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Abstract 


. This paper presents a general computational treatment of how 111<1I1I1I1<lls are 
able to deal with visual objects and environments. Among the isslIcs addressed arc: 
constancies and the stable visual world, indexing and cOIlLexL effects, pCH.;eplllal
generalization and allocentric spatial maps. The compuLatiolial model is expressed ill 
connectionist terms, allowing biological as well as psychl)\ogit.:al experimellts lo be 
included. The model relies heavily on contemporary work ill Artincial IntclligclH.:c, 
but is claimed to be consistent with all relevant findings. 
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1. Introduction 

This taper is an attempt to specify a computationally and scientifically plausible 
model 0 how mammals perceive objects and deal with their visual environments. 
The provisionary model is perforce crude, but is claimed to be consisLent with all of 
the known behavioral, structural and computational constraints. The perspective
taken is that of a designer of complex information processing systems--one simply 
sets out to see how a visual system meeting the known behavioral specifications 
might be built out of the neural componentry, as described in the lilerature. The 
resulting four-frames model appears to be a reasonable start. 

The rest of this introduction is mainly concerned with desaibing the main 
phenomena to be covered by the model and the role of the four represen tation 
frames that are the core of the model. The actual specification of the model requires 
a fair amount of machinery and this is outlined in Section 2. The necessary
machinery includes a formal specification of an abstract neural computing unit and a 
variety of constructions built of these units and their properties. All of this is part of 
the connectionist modelling (CM) development [Feldman & Ballard 1982; Feldman 
1981] and readers familiar with that material will discover nothing new in Section 2. 

In Section 3, we describe the four-frames model of vision and space as it would 
apply to a "Small World" of limited complexity and resolution. Uy limiting ourselves 
to six visual features and a 10 x 10 visual map; we are able to describe precisely how 
the basic operations are intended to work. Section 3 is also oversimplified in that 
only the main pathways are mentioned and in the suppression of many technical 
problems in reducing the Small World to the mechanisms of Section 2. Section 3 can 
be read before Section 2 without much loss, for people who prefer to view the forest 
before the trees. 

The serious work begins in Section 4 where we attempt to carry out the reduction 
of the four-frames model to CM structures. Although the examples are presented at 
the scale of the Small World, the computational lechniques are claimed to work at 
realistic scale. The purpose of the section is to confront all the basic computational 
issues that have come to my attention and to show that -none are insurmountable. 
The solutions are presented at varying levels of detail and some refer to previous 
computational-results. There is no attempt in this section to relate the four-frames 
model to experimental findings in the behavioral and biological sciences. 

Section 5 contains a preliminary attempt to relate the model to experimental 
findings. The claim that the model is consistent with all established results cannot be 
tested except by readers such as yourself. What is -presented is a range of solidly
established findings that fit in well with the current model. Some experiments that 
could yield challenging results for the current model are also suggested, probably not 
with sufficient detail. 

The discursive comments of Sections 1, 3 and 5 derive from the deLailed 
computational models of Section 4 and may not be easy to interpret in isolation. The 
particular computational models are intended to show the feasibility of the model 
and should not be taken too literally. More generally, the provisionary nature of the 
current model cannot be stressed too strongly. The four frames are an attempt to 
provide a scaffolding for the establishment of theories of vision and space; ir it 
proves to be useful and none of the scaffolding is visible in the resulting structure, it 
will have done its work. 
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The entire development is based on a action-oriented notion of perception. The 
observer is assumed to be continuously sampling the ambient light for information of 
current value. We initially consider the issues raised by the four-frames as 
phenomena to be captured independent of any particular structural model. A 
"frame" in this view is a set of experiences and experiments that seems to share a 
common representation. Most people have found the following kind of loose 
discussion an adequate reason to suppose that we will need at least four frames of 
reference to describe vision and space. 

The representation of information in the first frame is intended to model the 
view of the world that changes with each eye movement. The second frame must 
deal with the phenomena surrounding what used to be called "the illusion of a stable 
visual world." A static observer has the experience of (and can perform as if he held) 
a much more uniform visual scene than the foveal-periphery first frame is processing 
at each fixation. One can think of the second frame as "associated with the position of 
the observer's head; this is an oversimplification but conveys the right kind of 
relation between the first two frames. Of course, neither of these two frames is like a 
photographic image of the world--as even the most casual examination of the 
structure of the visual system shows clearly. Light striking the retina is already 
transformed and the layers of the retina, the thalamus and visual cortex all compute
complex functions. The crucial difference between the first two frames is that the 
first one is totally updated with each saccade and the second frame is not. The 
current model also assumes that the first (retinaQ frame (RF) computes proximal 
stimulus features and the second frame captures distal (constancy, intrinsic) features 
as well as being stable; it is therefore called the stable feature frame (SFI ;). That these 
two representations of visual information are distinct does not seem an unreasonable 
hypothesis. 

The third and fourth representational frames are both multi-modal and thus 
unlike~y to be the. same. as the first two. The third representation is not geometrical
and WIll be descnbed 10 the next paragraph. The fourth, or environmental frame 
(?F), is intended to model an animal's representation of the space around it at a 
gIven moment. It captures the information that enables one to locate quickly the 
source of a stimulus from sound, wind, smell or verbal cue as well as maintaining the 
relative location of visual phenomena not currently in view. For a variety of reasons, 
the model proposes a single allocentric environmental frame which gets mapped, by 
situation links, to the current situation and the observer's place in it. 

The final representational frame to be considered is the observer's general 
knowledge of the world, including items not dealing with either vision or space. We 
follow the conventional wisdom in assuming that this knowledge is captured in 
abstract or propositional form, modelled in our case by a special kind of semantic 
n~twork. One kind of knowledge encoded will be the visual appearance of objects.
Smce the other three representations are geometrically organized, we will refer to the 
collecti~n ~f semantic knowled~e as the world knowledge formulary (W KF), "to 
emphaSIze Its nature as a collectIOn of formulas. The WKF will carry much of the 
burden for integrating information from the other three frames and is far from 
adequately worked out in this paper. But all we need for now is the notiol! that the 
semantic network representation is likely to be quite different from that of the 
retinal, stable feature or environmental frame. All of this suggests that even a 
provisionary model of vision and space will require at least four representational
frames; that four frames suffice is the contention of this paper. 

The initial exposition of the four frames was based on a static observer and a 
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basically static environment. Most of the detailed discussions in subsequent sections 
will retain this restriction, but the model does attempt to cover motion as well. The 
major additional construct needed for moving objects is to postulate explicitly that 
the entire system has a second mode of operation. which we call pursuit mode. To g~t 
a feeling for the difference between the two modes, track your finger as you move Jt 
along the second line of text on this page. Now go back and read the line of text, 
using your finger as a pointer. There is considerable evidence that the pursuit mode 
is computationally distinct and is used for navigation while moving as well as for 
tracking. The interactions among the four frames in the model are different ill 
pursuit mode, but we will not discuss these seriously until Sections 4 and 5. 

