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Abstract Neural spikes are an evolutionarily ancient

innovation that remains nature’s unique mechanism for

rapid, long distance information transfer. It is now known

that neural spikes sub serve a wide variety of functions and

essentially all of the basic questions about the communi-

cation role of spikes have been answered. Current efforts

focus on the neural communication of probabilities and

utility values involved in decision making. Significant

progress is being made, but many framing issues remain.

One basic problem is that the metaphor of a neural code

suggests a communication network rather than a recurrent

computational system like the real brain. We propose

studying the various manifestations of neural spike sig-

naling as adaptations that optimize a utility function called

ecological expected utility.
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Introduction and background

A continuing theme in computational neuroscience has been

the search for ‘‘the neural code’’. In this paper, I will suggest

that this is not a well formed question and has given rise to a

fair amount of needless confusion. Neural spikes are an

evolutionary ancient innovation that remains nature’s

unique mechanism for rapid long distance information

transfer (Meech and Mackie 2007). Other communication

mechanisms are either much slower (e.g., hormones) or

extremely local (e.g., gap junctions). It is now clear that

neural spikes sub serve a wide variety of functions. Rather

than trying to restate well established facts about neural

spikes, this paper will develop a new and broader view. For

background, we will rely on a few standard books and three

fairly recent surveys by de Charms and Zador (2000), by

Kreiman (2004), and by Gollisch (2009).

We will continue the tradition of examining neural

signaling from the information processing perspective

(Feldman 2006, Chap. 2), backgrounding the underlying

biochemistry. Most research is focused, as it should be, on

specific systems, but there are also important regularities in

neural representation and communication. Current research

is extending these general studies to decision making, but

is unfortunately also falling prey to the myth of a unique

neural code.

One major barrier to understanding ‘‘the neural code’’ is

that the term itself can be misleading. First of all, using

‘‘the’’ presupposes that there is just one mode of neural

signaling, which is known to be false. In addition, one

standard meaning of a code is a fixed representation of

information that is independent of the sender, receiver, and

mechanisms of transmission (Kreiman 2004). The tradi-

tional example was Morse code, but perhaps the best

known current example is the ASCII code used in com-

puting. In ASCII, the lowercase ‘‘a’’ is always 1100001 and

uppercase ‘‘A’’ is always 1000001, etc. Of course, genetic

DNA is a code in this sense, although much more complex

than ASCII. Neural spike signals are used in several ways

in living systems, but this kind of context-free code is not,

and could not be, one of them, as will be shown in the

section ‘‘Spikes in single neuron communication’’. We will

use the phrase neural signaling to refer to the rapid, long
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distance communication mediated by spikes that is the

subject of this article.

Another, quite distinct, use of the term ‘‘neural code’’

relates neural signaling to Shannon information theory,

often called coding theory. The standard book ‘‘Spikes:

Exploring the Neural Code’’ by (Reike et al. 1997) makes

no mention at all of ASCII like codes. Codes in informa-

tion theory have no symbolic meaning and this is a much

better model for neural signals. The Rieke et al. book

remains the most thorough treatment of neural signaling

from the coding theory perspective, containing theoretical

and experimental treatments of rate coding, decoding,

quantity of information, and reliability. For the more

recent, utility-based studies, we will rely mainly on the

collection of articles in (Glimcher 2009).

Spikes are an evolutionarily ancient mechanism that is

largely preserved. Quoting from John Allman (2000), who

knows vastly more than I do about the brain:

Action potentials and voltage-gated sodium channels

are present in jellyfish, which are the simplest

organisms to possess nervous systems. The commu-

nication among neurons via action potentials and its

underlying mechanism, the voltage-gated sodium

channel, were essential for the development of ner-

vous systems and without nervous systems complex

animals could not exist.

Much of the mechanism behind neural spikes goes back

even earlier in time (Meech and Mackie 2007; Katz 2007).

Unsurprisingly, the earliest function of spiking neurons is

to provide a signal for coordinated muscle action as in the

swimming of the jellyfish. This kind of one-shot direct

action remains one of the principal functions of neural

spikes. Nature is quite conservative—once a winning

design evolves it is reused and adapted. There is no reason

to expect the range of variation in function for neural

spikes to be less diverse than that of forelimbs, which have

become arms, legs, wings, or fins. Spiking neurons are

evolutionarily much older than forelimbs.

Because of the underlying chemistry, all neural spikes

are of the same size and duration. The basic method of

neural information transfer is, and needs to be, by labeled

lines. Most of the information conveyed by a sensory

neural spike train comes from the origin of the signal.

Every patch of your skin contains a variety of specialized

sensing neurons, each conveying a specific message.

Similarly, the result of motor control signaling is largely

determined by which muscle fibers are targeted. The other

available degree of freedom is timing; there is a wide range

of variation in the axonal conduction time of neural spikes.

Nature has evolved a rich variety of mechanisms for

exploiting absolute and relative time. Of course, all of the

variants of neural signaling were selected for their

evolutionary fitness and this becomes important later in the

article.

An additional definitional problem was that the idea of a

code suggests some deterministic representation. As

recently as 2000, a survey of research on the Neural Code

in the Annual Review of Neuroscience (de Charms and

Zador 2000) had essentially no mention of probability and

utility. The zeitgeist has changed radically and Kreiman’s

(2004) review and subsequent articles are largely framed in

probabilistic terms. The volume by Glimcher (2009)

remains the best introduction to these developments, often

called ‘‘neuroeconomics’’. We will look at this in some

detail in later sections.

From our information processing perspective, the crucial

issue is effective signals. We are interested in when a

neuron or neural system evokes an action or makes a

decision. From our purposes these are essentially the same

and will be referred to as action/decision. Obviously

enough, an individual neural spike is an action and can also

be viewed as a (metaphorical) decision by the neuron to

fire. For larger neural circuits, we still want to focus on

information (coded as spikes) that (eventually) leads to a

decision to do one thing rather than another. If there is no

choice, there is no effective information. This becomes

important when we try to analyze what function is sup-

ported by some spiking pattern.

