.

e To insert a line above the cursor, press Shift+Ctrl+Enter.

e To insert a line above the cursor, press Shift+Enter.

e To see most of the defined key combinations, hit Ctrl+Shift+L: an overlay will appear in
the right corner of the workbench. Most, but not all, the key combinations you’ll see are
active.

All these key combinations are accessible and modifiable from the Preferences dialog, Keys

topic.

Additional Views

A very useful add-on to the file editor is the Outline View, which will show all the constructs
defined by the file in the active Editor. To open the Outline View from the Analysis perspective,
select Views | Outline. From the Browsing perspective, select Views | Open View | Other... and
choose Outline from the General folder.

The Outline View synchronizes itself automatically with the file Editor’s contents,
without the need to save the file, and provides a list of all the items currently in the foreground
Editor (the one with the blue tab). You can drag the Outline tab (which now will have covered
the Grammar Explorer) down with your mouse until you see the grey rectangle—which
represents the future position of the tab if you release the mouse button— moving to the bottom
half of the right column. Release the button there. Now you should have two panes on the right
with Grammar in the upper part, and the Outline View in the lower part.

This way, you can see the Grammar Explorer and the Outline at the same time. Again, you can

rearrange all the tabs in the Workbench window as you please.

Cloning a grammar (to make a new one) — rarely used.

At this time, there is no way to create automatically a preferences file. Therefore, you
have to look at those that come with the example grammars, and copy and modify one of them.
To create a new grammar, right-click inside the Grammar Explorer view, select New | Project...,
select Project in the wizard dialog that will appear, hit Next, insert a name in the Project name
edit field, and finally hit Finish. To create a .prefs file, right-click on the newly created Project,
select New | File, type a file name (don’t forget the .prefs extension) in the appropriate field, hit
Finish. Double-click it to edit it. The relevant entries are:

e GRAMMAR_EXTENSIONS: a space-separated list of extensions.
o Example:
GRAMMAR_EXTENSIONS = grm sch
e ONTOLOGY_EXTENSIONS: same as above for ontology-defining files;
e GRAMMAR_PATHS: a newline-separated list of directories in which the files with
the extensions defined above will be looked for. The last line must be a
semicolon.

o Example:

GRAMMAR_PATHS ::==
.[starter

e ONTOLOGY_PATHS: a newline-separated list of files (not directories) if
ONTOLOGY_EXTENSIONS is not defined that will be looked up as ontology files,
or a list of directories (as in GRAMMAR_EXTENSIONS) otherwise. Same format as

GRAMMAR_PATHS.

o Example:

ONTOLOGY_PATHS ::==
./starter/ontology.ont

References

1. Outdated ECGweb Wiki: http://ecgweb.pbworks.com/

2. Latest published paper: ftp:/ftp.icsi.berkeley.edu/pub/feldman/cslp.final.docx

3. Oxford Handbook Chapter
ftp://ftp.icsi.berkeley.edu/pub/feldman/OxfordHandbook.pdf

4. Ellen’s ICLC talk ftp:/ftp.icsi.berkeley.edu/pub/feldman/ICLC13.ellen.ppt