One of the principal devices employed in the current model is the assumption 
that all the visual features of interest can be reduced to explicit parameter values in 
some representational space. Typical parameter spaces include color spaces, spatial
frequency channels and slant-tilt maps for surface orientation. The mapping of 
primitive shapes, of textures and of motions to parameter spaces remains 
problematic, but the model assumes that it must be done. A computational
advantage of this total parameterization of visual features is that all the subsequent
discussion can be framed as discrete computational problems. More importantly, the 
assumption that early vision computes discrete values of fixed parameters supports a 
clear view of phenomena such as apparent motion. From the stream of visual input,
the visual system continuously calculates the best fit to the critical parameters. The 
best fit is, of course, sometimes non-veridical giving rise to apparent moUon, shape, 
etc. If our computational model is sound, then careful study of illusions, meta­
contrast, etc., should lead to an understanding of the critical parameters and their 
possible values. This is the traditional goal of perceptual psychology: an explicit
computational model permits the expression of more comprehensive and quantitative 
theories. 

The essential requiremenLof a computational model of vision and space is that it 
be massively parallel. In addition to the obvious parallelism of the retllla and early
vision, we require simultaneous massive interactIon between computational units 
within and across levels of organization of the visual system. By exploiting the 
reduction of all visual features to explicit farameters we can devote an individual 
computational unit to each separate value 0 each parameter and allow all these units 
to interact. Competing coalitions of such units will be the organizing principle behind 
most of our models. Consider the two alternative readings of the Necker cube shown 
in Figure 1.1. At each level of visual processing. there are mutually contradictory
units representing alternative possibilities. The dashed lines denote the boundaries of 
coalitions which embody the alternative interpretations of the image. The units 
connected by circular-tipped arcs are assumed to inhibit one another and the olhers 
to excite. The units in Figure 1.1 each represent a distinct entity and are thus like the 
infamous "grandmother cells." Most of our constructions will employ sllch dedicated 
units for simplicity; my suggestions on how this relates to neural encodings are 
outlined in Section 2 and 5. 

Figure 1.1: Necker .eu be 

The technical tools suggested for describing and analyzing computational 
systems with billions of interacting units are outlined in Section 2 and are 
prerequisite for any detailed consideration of the model. For this in troductory
discussion, we need only keep in mind that all of the computations within and 
among the four frames are assumed to be continuously interacting across myriad 
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channels. The need for these multiple interacting computations is most clearly seen 
in the Stable Feature Frame, the starting point for each of our discussions. 

The Stable Feature Frame (SFF) takes its name from its two basic functions in 
the system. The SFF is intended to be the representation of what was called the 
illusion of a stable visual world. It captures, in a spatially organized buffer. the visual 
information in the current field of view and is stable over fixation eye movements. 
The model also suggests that this visual information is held in terms of certain 
invariant (constancy) features of the scene such as size and hue rather than in terms 
of the immediately sensed values of intensity, retinal projection, etc. The SFF 
contains a set of spatially registered planes, each of which continuously computes the 
best value of some constancy feature for every point in the visual field using both 
retinal input and the current values in all the other planes. The SFF serves partially 
as a visual buffer memory, but what is stored are features constantly undergoing 
refinement. It is quite close in spirit to the AI notion of Intrinsic Images [Barrow & 
Tenenbaum, 1978J as extended by the inclusion of global parameter computations 
[Ballard, 1981]. 

The major use of the distal visual feature information captured by the SI-V is for 
indexing into models of the visual appearance which are part of one's basic 
knowledge and thus in the World Knowledge Formulary (WKF). An appearance 
model is assumed to be a hierarchical structure whose base elements are visual 
primitives each of which can be accessed (indexed) by certain combinations of SFF 
visual features appearing in the same place. It is obviously easier to match an 
appearance model to distal features values than to direct ima~e measurements. 
Recognition of an object or situation is modelled as a mutually reinforcing coalition 
of active nodes in the WKF. The relaxation of feature and model networks also 
involves top-down, context, links from visual primitives to the feature units that are 
appropriate. The network representation of a situation includes objects not currently 
in view and has the links ·to other modalities. 

In my technical sense, a situation network in the WKF is a hierarchical structure 
like a complex object with one additional property. Any WKP situation can become 
connected by situation links from the Environment Frame (EF) and lhus become the 
observer's structure for dealing with the space around him at that moment. The 
Environment Frame is modelled as a tesselation by nellral un its of the three­
dimensional space surrounding the observer. Its mapping to the current WKF 
situation is allocentric (external) and the chan&ing egocentnc position and viewable 
places are represented by changes in activation of EF units. Moving to a new 
situation is captured by a discrete switch of situation links, mapping the EP to a 
different WKF situation network. 

The final frame to be outlined here is the first one in the perceptual cycle, the 
Retinal Frame (RF). The RF is intended to capture all lhe computatIOnal structures 
~hich reinitialize with each eye movement. A major problem addressed in the paper 
IS how separate fixations could be integrated effectively. Less allention is given here 
to the questions of exactly what computalions are being carried out for color, texture, 
motion, etc. because these computer vision questions are under extensive study· in 
our lab [Ballard, 1981] and elsewhere. And, of course, most of the contemporary
work in visual system physiology and psychophysics is focused on the retinal frame. 

Figure 1.2: FOllr l-;'rames 
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The four frames model is mainly an attempt to provide a coherent structure for 
relating the myriad findings on vision and space. In order to keep the paper of 
manageable size, emphasis is placed on filling in the gaps between existing theories 
and models of different aspects of vision and space. Somewhat surprisingly, I have 
encountered no other contemporary effort to do this, even at a discursive level. There 
are, of course, a large number of researchers whose ideas have had a marked effect 
on the enterprise. Barlow's Ferrier Lecture [Barlow, ]981] stresses the use of 
computational as well as physiological constraints in studying the visual system and 
suggests an important role for parameter spaces. Among perceptual psychologists, 
Gregory and Hochberg are closest in spirit to the current enterprise. Haber [Haber, 
1982] has recently suggested a synthesis of this line of thought with Gibsonian ideas 
on early vision and his treatment of low-level vision and space appears to agree with 
ours. 

Our approach to the problem is quite like that of Marr in placing primary 
emphasis on computational adequacy while requiring consistency with biological and 
behavioral findings. Much of Marl's effort was directed towards problems at a lower 
level than those addressed here. His primal sketch (augmented with mOLion, color 
and disparity data) could serve as our retinal frame. In the areas of overlap, the two 
models agree on the use of hierarchical, object-oriented descriptions and disagree on 
the stable feature frame and the importance of context and visual cues other than 
shape. More generally, our treatment of the SFF and WKF, indexing and context 
appear to be the natural extension of current Computer Vision practice [Ballard & 
Brown, 1982], to massively parallel hardware. There has been relatively Ii ttle 
computational work on space models [Kuipers, 1973; McDermott, ]980] but what 
there is fits well into our "situation" treatment. We will discuss how the four-frames 
model articulates with behavioral and biological studies in Section 5. 

The first question one should ask of a model such as the current one is what 
issues it claims to address. The four-frames model is most concerned with the 
integration of visual information, and much less with the detailed analysis of color, 
motion, etc. It purports to say things about eye movements, stability, constancies and 
how these interact with general world knowledge. Another serious concern is the 
representation of external space and how this relates to perception and action. All of 
these considerations are addressed within a computational framework that aspi res to 
be physiologically predictive. The major shortcoming of the current effort. within its 
own terms, is an inadequate treatment of moving objects and observers. f!:ach of the 
four frames would require additional machinery to handle movement and changing 
situations. 