Most research is focused, as it should be, on the specific

systems, but there are some useful insights about neural

representation and communication in general. The goal

here is to consider the mechanisms of rapid, long distance

communication in nervous systems. If we try to include the

content of all the messages, we would need to explain

everything about the brain. If we focus on the form of

messages conveyed by neural spikes, a relatively clear and

coherent picture emerges. We will focus on the information

conveyed directly by spikes and not review the significant

modulatory effects of chemical signals delivered by neural

activity. Other important related topics that will not be

covered in detail include spike generation, development,

and learning.

In addition to information processing, the other orga-

nizing principle for this study is resource limitations. The

most obvious resource limitation for neural action/decision

is time. Many actions need to be fast even if that means

sacrificing some accuracy. Some neural systems evolved to

meet remarkable relative timing constraints, much shorter

than spike intervals. A second crucial resource is energy;

neural firing is metabolically expensive (Atwell and

Laughlin 2001; Lennie 2003) and brains evolved to con-

serve energy while meeting performance requirements. The

three factors of accuracy, timing, and resources are the core

of a utility function that constrains neural computation. For

advanced social animals like ourselves, there are a number
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of additional considerations including learning, the exploit/

explore tradeoff (Cohen et al. 2007), communication, and

social cognition. Neural signaling evolved to serve all these

functions, but the range of basic mechanisms involved is

rather restricted.

Spikes in single neuron communication

Although all behavior involves neural circuits, it is useful

to first consider the role of neural spikes in the communi-

cation from a single neuron to another or to an effector cell.

As always, our discussion will elide the biophysical and

chemical details and focus on the information processing

perspective. As discussed above, one ancient and important

use of spikes is when a single spike evokes an action/

decision. Single spike activity is surprisingly important in

complex brains, including ours. As (Reike et al. 1997, p.

17) point out, spiking is temporally sparse—often about

one spike per neuron for a salient event.

In some cases, the temporally leading spikes can be

shown to directly determine human behavior. This is called

‘‘spike wave theory’’ (Rousselet et al. 2007) or sometimes a

‘‘latency code’’. In a path breaking series of experiments

the Thorpe group (Kirchner and Thorpe 2006) has shown

that complex visual decisions can be made in about the

time that it takes for the first spikes from a visual input to

reach the brain area involved. The standard task is to push a

left button if a complex scene contains any picture of an

animal and a right button if not. The decision is detectable

as right or left motor cortex activity in 150 ms, which is

very close to the cumulative signaling and transmission

delays involved. The Rousselet paper suggests (p. 1255)

that the system can make the binary decision without actual

recognition—using top down priming to condition the

network to choose between two competing collections of

criteria features.

A related finding is computationally modeled by

(Serre et al. 2007). In these studies, people are shown a

very wide range of visual scenes at a rate of seven

images per second. Subjects have brief experiences of

recognition for each scene although there is no time for

eye movements. The authors are able to model this

behavior with a simple biologically motivated hierarchi-

cal feed-forward connectionist network, trained on half

the sample images.

The spike wave story also suggests an important point

about firing patterns in neural populations. At every step in

a perceptual task there are many neurons firing, but most of

this is the encoding of competing potential action/deci-

sions—the code is basically disjunctive not conjunctive

(Jazayeri and Movshon 2006). This will be discussed in the

section ‘‘Population codes’’.

We should also discuss why it is not feasible for one

neuron to send an abstract symbol (as in Morse or ASCII

code) to another as a spike pattern. There are several

related considerations from neural computation. We know

experimentally that the firing of sensory (e.g., visual)

neurons is a function of several stimulus variables, often

intensity, position, velocity, orientation, color, etc. It would

take a rather long message to convey all this as an ASCII

like code and the firing rates are much too slow for this,

even ignoring the stochastic nature of neural spikes. Even

if such a message were somehow encoded and sent to the

next level, it would require an elaborate computation to

decode it and combine it with the symbolic messages of

neighboring cells and then build a new symbolic message

for the subsequent levels. This is what we do with lan-

guage, but nothing at all like this occurs at the individual

neuron level.

The most common use of neural signaling is to indicate

the strength of some event, where the strength can code a

combination of the intensity of a multidimensional event

and some function of probability. Since all spikes are the

same size, the strength of the signal must be encoded in the

number or frequency of spikes. There are, of course, syn-

aptic weights but these encode the strength of connection,

not the signal. The conventional story is that the strength of

a neural spike signal is conveyed by spike discharge fre-

quency and everyone agrees that this is often the case. But

we also now know that there is more time dependence than

just spike frequency involved.

There is another terminological problem involving the

role of spike timing in neural communication. There are at

least three different versions of what synchrony might

mean for neural signaling. There is no question that the

relative timing of spikes arriving at a receiving site (syn-

apse, dendrite, cell, etc.) can have a profound effect on the

response (Kara and Reid 2003) and therefore timing is

certainly relevant. Obviously enough, spikes that are tem-

porally distant do not sum. There are also much more

delicate timing interactions involved in the echolocation

systems of bats, owls, etc. and also in LTP (long term

potentiation) and STDP (spike timing dependent plastic-

ity), all of which are discussed briefly in the next section.

A second timing question is whether the inter-spike

interval of a single neural spike train conveys more useful

information than just the firing rate. Because the base firing

rate is often low, a single spike can be a rare event and

therefore convey more than one bit of information. But the

main area of contention has been whether there is signifi-

cant additional information conveyed by the detailed tim-

ing of a spike train, beyond its average frequency. Spike

trains are known to be stochastic, but if we assume that the

distribution is known, two or three spikes can provide a

fairly good estimate of the underlying parameter and thus
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the firing frequency. The (Reike et al. 1997) book discusses

this controversy in some detail; the conclusion is that very

little if any useful information is conveyed by the phase

structure of a single pulse train. This is not important in any

case, because essentially all neural computation involves

inputs from multiple sources.

A third distinct timing issue involves hypothesized

periodic synchronous firing patterns as an organizing

principle for conceptual binding; this will be discussed at

the end of the following section.

Spikes in neural circuits

Neurons never work in isolation; all behavior is mediated

by specific circuits, from the contraction of the hydra to

human speech. In higher animals, there are several levels of

redundancy in these circuits and this is deeply connected to

spike-based signaling. As is well known, the firing of an

individual neuron is inherently probabilistic and so reliable

communication requires several parallel channels. In some

cases there are quite delicate timing constraints between

signals on coordinated channels. But we will first discuss

circuits where the timing requirement is just that the spikes

are sufficient close in space and time to have their effects

combine chemically.