Any attempt to describe the phenomena of vision and space must deal with the 
problems of interactions among the various kinds of representations and 
computations. Since these interactions are clearly parallel computations in both the 
channel sense and the multiple-processor sense, a technical discussion will have to 
use some kind of distributed computation formalism .. The particular formalism 
presented in the next section is adequate to the task and has proved useful in a 
variety of related problems. 
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2. Connectionist Models 

2.1 Background 

Much of the progress in the fields constituting cognitive science has been based 
upon the use of concrete information processing models (lPM), almost exclusively 
patterned after conventional sequential computers. There are several reasons for 
trying to extend IPM to cases where the computations are carried out by a massively 
parallel computational engine with perhaps billions of active units. 

Animal brains do not compute like a conventional computer. Comparatively slow 
(millisecond) neural computing elements with complex, parallel con nections form a 
structure which is dramatically different from a high-speed, predominantly serial 
machine. Much of current research in the neurosciences is concerned with tracing 
out these connections and with discovering how they transfer information. Neurons 
whose basic computational speed is a few milliseconds must be made to account for 
complex behaviors which are carried out in a few hundred milliseconds [Posner, 
1978J. This means that entire complex behaviors are carried out in about a hundred 
time steps. Current AI and simulation programs require millions of time steps. 

Various parallel computational models have been successfully used for certain 
problems in machine perception for some time [Hanson & Riseman, 1978]. What has 
occurred to us relatively recently is that all of these and more fit nicely into the 
paradigm of widely interconnected networks of active elements like those envisioned 
In connectionist models. The generalization of these ideas to the connectionist view 
of brain and behavior is that all important encodings in the brain are in terms of the 
relative strengths of synaptic connections. The fundamental premise of 
connectionism is that individual neurons do not transmit large amounts of symbolic 
info.rt11f1tion. ~nstead they compute by being appr0l!riat~ly con.nec~ed to large nUl~bers 
or slmllar Units. We have been engaged for some time In eluCldaltng the properlles of 
CM models [Feldman & Ballard, 1982; Feldman, 1981] and their application to 
particular problems in vision reseach [Ballard, 1981J. This paper is the first of this 
series to attempt a general description of a major function--the perception of objects
in space. The plan is to continue to address hard problems (e.g. ambiguity in natural 
language [Small, 1982]) in technical CM terms so long as it appears to be fruitful. 

2.2 Units 

As part of our effort to develop a generally useful framework for connectionist 
theories, we have developed a standard model of the individual unit Il will turn out 
that a "unit" may be used to model anything from a small part of a neuron to the 
external functionality of a major subsystem. But the basic notion of unit is meant to 
loosely correspond to an information processing model of our current understanding
of neurons. 

Our unit is rather more general than previous proposals and is intended to 
capture the current understanding of the information processing capabilities of 
neurons. Among the key ideas are local memory, non-homogeneolls and non-linear 
functions, and the notions of mutual inhibition and stable coalitions. 
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A unit is a computational entity comprising 

{q} -- a set id discrete states, < 10 
p -- a continuous value in [-10,10], called potential (accuracy of several digits) 
v an output value, integers 0 ::; v ::; 9 
i -- a vector of inputs iJ. ...,in 

and functions from old to new values of these 

p ~ fQ,p,q) 
q ~ g(!,p,q) 
v ~ hQ,p,q). 

The form of the f,g, and h functions will vary, but will generally be reslricled to 
conditionals and simple functions. Most often, the potential and output of a unit will 
be encoding its confidence, and we will sometimes use this term. The "~" notation is 
borrowed from the assignment statement of programming languages. This notation 
covers both continuous and discrete time formulations and allows us to talk about 
some issues without any explicit mention of lime. 

The restriction that output take on small integer values is central to our 
enterprise. The firing frequencies of neurons range from a few to a few hundred 
impulses per second. In the 1110 second needed for the basic mental events, there 
can only be a limited amount of information encoded in frequencies. The ten output 
values are an attempt to capture this idea. 

The inclusion of a discrete set {q} of different states has both biological and 
computational advantages. It allows the system to accommodate models of fatigue, 
peptide modulators and other qualitative state changes. Computationally it permits 
the use of analysis and proof techniques from computer science. 

For some applications, we will be able to use a particularly simple kind of unit 
(p-unit) whose output v is proportional to its potential p (rounded) when p > 0 and 
which has only one state. In other words ­

p ~ p + /3 l:Wkik . [0 ::; wk ::; 1] 
v ~ if v ) 0 then 'round (p - 0) else 0 [v = 0...9] 

where /3, 8 are constants and wk are weights on the input values. The weights are the 
sole locus of change with experience in the current modeL The p-unit is somewhat 
like classical Hnear threshold elements (Perceptrons [Minsky and Papert, 19721), but 
there are several differences. The potential, p, is a crude form of memory and is an 
abstraction of the instantaneous membrane potential that characterizes neurons; it 
greatly reduces the noise sensitivity of our networks. 

A problem with the definition above of a p-unit is that its potential does not 
decay in the absence of input. This decay is both a physical properly of neurons and 
an imp~rtant computational feature for our highly parallel models. One 
comput3:tlonal trick to solve this is to have an inhibitory connection from the unit 
back t<;> Itself. Informally, we identify the negative self feedback with an exponential 
decay 10 potential which is mathematically equivalent. With this addition, p-unils can 
be useci for many CM tasks of intermediate difficulty. The Interactive Activation 
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models of [McClelland & Rumelhart, 1982] can be described naturally with p-liniLs,
and some of our own work [Ballard, 1981] and that of others [Marr & Poggio, 1976] 
can be done with p-units. But there are a number of additional features which we 
have found valuable in more complex modeling tasks [Feldman & Ballard, ]982]. 

It is both computationally efficient and biologically realistic to allow a unit Lo 
respond to one of a number of alternative conditions. In terms of our formalism, this 
could be described in a variety of ways. One of the simplest is to define the potential 
in terms of the maximum of the separate computations, e.g., 

p +- p + pMax(i1 + irq>, i3+ i4-q>, is+i6- irq» 
where p is a scale constant as in the p-unit and q> is a constant chosen (usually>

10) to suppress noise and require the presence of multiple active inputs [Sabbah, 
1981].The max-of-sum unit IS the continuous analog of a logical OR -of-AND 
(disjunctive normal form) unit and we will sometImes use the latter as an 
approximate version of the former. The OR-of-AND unit corresponding to the 
definition above is: 

p +- p + 0: OR (i1&i2, i3&i4' is&i6&(not i7» 
Most of the constructions in later sections will employ these "conjunctive
connection" units. 

2.3 Networks of Units 

A very general problem that arises in any distributed computing situation is how 
to get the entire system to make a decision (or perform a coherent action, etc.). One 
way to deal with the issue of coherent decisions in a connectionist framework is to 
introduce winner-take-all (WTA) networks, which have the property that only the 
unit with the highest potential (among a set of contenders) will have OULput above 
zero after some settling time (Fig. 2.1). There are a number of ways to construct 
WTA networks from the units described above, and several of these have been 
disccussed in [Feldman & Ballard, 1982J and elsewhere. For our purposes it is 
enough to consider one example of a WTA network which will operate in one time 
step for a set of contenders each of whom can read the potential of all of the others. 
Each unit in the networ~ computes its new potential according to the rule: 

p +- if p > max(ij- .1) then p else O. 

Figure 2.1: Winner-Take-All network. 

A problem with previous rieural modeling attempts is that the circuits proposed 
were often unnaturally delicate (unstable). Small changes in parameter values would 
cause the networks to oscillate or converge to incorrect answers. What appears to be 
required are some building blocks and combination rules that preserve the desired 
properties. For example, the WTA subnetworks of the last example will not oscillate 
in the absence of oscillating inputs. This is also true of any symmetric mutually
inhibitory subnetwork. 

Another useful principle is the employment of lower-boulld and upper-bound
cells to keep the total activity of a network within bounds. Suppose that we add two 
extra units, LB and UB, to a network which has coordinated output. The LB cell 
compares the total (sum) activity of the units of the network wi Lh a lower bound and 
sends positive activation uniformly to all members if the sum is too low. The un cell 
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inhibits all units equally if the sum of activity is too high. Under a wide range of 
conditions (but not all), the LB-UB augmented network can be designed to preserve 
order relationships among the outputs Vj of the original network while keeping the 
sum between LB and UB. We will often assume that LB-UB pairs are used to keep 
the sum of outputs from a network within a given range. This same mechanism also 
goes far towards eliminating the twin perils of uniform saturation and uniform 
silence which can easily arise in mutual inhibition networks. Thus we will often be 
able to reason about the computation of a network assuming that it stays active and 
bounded. 

For a massively parallel system such as the ones we are envisioning to muke a 
decision (or do something). there will have to be states in which some activity
strongly dominates. One example of this is the WTA network. But the general idea is 
that a very large complex subsystem must stabilize, e.g. to a fixed inLerpretation of 
visual input. The way we believe this to happen is through mutually reinforcing 
coalitions which dominate all rival activity for a period of time. Formally, a coalition 
will be called stable when the outrmt of all of its members is non-decreasing. Notice 
that a coalition is not a particular anatomical structure, but a temporarily mutuallr. 
reinforcing set of units, in the spirit of Hebb's cell assemblies [Jusczyk, 1980. 

The mathematical analysis of CM networks and stable coalitions continues to be 
a problem of interest. We have achieved some understanding of special cases 
[Feldman & Ballard, 19821 and these results have been useful in desigll1l1g CM too 
complex to analyze in c osed form [Sabbah, 1981]. 

By combining the ideas of conjunctive connections. WTA and stable coalitions, 
we can developnetworks of considerable power and flexibility. Consider the example 
of the relation between depth, physical size, and retinal size of a circle. (Assume that 
the circle is centered on and orthogonal to the line of sigh!.. that the focus is fixed, 
etc.) Then there is a fixed relation between the size of retinal image and the size of 
the physical circle for any given depth. That is, each depth specifies a mapping from 
retinal to physical size (see Fig. 2.2). 

Figure 2.2: Relations among depth, retinal size. and physical size. 

Here we suppose the scales for depth and the two sizes are chosen so that unit 
depth means the same numerical size. If we knew the depth of the object (by touch, 
context, or magic) we would know its physical size. For example, physical size 4 
and depth = 1 make a conjunctive connection with retinal size = 4. Each of the 
variables may also form a separate WTA netowrk; hence rivalry for different depth 
values can be settled via inhibitory connections in the depth network. Notice that this 
network implements a function phys = f\ret,dep) that maps from retinal size and 
depth to physical size, providing an example of how to replace fUllclions with 
parameters. For the simple case of looking at one object perpendicular to the line of 
sight, there will be one consistent coalition of units which will be stable. The network 
does something more; the network can represent the consistency relation R among 
the tI:tree quanti~es: deP.th, retinal size, and physical size. It embodies not only the 
funcUon f, but Its two Inverse functions as well (dep = fl(ret,phys), and ret = 
f2(phys,dep». Much of the vision work in our lab [Ballard, 1981] and elsewhere 
[Hanson & Riseman, 1978] relies on the interaction among constraint networks like 
those of Figure 2.2. 



13 

The stable coalition mechanism also has implications for the "grandmother cell" 
issue. Even the 3-unit loop capturing a size-depth relationship could be viewed as a 
"pattern of activity" of the three units. More generally, in any CM network, there 
will always be many active units forming one or more coalitions. This does not meaA 
that one can usefully characterize the network in terms of diffuse system states 
instead of units with particular functions. On the other hand, a unit will participate
in several coalitions and need not have a simple response pattern. There are both 
biological and computational advantages to employing the simultaneous activity of 
multiple units to code some information of interest. 

For example, suppose we wanted to represent 10 values each of ten low-level 
visual features such as position, orientation, hue, contrast, motion, etc. Having a 
separate unit for each vector of values would require 1010 units which is clearly too 
many. Suppose instead we had units which were precise in only one dimension. Then 
we would need only 10 x 10 units but it would take the simultaneous activity of ten 
units to specify a full vector of values. There are a range of intermediate 
constructions [Hinton, 1981; Feldman & Ballard, 1982]. One of these techniques 
(coarse-fine tuning) appears close to the coding used in primary visual cortex, where 
units are broadly tuned in several dimensions and fine-tuned in one stimulus 
dimension. Consideration of the particular coding techniques employed by the brain 
will be deferred until Section 5 and we will use whatever coding seems easiest to 
understand in earlier sections. 

2.4 Memory and Change 

In the previous section, we saw how fixed CM networks could be designed to 
compute functions and relations quite efficiently. These fixed networks could have a 
certain amount of built-in flexibility by explicitly incorporating parameters. One can 
view the depth networks of Figure 2.2 as computing the physical size of objects from 
the retinal size, parameterized by depth. 

But there are also a number of situations where it does not seem plausible to 
assume the existence of either fixed or parameterized links. An obvious, though 
artificial, set of examples are the paired-associate tasks with nonsense syllables used 
by psychologists. A closely related real task is learning someone's name or the 
Hebrew word for apple. One cannot assume that all the required connections are 
pre-established, and it is known that they do not grow rapidly enough (in fact, very 
little at all) [Cotman, 1978]. What does seem plausible is that there is a built-in 
network, something like a telephone switching network, which can be confi~ured to 
capture the required link between two units. We refer to this as establtshing a 
"dynamic connection" in the uniform network. We are assuming (as is commonly 
done) that the weight of synaptic connections cannot change rapidly enough to do 
this, so that all dynamic connections are based on changes in the potential (p) and 
state (q) of individual units. The other basic constraints that we impose on possible 
solutions are that units broadcast their outputs and that there is no central controller 
available to set up the dynamic connections. These assumptions differ from those in 
the switching literature, and the results there don't carry over in any obvious way.
The assumption is that only one dynamic connection is made at a time, but that 
several (e.g. 7 ± 2) must be sustainable without cross talk. 

The example task we will be considering is to make arbitrary dynamic
connections between two sets of units labelled A. ..Z and a...Z respectively. These 
could be words in different languages, paired associates, words and images, and so 
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on. Figure 2.3 depicts the situation for three units 6n each side. 