Although some local circuits (e.g., in the retina) use gap

junctions, most are mediated by neural spikes. These local

computations are almost never considered part of the

‘‘neural code’’ and this is another flaw in the standard

formulation. The Dayan and Abbott book (2001) and the

Gerstner and Kistler book (2002) have good treatments.

The most basic circuits involve competition, cooperation or

the combination of both. The paradigmatic example of

competition is mutual inhibition; this has two major effects

on theories of neural signaling. Mutual inhibition is what

allows a neural population with competing activation pat-

terns to come to a specific action/decision; there does need

to be a homunculus decider. Competing circuits play an

important role in neuroeconomics and will be discussed in

the section ‘‘Probability, utility, and fitness’’. Inhibition

also allows for redundant back-up circuits to be in place in

case of damage to the primary circuit for some function,

this is known technically as ‘‘release from inhibition’’

(Snyder and Sinex 2002).

Cooperation between input signal streams also has many

realizations. The most basic is the use of multiple pathways

for greater reliability and dynamic range. Another impor-

tant use of coordinated signaling is in hyper-acuity. As was

mentioned earlier, the spike signal from sensory (e.g.,

visual) neurons encodes the strength of match to a broad,

multi-dimensional, receptive field. Cooperating signals

allow for the sensing of differences beyond the

discrimination of the input receptors. As a toy example, the

coincident firing of a cell that detected values in the range

[1–10] with one sensitive to values [8–16] signals the much

tighter range [8–10]. This coarse coding circuit mechanism

can be seen as a way of extending the representational

power of neural firing. This well established neural

mechanism of coding the strength of a multi-dimensional

signal is another barrier to postulating a simple readable

neural code.

So far, we have focused on the immediate use of neural

spikes for action/decision. However, there are also impor-

tant indirect effects, studied under the names ‘‘spreading

activation’’ and ‘‘priming’’. Intuitively, spreading activa-

tion lies behind the fact that your thoughts will often shift

among loosely related ideas without any conscious action.

The brain is very richly connected and activation of one

thought provides collateral activation to ones that are

conceptually linked.

It is widely believed that a general best-fit process

involving both competition and cooperation is the funda-

mental process underlying recognition in vision, language,

etc. Given two competing analyses of an image (e.g.,

Necker Cube) or a sentence, we normally settle on one and

do not notice the other. It is difficult to exactly prove this

theory, but it is consistent with a great deal of evidence.

Several of the ideas just described can be seen in the

classical experiment of (Tanenhaus et al. 1979).

Subjects were asked to decide quickly whether letters

flashed on a screen formed an English word. It was already

well known that responses could be improved by ‘‘prim-

ing’’, presenting a clue slightly before the test—either

visually or auditorially. For example, hearing the word

‘‘rose’’ makes people faster to indicate that the text

‘‘flower’’ is an English word. In this experiment, subjects

heard sentences with a misleading word sense like ‘‘They

all rose’’ where the target word is not semantically related

to the sound clue. The results depended entirely on the

relative timing of the sound and image stimuli.

If the sound ‘‘rose’’ in the sentence above was timed to

be only slightly (\200 ms) before the test image, it still had

a priming effect on a word (flower) that was related to a

unintended meaning of the sound that was never even

noticed by the subject. This is generally agreed to indicate

that there is pre-attentive parallel activation of all the

words consistent with a heard sound. With a somewhat

longer interval between the sound clue and the target

image, the priming effect disappears and there is even a

slight slowing from the neutral case. The hypothesized

underlying neural circuitry is modeled in Fig. 1.

The priming link between the noun ‘‘rose’’ and ‘‘flower’’

is modeled as arising from the semantic relation that a rose

is a type of flower. The triangular node models a local 2/3

circuit (Carpenter and Grossberg 1987) hypothesized to
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capture such semantic relations. The mutual inhibition

between the two senses of rose is diagrammed as a dashed

line with circular tips. In general, this kind of cooperative/

competitive architecture underlies a wide range of theo-

retical and experimental work on neural representation.

Again, the communication and settling of such networks is

not usually considered as part of ‘‘the neural code’’. More

generally, the spiking behavior of receiving neurons is also

a function of their internal state, which is yet another

reason why there is not a fixed neural code.

We have discussed the circuit of Fig. 1 as local, but it

actually involves brain areas for sound, image, and con-

ceptual information. This is not unusual; almost all

behavior uses multiple brain areas in complex interactions.

For example, there are many more feedback connections

from primary visual cortex to the lateral geniculate than the

feed-forward links that are usually studied. In general, a

major problem with the metaphor of the neural code is that

it suggests a communication channel rather than a recurrent

computational system.

Time sensitive computations

Now we consider the time sensitive interactions. All neural

communication is constrained by the time constants of the

underlying chemistry, but there are some mechanisms that

have tighter bounds and are generally called coincidence

detection. For example, the circuits that process visual

motion rely on the coincidence of a current input with a

signal from cells that responded to a similar input earlier in

time at a nearby location. This encodes evidence for spe-

cific motion and it is why we see the discrete frames of film

or TV as continuous motion. At the extreme end, the con-

duction time of spikes along axons is used with coincidence

to support very fine distinctions in the arrival time of sound

at the two ears, mostly notably in owls. Owls and bats make

distinctions that correspond to timing differences at the ten

microsecond level—much faster than neural switching

times. Similar fine timing distinctions occur in dolphins,

electric fish, etc. (Carr 1993); this is another example of the

use of spike signaling that cannot be called a code.

There is now a great deal known about the chemical

details on the timing sensitivity of post-synaptic events.

Timing fit is crucial in a variety of ways, including LTP

(Long Term Potentiation, Gerstner et al. 1997) and STDP

(spike timing dependent plasticity; Bender et al. 2006; Iz-

hikevich 2007), but development and learning are beyond

the scope of this review.

The variable binding problem

Another area of considerable research and controversy

explores the possibility that separate coordinated phases of

neural spiking play a central role in the ‘‘binding problem’’.

The basic and easier binding problem concerns how we can

coherently see a bouncing red ball and a blue book given

that these properties are computed in separate brain areas.

The harder, variable binding, problem involves how we

remember and draw inferences from complex relations

(Barrett et al. 2008). For example, the sentence ‘‘John gave

the book to Dick and the red thing to Jane’’ automatically

leads to inferences about who has what (Shastri 2001).

Computational models of these processes are easy in con-

ventional programming, but no one has a convincing story

of how the brain achieves this.

The most popular and thoroughly studied neural model

of variable binding is based on the idea of synchronous

neural firing patterns. Suppose that (somehow) the pattern

of activity for storing facts about objects was divided into

some small number (*8) of phase periods. Then all the

properties of the ball could be active in phase 3 and those

of the book in phase 5. When our sample sentence was

heard, the system would just add the new ownership facts

to the appropriate phase. Such a system is computationally

feasible and has been extensively discussed (Barrett et al.

2008). But despite some suggestive early experimental

findings, there is good evidence (Shadlen and Movshon

1999) that this is not the mechanism that the brain employs.

Population codes

Another terminological confusion arises in the use of

‘‘population codes’’ or ‘‘distributed representations’’. In the

Fig. 1 Model circuit for cross-modal priming (from Feldman 2006,

p. 90)
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past, there were heated debates about whether neural rep-

resentations were basically punctuate with a ‘‘grandmother

cell’’ (Gross 2002; Bowers 2009) for each element of

interest or basically holographic (with each item repre-

sented by a pattern involving all the units in a large pop-

ulation). It has been known for decades (Feldman 1988)

that neither extreme could be computationally feasible for

the neural systems of nature.

Having just one neuron coding an element of interest

(concept) is impossible for several reasons. The most

obvious is that the known death of cells would cause

concepts to disappear. Also, the firing of individual cells is

stochastic and would not be a reliable representation.

Computationally, it is easy to see that there are not nearly

enough neurons in the brain to capture all the possible

combinations of shapes, sizes, colors, etc. that we recog-

nize, let alone all the non-visual concepts. In fact, the pure

grandmother cell story has always been a straw man—

using a small number (*10) cells per concept would

overcome all these difficulties.

The holographic alternative is more attractive because it

is studied with the techniques of statistical mechanics. But

it is equally implausible. This is easy to see informally and

was established technically at least as early as (Willshaw

et al. 1969). Suppose that we want to represent some set of

concepts (e.g., English words) as a pattern of activity over

some number N (say 10,000,000) neurons. The key prob-

lem is cross-talk: if multiple words are simultaneously

active, how can we avoid interference among their

respective patterns. Willshaw showed that the best answer

is to have each concept represented by the activity of only

about logN units, which would be about 24 neurons in our

example. There are many other computational problems

with holographic models (Feldman 1988); for example if a

concept required a pattern over all N units, how would that

concept combine with other concepts or be transmitted to

other brain regions.

There is now a wide range of converging experimental

evidence (Bowers 2009; Olshausen and Field 1996; Vinje

and Gallant 2000; Purushothaman and Bradley 2005;

Quiroga et al. 2008a, b) showing that neural coding relies

on the behavior of a modest number (tens to hundreds) of

units. There is also overlap—the same neuron is often

involved in the representation of different items. For var-

ious reasons, not all of them technical, some people con-

tinue to refer to these sparse representations as ‘‘population

codes’’. An equivalent, and much more appropriate, char-

acterization would be redundant circuits.

One reason for the early suggestions proposing holo-

graphic codes is that, in many brain areas, a large fraction

of the neurons fire in response to a relevant event. What

could they all be doing if not jointly coding that event? We

have already encountered the basic answer—there are

many possible interpretations of an isolated stimulus

(whether sensory or deeper). For the required rapid

response, it is optimal to consider the possibilities in par-

allel. In other words, the population firing pattern is basi-

cally disjunctive, not conjunctive. Of course, not all

interpretations are equally likely and the population firing

pattern can be viewed as encoding a probability distribu-

tion over the possible causes of the input (Barlow 2001;

Jazayeri and Movshon 2006).

A related terminological problem involves two distinct

uses of the term ‘‘sparse’’. As described above, the more

common usage refers to the fact that the neural represen-

tation of some item (e.g., a sound or an image) is carried by

a small fraction of the population of neurons in the relevant

neural area. But the term is also used (e.g., in the Kreiman

(2004) survey) to refer to the fact that the firing of neural

spikes is sparse in time. Rates greater than 100 spikes/

second are unusual and there are systems with much slower

base rates. Neural communication is sparse in both time

and unit count and there are the usual metabolic pressures

that require this (Lennie 2003).

In summary, there is now a broad consensus on neural

spike signaling. There are a number of specialized struc-

tures involving delicate timing and the relative time of

spike arrival is important for plasticity. But the main

mechanism for spike signaling is frequency coding in

specific circuits of moderate redundancy. Current research

on ‘‘the neural code’’ is focused on how neural systems

deal with information and decisions under uncertainty.

Probability, utility, and fitness

Although people are not perfect utility maximizers, there is

no question that much of human behavior is describable in

terms of probabilities and utilities. In recent years, this has

given rise to a renewed interest in ‘‘the neural code’’ for

decision making. The hypothesis is that there are general

mechanisms of representing probabilities and utilities and

associated decision rules. Unfortunately, there are indica-

tions of a new round of confused reasoning based on the

metaphor of the neural code and the communication

channel model of neural computation.

Noise is inherent both in our perception of the world and

in the chemistry of neural firing. So any full explanation of

neural spikes will need to be probabilistic in some way.

This is generally accepted and, in addition, almost all

treatments include explicit prior probability estimates and

are therefore Bayesian. Further, some information and

decisions are more important than others so utility theory

must play an important role. There is a great deal of elegant

and informative work on theoretical and experimental

Bayesian modeling of neural communication and decision
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and much is being learned this way. A related set of

developments is part of the Neuroeconomics effort. The

(Glimcher 2009) collection has introductory articles on all

aspects of neurally based utility research.

Much of the work in neuroeconomics focuses on the

relation between animal (usually human) decision making

and possible neural substrates. This can be seen as an

extension of the earlier search for ‘‘the neural code’’ dis-

cussed in the sections on ‘‘Introduction and background’’,

‘‘Spikes in single neuron communication’’, ‘‘Spikes in

neural circuits’’, ‘‘Population codes’’ of this article. The

underlying belief is that there is some universal encoding

of the phenomenon. As with the earlier efforts, this entails

the risk of oversimplifying an operation, here decision

making, which has many manifestations at multiple levels

in all animals. For example, Paul Glimcher (2009, p. 508),

an unquestioned leader in Neuroeconomics, presents what

seems to be a dictum ex cathedra that ‘‘utility is ordinal’’.