The problem is how to establish, for example, the link B-c .without also li!lkillg, 
e.g. B-b, since the network is originally ~nif<?rm. More precls,ely, we ,requIre an 
algorithm which, ~iven the simultaneous actIvalion of B and c.' will est~bh~h p and, q
values in the umts of our network such that (for some lIme) aclivatlOg B will 
stimulate c but not a or b. For the most part we _will consi~er ,symmelric, netwo~ks 
where the "dynamic connection" B-c will also have the actlvallOIl of c stllTIulate B 
and not A or C. It should be clear that primitive units without any internal state 
(memory) will not be usable in such tasks. 

The basic solution to the dynamic link problem in eM networks relies upon 
mutual inhibition between the alternative inLer-units. For notational convenience. we 
will sometimes represent this situation as an array of units, with the understanding 
that the array is a winner-take-all (WTA) network. If the only active link were ll-c, 
then only the three starred units would be acti ve. 

Figure 2.3: Uniform dynamic link network. 

The idea here is that there is a separate intermediate unit dedicated to each 
possible pairin~. The starred unit for B-c is in two WTA networks, the column which 
IS "inputs to c', and the "outputs from B" WTA net which is drawn in explicitly. 
When B-c is active, it blocks all others uses of both Band c, which is the desired 
effect. The fact that our solution requires N2 intermediate nodes to connect 2N units 
makes it impractical for linking up sets of lOS units like an educated person's 
vocabulary. There are, however, more complex interconnection networks which 
require about 4N312 units [Feldman, 1981]. This paper also gives detailed 
descriptions of the unit computations required and some examples. 

2.5 Random Interconnection Networks 

There are both anatomical [Buser, 1978] and computational reasons for looking 
carefully at random interconnection schemes, We will first consider the possibility of 
using random interconnection networks (in place of the uniform networks above) Lo 
dynamically connect arbitrary pairs of units from two distinct layers. As before, each 
unit is postulated to have links to some large number of intermediate units. whose 
role is strictly a linking one. In any random connection scheme there will be some 
finite probability that the required path is simply not present. The remarkable fact is 
that this failure probability can be made vanishingly small for networks of quite 
moderate size [Feldman, 1981]. The idea is' to have k (two or more) layers of 
intermediate units so that there is a tree of Bk +1 links across the network. where B 
is the outgoing number of branches from each unit. This result has been known for 
some time and has been used as the basis of a proposed highly parallel computer
[Fahlman, 1980]. 

It is premature to speculate on the degree to which animals are more like the 
uniform or random networks (if either) but we can say something about the 
computational advantages of each. Uniform networks appear to be most useful for 
maintaining many simultaneous dynamic links which are easily turned on and off. 
They could only be expected to occur in well-structured stable domains because of 
the strong consistency requirements. In general, we would like to view uniform 
dynamic links as a mechanism roughly equivalent to modifiable or conjullcLive 
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connections where the number of possibilities is too great to wire up directly. 

Random interconnection networks are not as stable and predictable as uniform 
ones, but have some other advantages. The lower requirements on the number and 
precision of wiring of intermediate units are clearly important But the most 
mteresting property of the random networks is the relative ease with which they 
could be made permanent. Suppose that instead of rapid change we wanted 
relatively long term linkage of units from the two layers. Our model specifies that 
this must be done by changing connection weights wj- The point to be made here is 
that the random networks already have some units biased towards ]jnkin~ any 
particular pair from the two layers. By selectively &1renghthening the active mputs 
(on command) of the most appropriate units, the network can relatively quickly forge 
a reliable link between the parr. The details of how we propose that this comes about 
are given in [Feldman, 1981] and summarizxed in Section 2.5. Of course, one this has 
hap'pened, the network will not be able to represent competing dynamic links, but its 
abllIty to capture new pairings will remain intact until a large fraction of the nodes 
are used up (cf. [Fahlman, 1980]). 

The fact that random (as opposed to uniform) interconnection networks could be 
readily specialized suggests that random networks may play an important role in 
permanent change and memory. After enough training, the originally random inter­
connection network would become one in which there was essentially a hard-wired 
connection between particular pairs of units from the two spaces. 

The problem with this scheme as a proto-model of long term memory is that 
most of our knowledge is structured much more richly than paired associates. rt is 
technically true that one can reduce any relational structure to one involving only 
pairings, and Fahlman [1980] suggests that the best current hardware approach is 
along these lines. But the intuitive, psychological and physiological [Wlckelgren, 
1979J notions of conceptual structures involve the direct use of more complex 
connection patterns. It turns out that the results of the previous section on random 
interconnection layers extend nicely to the more general case. 

The basic situation is shown in Figure 2.4. There are again N (= 16) units 
connected to ..; N others, but without any layer structure. We are assuming that all 
units and connections are identical and that each unit has, at each time step 

v ~ 2p 

p ~ p + :Li - 2 (= decay when p ::F. 0). 


We suppose that at each time step the unit subtracts 2 from its current potential if 
not zero, and then adds the sum of its input values. The table in Figure 2.4 shows 
successive values of p for various units, assuming that at T 0, units F and I have p 
= 10 and are maintained for six time steps. The unit 0 happens to be directly
connected to F and I and thus will eventually saturate (under the rules above). 

Figure 2.4: Random chunking network. 

After step 5, the coalition (F,O,l) is self-sustaining and would actually need to be 
stopped by fatigue or an external input. In some sense, we can view this coalition as 
having recruited unit 0 to maintain the dynamic link between F and l. The main 
differences from the examples given earlier is that here the linking can Lake place 
between any set of units and there is no distinction between end and intermediate 
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units. This is a simple example of the basic mechanism which we believe to, SliPPOrt 
associative learnin~ and appears to be close to what Wickelgren [1979] had Ill, Ill,md. 
If random chunkmg networks can be made to 
through coalitions, the usual weight-changing 
associations to be made permanent. 

support short-term 
algorithms would 

associations 
enable the 

2.6 Cllanging WeiglJts and Long-Term Memory 

There was a brief discussion of changing weights earlier where it was suggested 
that random networks could easily be made to incorporate long-term change. We will 
examine this problem more carefully in this section, still within the constraint that all 
long-term change is caused by structural modification of connection weights, Wj. 
There is some evidence for the growth of new connections in adults [Buser, 1978j, 
and for relatively rapid physiological change at synapses [Kandel, 19761, but neither 
seems to be nearly widespread or selective enough to play a dominant role in the 
acquisition of knowledge. The discussion in this section will be mainly technical, 
dealing with rules for changing weights, their properties, and some basic problems. 

The standard basis of weight-changing algorithms [SuLLon & Barto. 1981; Jusczyk 
& Klein, 1980] is reinforcement of those weights (Wj) whose inputs (ij) correlate with 
desired outputs. This is almost trivially correct, but is subject Lo a wide range of 
interpretations, some of which won't work. One widely used rule is to always 
reinforce those Wj for which ij was active whenever the unit fires (rapidly). This is the 
rule originally proposed by Hebb [Jusczyk & Klein, 1980] and has been the basis for 
many studies of plasticity. However, this feedback-free reinforcement rule provides 
no way for a system to learn from its mistakes and could not be the only rule used in 
nature. 