Ordinal utility is preference without quantitative norms and

this is indeed much easier to assess in people. But animals

(including people) are constantly making multidimensional

choices and it would be impossible to do this without some

calibration of the relative strengths of all competing drives.

Experimentally, there are already results suggesting that

both ordinal and cardinal utilities are neurally encoded

(Pine et al. 2009; Platt and Padoa-Schioppa 2009, p. 448).

More importantly, the whole idea of claiming universality

from general reasoning or from one constrained experiment

is misguided.

But the Neuroeconomics effort is producing some

valuable insights into the possible neural processing of

probabilities and utilities. Bayesian posterior probabilities

have a simple relation to numerical (cardinal) utilities in a

single trial decision based on passive observation. The

expected utility of each choice is just the sum of the

probability, under that choice, of each possible outcome

weighted by the utility of that outcome. A standard

example is an animal choosing between two possible

unknown food sources, which it believes have different

probabilities of having two kinds of food. The expected

value of each potential source is the just the sum of the

values of the two food types, weighted by the probability of

finding each at that source. It turns out that even simple

animals come fairly close to optimal foraging strategies in

rather complex situations (Kamil et al. 1987). No one

believes that, e.g., insects, have explicit neural represen-

tation of expected utilities—effective foraging is an evo-

lutionary requirement (Parker 2006).

This is our first direct encounter with the topic of ‘‘EEU

and the functions of neural spike signaling’’ of this article:

Ecological Expected Utility (EEU). The central insight of

Neuroeconomics is that the notion of ‘‘maximizing

expected utility’’ from economics is a powerful tool for

helping to understand neural computation. I suggest that

expected utility (EU) does provide an appropriate criterion

for modeling neural communication and computation, but

that a much richer and more subtle notion of utility, which

could be called ‘‘ecological utility’’, is needed.

In its most general form, this can be seen as a formal-

ization of the core biological idea of evolutionary fitness.

As the great biologist Theodosius Dobzhansky (1900–

1975) famously stated ‘‘Nothing in biology makes sense

except in the light of evolution’’. Animals are effective

foragers, because lineages that were not efficient lost out to

competitors (McDermott et al. 2008). Much of the current

work on ‘‘the neural code’’ for utility and decisions

attempts to internalize representation and computation to

specific dedicated mechanisms. As in the earlier work,

seeking a ‘‘code’’ masks the inherently recurrent nature of

neural computing. A prototypical experiment studies

monkeys on one highly constrained task and makes a

mathematical model of the neural signals in one pathway.

Essentially all of these studies are strictly feed forward.

The survey by Knill and Pouget (2004) discusses several

computational neural models of uncertainty.

As soon as we include any active information gathering

strategy, the simple link between posterior probability and

expected utility breaks down. The main source of uncer-

tainty for animal decisions is not noise, but limited

observability. We usually do not have access to all of the

information that might be helpful in making an action/

decision. It is obviously better to gain information about

something that is more important to you. Again, this has

been the subject of extensive research in decision theory as

the ‘‘value of information’’ (Feldman and Sproul 1977;

Behrens et al. 2007). One important application of these

ideas to neural systems is in the study of information

gathering saccades (voluntary eye movements) and covert

attention. This will be discussed in the next section; the

main point here is that the utility function that must be

maximized in animals is much more complex than that of a

visual discrimination task.

EEU and the functions of neural spike signaling

We are now in a position to characterize the various known

functions of neural spikes and the roles they play in

behavior. From the EEU perspective, the basic question

concerns what kind of action/decision is supported by the

various spiking disciplines. Let’s start from the two

extremes. At the low end, there are reflexes and also a

number of behaviors that are triggered by a single spike,

either in isolation or as the first spike (or wave of spikes)

from some stimulus. At the other extreme consider a major

life decision, like whether to accept a job offer. This kind
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of binary action/decision usually requires an extended

period of active information gathering, often involving

considerable travel and time. These two extremes are often

described as Type 1 and Type 2 decisions (Kahneman

2003). As we will now show, there is actually a continuum

of action/decision processes involving varying amounts of

processing and information gathering.

One of the most productive techniques of cognitive

psychology involves studying people’s eye movements as

they execute behaviors. These eye-movement studies in

psychology pre-suppose that saccade planning is central to

optimal behavior. Obviously enough, where you look has a

much stronger effect on the information gained than any

details of subsequent processing (Yarbus 1967).

We are constantly making large and small decisions.

Every act of perception involves decisions, for example

disambiguating words as in the ‘‘rose’’ example of Fig. 1.

There is an enormous range of neural decision making,

with a vast array of different information gathering and

evaluating strategies. For concreteness, we will focus on

overt (saccades) and covert visual attention. As is well

known, people make three or four saccades per second and

each of these is goal driven action/decision. The recent

survey by Gollish (Gollisch 2009) is largely concerned

with neural signaling in early vision, taking overt and

covert attention seriously. There are a number of well

known effects of saccades on the visual signals transmitted

from the retina. During saccades there is signal suppres-

sion. Also ‘‘efference copy’’ provides the visual system

with a prediction of the saccade target and this is used to

prime that area. There is some shift in receptive fields

towards the target and this helps maintain coherence. More

surprisingly some (rabbit) retinal cells seem to switch

polarity (from ON to OFF) shortly after a saccade.

We do know a fair amount about the brain circuits that

plan saccades (and covert attention choices), but taking this

seriously requires explicitly modeling active perception. It

is perfectly possible to technically treat the choice of where

to next saccade as an ‘‘expected value of information’’

computation in utility theory (Torralba et al. 2006; Bro-

dersen et al. 2008). Torralba et al. model the choice of

saccade targets as Bayesian optimization combining local

feature information with global measurements suggesting

the general scene type. Interestingly, the model (and peo-

ple) does not need to know the general scene type to take

advantage of it. The Torralba paper includes detailed

comparison of scan patterns of the subjects and the model.

Again, the metaphor of a neural code just does not fit.

This is not to dismiss the search for common mecha-

nisms. Even within the restricted feed-forward paradigm, it

is possible to suggest some possible general methods of

neural decision making. The (Gold and Shadlen 2007)

review article presents an extremely clear description of the

economic and neural background and many of the central

issues within the framework of simple sensory-motor tasks.

This is the best current introduction to the field and totally

avoids the notion of a ‘‘neural code’’ although the idea of

decision variables plays a crucial role in their treatment.

Another interesting hypothesis comes from the Ganguli

et al. (2008) model of a study of attention and distractors in

the Lateral IntraParietal visual area LIP. Monkeys were

trained to make a saccade after a delay to the position of

the ring target that had a gap. On half the trials, a distractor

ring was flashed during the delay. Attention, as measured

by improved contrast sensitivity, would be split between

the remembered saccade target and the distractor location.

The main finding is that the time for the sensitivity

enhancement to equalize between the two targets was

almost constant for each animal, independent of location

and of the base firing rate of the neurons involved. The

paper includes an elaborate sparse coding model, but the

main proposal does not depend strongly on the details.

They suggest that the time to recover from a distractor

should be constant and needs to be a system (rather than a

local) property of the LIP network, because units differ in

their local dynamics. There could be a general architecture

that supports this functionality.

More generally, there are a number of subtleties

involved in defining an ecologically appropriate notion of

utility. Evolutionary selection for fitness guarantees that an

animal will not be too incompetent. Of course, selection

does not operate only on individuals so species survival

may well depend on actions that are not, by any direct

measure, optimal for the individual.

Even within one individual, the expected utility to be

maximized should be amortized over life experience,

including adaptation and learning. Further, even within one

behavioral episode, the optimal behavior is often rather

more complex than the current industry standard ‘‘Bayes-

ian Brain’’ story would suggest. As we saw above, looking

for general optimality in a single feed-forward perceptual

discrimination task has the character of looking for the lost

ring under the streetlight.

Summary

Neural spikes are an evolutionary ancient innovation that

remains nature’s exclusive mechanism for rapid long dis-

tance information transfer. There is no unique ‘‘neural

code’, but the number of spike-based communication

techniques is limited. From our perspective there are not so

many qualitatively different functional roles played by

neural spikes and each of these is best understood as

optimizing some EEU requirement. Each of these
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mechanisms can be seen as a highly effective strategy for

solving different information processing problems.

Ecological Expected Utility provides a unifying theme

for the communication functions sub-served by neural

spikes. EEU is determined by evolutionary fitness of the

organism’s genome. It cannot be computed directly and is

not static over time, but it is what nature optimizes. By

keeping this explicitly in mind, we can come to a better

understanding of neural signaling and brain function.

Again obviously, animals often need to act before taking

time to fully consider all their options and seek additional

input. This can also be formalized within a utility theory

framework and some work along these lines has been done

in AI (at least) under the title ‘‘anytime planning’’ (Li-

khachev et al. 2008). The need for rapid, approximately

optimal, actions appears to have everything to do with the

neural coding. In fact, we can do fairly well by assuming

that neural spike signaling evolved to do as little as pos-

sible for each task.

The minimal neural action/decision is the reflex, which

can be monosynaptic. Even reflexes are conditioned by top

down activation; neural systems are never just passive. The

next level of complexity is multistep spike wave signaling,

as discussed in the section ‘‘Spikes in single neuron com-

munication’’; some pre-specified action/decisions can be

chosen by the temporally first of competing spike signals.

The third level of complexity involves feedback loops.

These can be local as in lateral inhibition or across brain

regions as evidenced by the ubiquitous bidirectional con-

nections between levels. Neural loops inherently involve

settling time and therefore slower decisions. Loops also

entail that the signals on a given pathway change over time.

All of the mechanisms discussed above are passive; they

do not take into account the animals own actions to gain

information. In the previous section we reviewed some of

the most basic information gathering strategies, overt and

covert visual attention. But of course there are many others

involving bodily movement, active exploration, language,

etc. To be meaningful, any neural signals from perception

must be interpreted with respect to the context in which

they are received, again eliminating the possibility of a

fixed neural code.

Neural spikes are a restricted mechanism, but it’s the

only one we’ve got for rapid long distance signaling.

Spikes are limited in speed, accuracy, reliability, and

bandwidth. There is no unique neural code, but instead a

wonderful collection of mechanisms that exploit neural

signaling for a remarkable set of functions. The current

focus on studying the general semantic content of neural

signals is an essential component of understanding the

brain, but labeling this effort as a search for ‘‘the neural

code’’ remains a profoundly bad idea.

Acknowledgments I would like to thank Jose Carmena, Joachim

Diederich, Srini Narayanan, David Zipser, and the referees for helpful

comments and discussion.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

Allman JM (1999) Evolving brains. Scientific American Press, New

York, p 16

Atwell D, Laughlin SB (2001) An energy budget for signaling in the

grey matter of the brain. J Cereb Blood Flow Metab 21:1133–

1145

Barlow H (2001) Redundancy reduction revisited. Netw Comput

Neural Syst 12:241–253

Barrett L, Feldman JA, MacDermed L (2008) A somewhat new

solution to the variable binding problem. Neural Comput

20(9):2361–2378

Behrens TE, Woolrich MW, Walton ME et al (2007) Learning the

value of information in an uncertain world. Nat Neurosci

10(9):1214–1221

Bender V, Bender K, Brasier DJ, Feldman DE (2006) Two

coincidence detectors for spike timing-dependent plasticity in

somatosensory cortex. J Neuro 26:4166–4177

Bowers JS (2009) On the biological plausibility of grandmother cells:

implications for neural network theories in psychology and

neuroscience. Psychol Rev 116(1):252–282

Brodersen KH, Penny WD, Harrison LM et al (2008) Integrated

Bayesian models of learning and decision making for saccadic

eye movements. Neural Netw 21(9):1247–1260

Carpenter GA, Grossberg S (1987) A massively parallel architecture

for a self-organizing neural pattern recognition machine. Comput

Vis Graph Image Process 7:54–115

Carr CE (1993) Processing of temporal information in the brain. Annu

Rev Neurosci 16:223–243

Cohen JD, McClure SM, Yu AJ (2007) Should I stay or should I go?