Our definition of weight changing in the abstract units depends on a 
hypothesized ability for a unit to "remember" the activity state of its incoming 
connections for long enough to get feedback. This assumption is commonly made by 
modelers (e.g., see [Sutton & Barto, 1981]), and has some currency among 
neurobiologists (e.g., Stent, 1973]). The idea is that the activity at a receiving site 
causes chemical changes that persist and remain localized for some time. 

The change in weights will be determined by a function of the inputs (D, 
potential (p), state (q), and outcome value (x) for each unit. The general case 
lllcludes a provision for dealing with situations where it is not possible to decide 
immediately whether a given network behavior should be reinforced. We introduce a 
"memory" vector I!:. and two functions, c which updates I!:., and d. which (usually 
later) uses values of I!:. to bring about changes m the weights w. The general 
definitions are given in [Feldman, 1981]. This paper will not deaT with deferred 
outcomes, so that we can use a simplified definition with I!:. = wand c = d. The rule 
for weight change becomes ­

w f- dQ.,p,q,x,w). 

As ?11 example, let us consider augmenting the random network of Figure 2.4 to 
enable It to selectively strengthen connections. We will assume that all of the Wj in 
the network are initially set to .5. The table in Figure 2.4 is still applicable if we 
assume, that all units have output v = 4p (instead of 2p), because the mitial weights 
of .5 WIll even things out. We will also have to be more precise in ollr treatment of 
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bidirectional links. We interpret Figure 2.4 to mean that, for example, unit 0 has 
inputs from and (separately) outputs to units F, I, L, and ? Recruiting units (0, L F) 
to form a more permanent chunk would be accomplished by strengthening their 
mutual positive effects. . 

The dynamic link established in Figure 2.4 provides the information necessary 
for a uniform updating algorithm to choose the right weights to change. For 
example, the system could signal updating weights at time 5 for all units with p >8. 
The next thins that needs specifying is a particular updating rule. The next thing that 
needs specifymg is a particular updating rule. A typical update rule might be 

AWj = a . ~ 

which increases weights at a rate proportional to the current input level. A well 
known problem with this rule is that if weights only increase they will often all 
saturate. One standard solution (e.g., [Sutton & Barto, 198]]), which works well 
enough in this case, is to have an increase or decrease in weights which 'depends on 
the output or potential of the unit. We could qo this discretely by setting a 
conditional/)= 1 if p ) 8 and /) = -1 if p <8. A continuous version could be /) . 
P - 8, which would greatly penalize active lnputs to dormant units. In either case, 

AWj = a . ij . /) 

is an acceptable updating rule. Assuming that the fourth input of unit 0 is idle, the 
new values of weights on inputs to unit ° would be (a = .1): 

I F L ? 

old .s .5 .5 .5 

continuous .6 .6 .56 .5 

discrete .55 .55 .53 .5 


Notice that the weight on the mystery input remains unchanged because i? is 
zero. This might not be desirable if the goal were to cut off other inputs that might 
cause confusion with the chunk (0, I, F), In general, different structures will be 
better served by different updating algorithms and one should not expect to find a 
uniform scheme that will be applicable in all situations. Our major departure from 
the literature is to allow non-linear updating rules that need not treat all Wj on a 
given unit identically. This is a natural extension of the more flexible comRulational 
rules we have found useful in our detailed models. Many of the results lSuUon & 
Barto, 1981] on the convergence and stability of correlation weight changing schemes 
will carry over to rules of our kind. More details on this and related questions can be 
found in [Feldman, 1981], 
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other 
rivals 

Figure 2.1: Winner-Take-All network. Each unit 
stops if it sees a higher value. 

depth 

I \ 

retinal 
physicalsize 
sizeunits 
units 

Figure 2.2: 	 Relations among depth, retinal size, and 
physical size. In the conjunctive depth 
network, physical size 2 required both 
retinal size 2 and depth = 1. 
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Figure 2.3: Uniform Dynamic Link Network 
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RANDOM NETWORKS: 

N NODES EACH CONNECTED TO IN OTHERS 

(0 

. ASSUME V = .2 * POTENTIAL; DECAY IS 2 

I • tf 1 G L 0 A N 
T = 0 

1 10 10 0 0 0 0 0 
2 10 10 0 2 4 2 2 

3 10 10 0 218 6 2 2 

4 10 10 1 4 8.6 2 2 

5 10 10 1 6.3 10 2 2 

FIGURE 2.L1: RANDOM CHUNKING NETWORK 
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3. Small World 

One problem in trying to think coherently about vision and space is the 
enormous number of entities involved at every level. [n this section we wIll presellt a 
fairly detailed examination of the interactions among the fOllr frames, bllt all done at 
a very coarse grain. The small world development has been crucial to the elaboration 
of the current model and will hopefully also be easier for others to work with. Again, 
we will push through a straight line of development that ignores many important 
issues and then try to address all the major ones (in Section 4). This section and the 
next one still contain no behavioral or physiological support for the choices being
made - the concern is strictly with the computational adeqllacy of the model. Only 
after the model is specified will we address its relationships with past and future 
experiments (Section 5). 

Our discussion begins with the problem of linking visual feature information 
with the knowledge of how objects in the world can appear. The problem of going 
from a set of visual features to the description of a situation will be called the 
indexing problem, following the terminology common in AI. The small world we will 
consider In detail has exactly six distinct visual features each with 10 possible values 
(Figure 3.1). Assume for now that any object in the small world can be characterized 
by some particular set of values for the six features. This would mean that each 
object has a distinct 6-digit visual code (not unlike a zip code). I f the system could 
always reliably extract the values for the visual features, it would not be hard to 
identify which objects were in which places in the current environment. No 
additional problems would arise if some objects had multiple codes among the 106 
= 1,000,000 available. But the system, as specified. would totally break dowll if two 
objects needed to share the same code, i.e. looked identical relative to our set of 
features and values. We will have to address the question of ambiguous feature sets 
later. 

The six particular visual features which we have <.:hosen are intended to 
elucidate the major scientific problems in intermediate level vision and would not oe 
the best choice for a practical computer vision system. We assume for now that the 
best value at each position of the current view is continuously maintained by 
parameter network computations [Ballard, ]981] which will be elaborated below. 
Features such as size and shape which cover several units are assumed to be 
represented by a single unit, say at the center of the region covered. Of course, the 
problem of breaking up the feature space into meaningful regions is a central one 
and the model will have to address it in detail. 

One of the features which we employ in the small world is called "motion." 
Motion, as well as the other features, will be treated in this section as a properly of 
objects which has ten discrete values and is continuollsly updated by computational 
processes which will be specifted later. Motion and change are clearly critkal 
problems and require much more careful treatment than an arbitrary assignment of 
ten values. But there is an important conceptual advantage to including motion as an 
explicit parameter even at this early stage. If computing the best discrete valued 
characterization of object motion is a basic property of low-level vision, then there is 
nothing at all surprising about the various perceived motion phenomena. More 
generally, the notion that low-level vision is concerned with continuously
maintaining the best current discrete value choices for specific visual features 
provides a powerful organizing principle for helping to explain a wide range of 
findings in perceptual psychology. We will consider some of these isslles in Section 5, 
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after the small world model has been worked out in detail. 