Exploration versus exploitation. Philos Trans R Soc B Biol Sci

362:933–942

Dayan P, Abbott LF (2001) Theoretical neuroscience: computational

and mathematical modeling of neural systems. MIT Press,

Cambridge

de Charms RC, Zador A (2000) Neural representation and cortical

code. Annu Rev Neurosci 23:613–647

Feldman JA (1988) Computational constraints on higher neural

representations. In: Schwartz E (ed) Proceedings of the system

development foundation symposium on computational neurosci-

ence. Bradford Books/MIT Press, Cambridge, April 1988

Feldman JA (2006) From molecule to metaphor: a neural theory of

language. Bradford Books/MIT Press, Cambridge

Feldman JA, Sproul RF (1977) Decision theory and AI II: the hungry

monkey. Cogn Sci 2:158–192

Ganguli S, Bisley JW, Roitman JD et al (2008) One-dimensional

dynamics of attention and decision making in LIP. Neuron

58:15–25

Gerstner W, Kreiter AK, Markham H, Herz AVM (1997) Neural

codes: firing rates and beyond. PNAS 94:12740–12741

Gerstner W, Kistler WM (2002) Spiking neuron models: single

neurons, populations, plasticity. Cambridge University Press,

Cambridge

Cogn Neurodyn (2010) 4:25–35 33

123



Glimcher PW (2009) Choice: towards a standard back-pocket model.

In: Glimcher PW, Camerer C, Poldrack RA et al (eds)

Neuroeconomics: decision making and the brain, 1st edn.

Academic Press, San Diego

Gold JI, Shadlen MN (2007) The neural basis of decision making.

Annu Rev Neurosci 30:535–574

Gollisch T (2009) Throwing a glance at the neural code: rapid

information transmission in the visual system. HFSP J 3:36–46

Gross CG (2002) Genealogy of the ‘‘Grandmother Cell’’. Neurosci-

entist 8(5):512–518

Izhikevich EM (2007) Solving the distal reward problem through

linkage of STDP and dopamine signaling. Cereb Cortex

17:2443–2452

Jazayeri M, Movshon JA (2006) Optimal representation of sensory

information by neural populations. Nat Neurosci 9(5):690–696

Kahneman D (2003) Maps of bounded rationality: psychology for

behavior economics. Am Econ Rev 93(5):1449–1475

Kamil AC, Krebs JR, Pulliam HR (1987) Foraging behavior. Plenum

Press, New York and London

Kara P, Reid RC (2003) Efficacy of retinal spokes in driving cortical

responses. J Neurosci 23(24):8547–8557

Katz PS (2007) Evolution and development of neural circuits in

invertebrates. Curr Opin Neurobiol 17(1):59–64

Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with

saccadic eye movements: visual processing speed revisited. Vis

Res 46(11):1762–1776

Knill DC, Pouget A (2004) The Bayesian brain: the role of

uncertainty in neural coding and computation. Trends Neurosci

27(12):712–719

Kreiman G (2004) Neural coding: computational and biophysical

perspectives. Phys Life Rev 1(2):71–102

Lennie P (2003) The cost of cortical computation. Curr Biol

13(6):493–497

Likhachev M, Ferguson D, Gordon G et al (2008) Anytime search in

dynamic graphs. Artif Intell 172(14):1613–1643

McDermott R, Fowler JH, Smirnov O (2008) On the evolutionary

origin of prospect theory preferences. J Polit 70(2):335–350

Meech RW, Mackie GO (2007) Evolution of excitability in lower

metazoans. In: North G, Greenspan RJ (eds) Invertebrate

neurobiology. Cold Spring Harbor Laboratory Press, New York

Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive

field properties by learning a sparse code for natural images.

Nature 381(6583):607–609

Parker G (2006) Behavioral ecology: natural history as science. In:

Lucas JR, Simmons LW (eds) Essays in animal behavior.

Academic Press, New York

Pine A, Seymour B, Roiser JP, Bossaerts P, Friston K, Curran HV,

Dolan RJ (2009) Encoding of marginal utility across time in the

human brain. J Neurosci 29(30):9575–9581

Platt M, Padoa-Schioppa C (2009) Neuronal representations of value.

In: Glimcher PW, Camerer C, Poldrack RA et al (eds)

Neuroeconomics: decision making and the brain, 1st edn.

Academic Press, San Diego

Purushothaman G, Bradley DC (2005) Neural population code for fine

perceptual decisions in area MIT. Nat Neurosci 8(1):99–106

Quiroga RQ, Kreiman G, Koch C, Fried I (2008a) Sparse but not

‘‘Grandmother-cell’’ coding in the medial temporal lobe. Trends

Cogn Sci 12(3):87–91

Quiroga RQ, Mukamel R, Isham EA et al (2008b) Human single-

neuron responses at the threshold of conscious recognition. Proc

Natl Acad Sci USA 105(9):3599–3604

Reike F, Warland D, de Ruytter R, Bialek W (1997) Spikes: exploring

the neural code. MIT Press, Cambridge

Rousselet GA, Mace MJ, Thorpe SJ, Fabre-Thorpe M (2007) Limits

of event-related potential differences in tracking object process-

ing speed. J Cogn Neurosci 19(8):1241–1258

Serre T, Oliva A, Poggio T (2007) A feedforward architecture

accounts for rapid categorization. Proc Natl Acad Sci USA

104(15):6424–6429

Shadlen M, Movshon J (1999) Synchrony iunbound: a critical

evaluation of the tempralbinding hypothesis. Neuron 24:67–77

Shastri L (2001) A computational model of episodic memory

formation in the hippocampal system. Neurocomputing

38:889–897

Snyder RL, Sinex DG (2002) Immediate changes in tuning of inferior

colliculus neurons following acute lesions of cat spiral ganglion.