The model specified so far has almost no con Lent, bUL several impOrLanL points 
can already be seen. The most important point is that discrete values for a fixed set 
of visual features provide a natural base for indexing, and all of our models will 
assume this structure. The second point is that the visual features chosen will 
determine which distinctions the sytem is capable of, as is already well knowll in 
classical pattern recognition. An obvious consequence is that the features used tor 
indexing should be as invariant as possible under different viewing conditions. This 
suggests that we should use the "constancy" properties like reflectance, physical size 
and surface curvature rather than proximal or image features for indexing. 

The six visual features used in indexing are the following: lightness, hue, 
texture, shape, motion, and size. Obviously enough, ten values of these features (even 
in logarithmic scales) is not enough to characterize visual appearance in the real 
world; but the small world is rich enough to exhibit most of the required problems. 
The model assumes that the six features are continously represented 111 six parallel 10 
x 10 arrays which are intended to map the currently visible external world. There is 
also assumed to be a (10 valued logarthmic) depth map maintained as part of the 
same structure (Fig. 3.1). The depth map is needed for calculating constancy features 
such as object size and is also used directly in mapping the en vironmen l. The depth 
map is assumed to be calculated cooperatively with the six feature planes, uSlllg 
binocular and other cues. These seven parallel arrays, along with some auxiliary 
structure, comprise the stable feature frame (SFF) which is one of the four 
cornerstones of the model. 

Figure 3.1: The six feature (and depth) planes for the Small World SFF 

The SFF takes its name from its two main properties: it encodes visual fealllre 
values and it is stable over fixations. The SFF is the basic interface between the visual 
system and the more general world knowledge represented in the World Knowledge 
Formulary (WKF). The idea is that the SFF at all limes maintaills a map of the 
visual properties of the part of the world that is currently in view. We will describe 
below in some detail how the SFF interacts with the relinal frame (RF) ill 
maintaining a stable visual world. Assuming that the Sf''''' is successfully maintained, 
we now address the problem of how iLs feature values can be employed to capture 
knowledge of the Objects in the' current environment (and their activities). Thus we 
return to the indeXIng problem. 

Our fust view of appearance models was that each object could be 
characterized by one or more sets of feature values. For objects that are sufficiently 
simple, this is not a bad approximation. You can probably name an object that is an 
approximately IS' white sphere and which is uniformly pock-marked even before 
seeing it hook into the rough. But for complex objects Uke a horse or Harvard 
Sq uare, the single feature set isn't even the right kind of visual information. Our way 
of handling the appearance models for complex objects and situations is. again, taken 
dir~ctly. from current AI practice. We assume that the appearance of a complex 
object IS represented (as part of one's world knowledge)' as a network of nodes 
representing the. "appearance possibilities" of simpler components and relationships 
among them. FIgure 3.2 shows the description of a chair scene from (Ballard & 
Brown, 1982] which is typical. There are several unsolved technical qllesllons about 
the number of separate views maintained, and how milch OexibiliLy should be 
encoded in a description, but the general idea of composlLioll is all we need at the 
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moment. 

Figure 3.2: A typical network representation of visual objects in a sitllation 
[Ballard and Brown 1982] 

Recall that the naive version of indexing was to use the 6-digil visual feature 
code to look up the name of the objecl with that description. Complex objects are 
assumed to be composed of parts, each part being either another complex ohjecl or a 
visual primitive that can be indexed by the 6-digit code. Now recall that all of our 
structures are assumed to be parallel and continuously active. This means lhat 
"indexing" can be continuously in progress between differenl areas of the SF... and 
networks of visual appearance knowledge in the WKF. The crude version of this idea 
is to assume that each set of visual features (for a point in the 10 x 10 SFF map) 
picks out (indexes) the visual primitive which is appropriate. If this were to happen, 
It is not hard to see that a visible complex object would have many of its visual 
primitive parts selected simultaneously and should therefore be recoglllzahle. Parallel 
indexing from the entire visual field without confusion is too much to expecl. 

In order to make these notions more precise and eliminate the ghost.s from 
our machine, we must describe all of this in considerably more detail, using the 
technical definitions of Section 2. The various components of both the SFI: and 
WKF will be elaborated in terms of the "units" of Section 2. Obviously enough, we 
will need separate units for each of the 100 spatial positions in each of the seven 
separate maps. In fact, it is also important to follow the unit/value principle and 
require a separate unit for each value of each cell in the maps above, giving a total of 
7000 units. Following the connectionist dogma, we asslIme that visual primitives are 
units which are connected to the appropriate set of visual-feature-value units. For 
example, Figure 3.3 shows how golf and ping pong ball descriptions in the WKF 
might be connected (indexed) by visual feaLmes. It is easy to see how Lo' make 
connections do the same job as the index codes. Each code for a visual primitive is 
assumed to be encoded as a conjunction of links from unit.s representing the 
appropriate value of each feature. A visual primitive with multiple codes has several 
disjunctive "dendrites," one for each code. Visual primitives that are parl of a 
complex object are also linked into a network for representing the appearance of the 
object [Figure 3.4]. . 

Figure 3.3: Ping-·pong and golf balls 

Figure 3.4: Harvard Square situation network 
Rectangles are situations, squares are (complex) objeds 

The general notion of representing a complex object as a network or gwph of 
nodes is standard in machine perception and will be followell here. In the small 
world we will assume that a node corresponds 10 one visual primitive (set of feature 
values) and is represented by a single unit as in Section 2. The links betweell nodes 
are assumed to be conceptually labelled as in Figure 3.2. The encolling of labelled 
links into eM connections will vary, but will mainly be through conjunctive
connections involving separate units which embody the link Ilame. 

An important aspect of the small world model is that complex objects and 
situations have the identical represenlation as semantic networks in the W K F but 
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may include several complex objects and relations among them. A situation is for us' 
. any oriented WKF network which can be mapped to the environmental frame to 
guide behavior [ef Section 4.2]. The question of whether a given network should be 
viewed as a situation description is not fixed in advance, but is determined by the 
way that the description is being used. Intuitively, it seems reasonable enough that a 
room or Harvard Square can be treated either as a situation or as an object viewed 
from some distance and that the same relational knowledge could be employed in 
each use. BoLh object and situation descriptions allow for nested sub-descriptions and 
both can accommodate some stylized movement as will be discussed later. 

The question of when a network description is playing the role of a situation 
is quite sharply defined in our model. We assume that at any given time there is 
exactly one currently active situation description and that it represents Lhe 
environmental situation at that time. Loosely speaking. the model assumes that there 
are situation descriptions for places, routes, etc. and that these are linked in the WKF 
as a "patchwork cognitive map" [Kuipers, 1973]. The technical questions to be 
addressed here are how these situation descriptions interact with early vision (Slo'F) 
and with the (modality-independent) frame which encodes knowledge of the space 
around us at any time. It is this environmental frame (EF) which is the fourth pillar 
of our framework; the others being general world knowledge (WKF), features of the 
stable visual scene (SFF) and the instantaneous retinal information (RF). Again, it is 
crucial to think of all of these frames as continuously active and interacting with one 
another. 