J Neurophysiol 87(1):434–452

Tanenhaus MK, Leiman JM, Seidenberg MS (1979) Evidence for

multiple stages in the processing of ambiguous words in

syntactic contexts. J Verbal Learn Verbal Behav 18(4):427–440

Torralba A, Oliva A, Castelhano MS, Henderson JM (2006)

Contextual guidance of eye movements and attention in real-

world scenes: the role of global features in object search. Psychol

Rev 113(4):766–786

Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in

primary visual cortex during natural vision. Science

287(5456):1273–1276

Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-

holographic associative memory. Nature 222:960–962

Yarbus AL (1967) Eye movements and vision. Plenum. New York

(Originally published in Russian 1962)

Related works

Abbott LF (1994) Decoding neuronal firing and modeling neural

networks. Q Rev Biophys 27:291–331

Aur D, Jog MS (2007) Reading the neural code: what do spikes mean

for behavior? Nat Precedings. doi:10.1038/npre.2007.61.1

Barber MJ, Clark JW, Anderson CH (2003) Neural representation of

probabilistic information. Neural Comput 15:1843–1864

Beck JM, Ma W-J, Kiani R et al (2008) Probabilistic population codes

for Bayesian decision making. Neuron 60(6):1142–1152

Bisley JW, Goldberg ME (2006) Neural correlates of attention and

distractibility in the lateral intraparietal area. J Neurophysiol

95:1696–1717

Burr D, Tozzi A, Morrone MC (2007) Neural mechanisms for timing

visual events are spatially selective in real-world coordinates.

Nat Neurosci 10(4):423–425

Butts DA, Weng C, Jin J (2007) Temporal precision in the neural

code and the timescales of natural vision. Nature 449:92–95

Corrado G, Doya K (2007) Understanding neural coding through the

model-based analysis of decision making. J Neurosci

27(31):8178–8180

Corrado GS, Sugrue LP, Brown JR et al (2009) The trouble with

choice: studying decision variables in the brain. In: Glimcher

PW, Camerer C, Poldrack RA (eds) Neuroeconomics: decision

making and the brain, 1st edn. Academic Press, London San

Diego

Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comp

20:91–117

Deneve S, Latham PE, Pouget A (1999) Reading population codes: a

neural implementation of ideal observers. Nat Neurosci

2(8):740–746

Eggermont JJ (2001) Between sound and perception: reviewing the

search for a neural code. Hear Res 157:1–42

Ehinger K, Hidalgo-Sotelo B, Torralba A, Oliva A (2009) Modeling

search for people in 900 scenes: a combined source model of eye

guidance. Vis Cogn (in press)

Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous

system. Nat Rev Neurosci 9(4):292–303

34 Cogn Neurodyn (2010) 4:25–35

123

http://dx.doi.org/10.1038/npre.2007.61.1


Fox CR, Poldrack RA (2009) Prospect theory and the brain. In:

Glimcher PW, Camerer C, Poldrack RA et al (eds) Neuroeco-

nomics: decision making and the brain, 1st edn. Academic Press,

San Diego

Georgopoulos AP et al (1986) Neuronal population coding of

movement direction. Science 233:1416–1419

Gerstner W, Kistler WM (2002) Spiking neuron models: single

neurons, populations, plasticity. Cambridge University Press,

Cambridge

Glimcher PW, Rustichini A (2004) Neuroeconomics: the concilience

of brain and decision. Science 306:447–454

Globerson A, Stark E, Vaadia W et al (2009) The minimum

information principle and its application to neural code analysis.

Proc Natl Acad Sci USA 106(9):3490–3495

Gold JI, Shadlen MN (2001) Neural computations that underlie

decisions about sensory stimuli. Trends Cogn Sci 5(1):10–16

Gutnisky DA, Dragoi V (2008) Adaptive coding of visual information

in neural populations. Nature 452(7184):220–224

Kiebel SJ, Daunizeau J, Friston KJ (2008) A hierarchy of time-scales

and the brain. PLoS Comput Biol. doi:10.1371/journal.pcbi.

1000209

Lee D, Wang X-J (2009) Mechanisms for stochastic decision making

in the primate frontal cortex: single-neuron recording and circuit

modeling. In: Glimcher PW, Camerer C, Poldrack RA et al (eds)

Neuroeconomics: decision making and the brain, 1st edn.

Academic Press, San Diego

Ma WJ, Beck JM, Latham PE et al (2006) Bayesian inference with

probabilistic population codes. Nat Neurosci 9(11):1432–1438

Passaglia C, Dodge F, Herzog E et al (1997) Deciphering a neural

code for vision. Proc Natl Acad Sci USA 94(23):12649–12654

Pillow JW, Shlens J, Paninski L et al (2008) Spatio-temporal

correlations and visual signaling in a complete neuronal

population. Nature 454(7207):995–999

Pouget A, Dayan P, Zemel RS (2003) Inference and computation with

population codes. Ann Rev Neurosci 26:283–410

Ratcliff R, Smith PL (2004) A comparison of sequential sampling

models for two-choice reaction time. Psychol Rev 111:333–367

Rozell CJ, Johnson DH, Baraniuk RG, Olshausen BA (2008) Sparse

coding via thresholding and local competition in neural circuits.

Neural Comput 20:2526–2563

Rustuchini A (2009) Neuroeconomics: formal models of decision

making and cognitive neuroscience. In: Glimcher PW, Camerer

C, Poldrack RA et al (eds) Neuroeconomics: decision making

and the brain, 1st edn. Academic Press, San Diego

Schwartz O, Hsu A, Dayan P (2007) Space and time in visual context.

Nat Rev Neurosci 8(7):522–535

Shafir S, Reich T, Tsur E et al (2008) Perceptual accuracy and

conflicting effects of certainty on risk-taking behaviour. Nature

453(7197):917–920

Theunissen F, Miller JP (1995) Temporal encoding in nervous

systems: a rigorous definition. J Comput Neurosci 2(7):149–162

Tiesinga P, Fellous J-M, Sejnowski TJ (2008) Regulation of spike

timing in visual cortical circuits. Nat Rev Neurosci 9(2):97–109

Trepel C, Fox CR, Poldrack RA (2005) Prospect theory on the brain?

Toward a cognitive neuroscience of decision under risk. Cogn

Brain Res 23(1):34–50

Yu AJ, Dayan P (2005) Uncertainty, neuromodulation and attention.

Neuron 46(4):681–692

Zemel RS, Dayan P, Pouget A (1997) Probabilistic interpretation of

population codes. Neural Comp 10(2):403–430

Cogn Neurodyn (2010) 4:25–35 35

123

http://dx.doi.org/10.1371/journal.pcbi.1000209
http://dx.doi.org/10.1371/journal.pcbi.1000209

	Ecological expected utility and the mythical neural code
	Abstract
	Introduction and background
	Spikes in single neuron communication
	Spikes in neural circuits
	Time sensitive computations
	The variable binding problem
	Population codes
	Probability, utility, and fitness
	EEU and the functions of neural spike signaling
	Summary
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