The environmental frame in the small world is again unrealistically rectilinear. 
We assume that the world around us is always represented as a box-like three­
dimensional spatial map, as shown in Figure 3.5. The nodes of the El" each represent 
a position in the space surrounding the observer, and the activation of these nodes 
varies with the direction of gaze. There is a mapping to nodes in the currently active 
situation (in the WKF) from appropriate units in the environmental frame. Every 
node in the currently active situation will get some potentiation just from being part 
of the active situation. Additionally if one of these nodes is mapped to a position in 
space that is currently being gazed upon, it will receive much more potentiating 
input and can be said to be "anticipated." Recall that in our discussion of ambiguous 
visual input we said that mechanisms like this would lead to one interpretation being 
preferred over another depending on the situation. 

Figure 3.5: Two EF units of different scales activate di fferent objects .in SIT 
435 = Harvard Square 

The model includes three levels of top-down input to nodes representing 
visual objects in the WKF: current situation, visible. and foveated. We will describe 
the proposed representation for situations and the EF in more detail and worry only 
later about how one might come to learn the networks for situations (and objects). 

Our model of the environmental frame includes a subnetwork for 
continuously updating the position and orientation of the observer within his 
en vir~~ment. This is clearly necessary for computing which parts of the ellvironment 
are VISible and foveated. The same information is assumed to be used in the GAZE 
mal?l?ing li~ki.ng the retinal and SFF frames. Although it is not so obvious, the ego 
pOs.lt!On wtthll1 the frame also can provide scale information, allowing us to 
anTICipate more precisely what should be visible from a given view poinl in the 
environment. This scale information combines nicely with the hierarchical nature of 

http:li~ki.ng
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the visual descriptions suggested for the WKF. As the observer approaches some 
object, different levels of substructure become visible and the operation of the 
current model incorporates this in a natural way. The relative position of objects to 
the current egocentric position is also assumed to be the basis for physical actions on 
objects. The model suggests that the SFF-WKF-system is crude and that vjsll~1 or 
other sensory guidance is needed for accurate location of objects. 

For concreteness, we assume that the (fixed) environment frame has fOllr 
directions (N,E,S,W); we will not include objects above or below the observer for 
now. Starting from the center of the map, there are four (logarithmic) distances in 
each direction. For things at distance one, the observer can resolve 10 x 10 spatial 
postions. At distance two, the resolution is 5 x 5. At distance 3 it is 2 x 2 and at 
distance 4 only one unit is active or not. The situations are encoded in a compatible
way'. Each object description in a situation network has a scale at which it could be 
visIble, if gazed upon. 

As the observer moves, the visible scale and postion values are continuously
updated. There is no apparent difficulty in also computing occlusion information, 
either generally through the EF or specifically i!l the situation description. We 
assume that situations become mapped as the active current environment, based on 
how the observer has organized his situation memory. Some genera) clIes a<; to when 
situations would change include: going through a door, changing to a di fferent scale 
of consideration or switching from planning to acting. The technical question is 
exactly how the environmental frame interacts with the current situation network. 
The major difficulty is providing for the mapping of a great number of possible 
situations onto the single fixed environmental frame. Notice that any CM model will 
face the problem of coupling distrubuted knowledge to fixed input and output 
systems - the scientific questions are where and how to carry out thiS coupling. The 
keys to our solution to the situation - EF mapping problems are: sUlIalioll nodes, 
conjunctive connections and directly encoding only the inverse mappillg. We assume 
that the environmental frame consists (inter alia) of units that each represent a region
of the currently surrounding space. Each of these units will conjuncuvely conllect to 
all of the objects which might be visible in its region of space in some situation. Not 
surprisingly, the other half of the conjunctive connection comes from a unil which is 
active exactly for one particular situation. Figure 3.5 depicts the general situation. If 
the current situation is "Harvard Square" = S463 then all of the objects in thaL 
situation will be receiving some activation. This means that there will be some 
greater than usual expectation that these objects will be chosell over their rivals ill 
non-visual as well as visual computations. When gaze is of a direction and scale 
appropriate for some object, its node (in the WKF network) will be more strongly
activated because the corresponding position in the EF will be active and this plus
the currency of S463 will cause high activation of e.g. "The Coop" and .. Brighams". 
This provides top-down bias to the relax:,ltion between the WKF anti the visual 
features of the SFF, the details of which will be given later. Finally, if a particular 
known object (say the door of the Coop) is foveated, there will be even stronger top 
down bias through the WKF to both the SFF and Retinal computations. 

The advantages accruing to a visual system with foveation are the focus of our 
description of the fIrst basic component of the model - the retinal (1\1") frame. Even 
before we fill in the details we can see that there are several reasons why foveating an 
object of interest leads to better .recognition: 

a) Certain complex calculations (e.g. color, texture) can only be done foveally. 
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b) Bottom-up indexing of features to visual primitives can be restricted to the 
area ofthe SFF being foveated (by spatial focus units); greatly reducing the 
possible confusions. 

c) In a known environment, top-down activation from the conjunction of 
sItuation and gaze information can significanLly raise the activation of an 
expected object or primitive. 

All three of these advantages mutually reinforce -one another, leading to all 
overwhelming advantage for foveal vision in the model. The role of peripheral vision 
is to set and maintain contexts and to continuously monitor for change, as we will see 
as the elaboration of the model continues. 

The retinal frame (RF) is primarily concerned with bringing the enormous 
spatial resolution and processing power of the fovea and its maps to bear on points
of interest. The RF is assumed to calculate the values of disparity, retinal motion, 
intensity change, etc. which are the primary inputs to the SFF. The current model 
assumes that there are local grouping and smoothing processes active within each 
feature network, but that interactions among features are carried out in the SF1". 

I n keeping with the rest of the development we will describe a specific
incarnation of the retinal frame which is much too small and rectilinear, but should 
be easier to understand. Our retinal frame will have 100 spatially organized units, 
like the feature frame (SFF), but they will be laid out very differently. 1 n the RF, 64 
of the 100 spatial units will be uniformly packed into an area equivalent to a 2 x 2 
array of the SFF. The remaining 36 units will be formed into three surrounding rings 
of logarithmically decreasing resolution. In terms of SI:}-, units, the nnits in the ouler 
rings of the retinal frame will cover 1, 4, and] 6 sq uares respectively. All of th is is 
depicted in Figure 3.6. 

Figure 3.6: Logarithmic Retinal Frame 

We assume that the retinal frame can (logically) mov\:! with respect to the 
SFF. The center of the RF can "move" to any position in the SI:I: except the two 
outer most rings. Under these conditions, the entire SFF is covered by the Rl" tit all 
times. Naturally, the parts of the SFF mapped by the coarse units of the ){ I: get ouly 
coarse information while the fovea is mapped elsewhere. I,'igure 3.7 depicts the 
situation where the fovea is mapped to the upper left extreme of its range, leaving 
most of the SFF covered by 2 x 2 and 4 x 4 retinal Ilnits. 

First, a technical point. The relative molion of the RF must be implemented 
i~ our scheme by a switchable conjunctive mapping. We assume that each RF unit is 
hnked appropriately with every combination of SFF units to which it could map.
Every such RF-SFF link is conjoined with a connection that specifies the currently 
active GAZE mapping. For example, in Figure 3.7, the top-left corner unit of the 
~(F~ arrays will be mapped to the unit just beyond the fovea which is the top-len of 
its ~lDg. The mappings for units other than those in this ring are not 1 to l; this will 
be Important as we consider the interactions of the retinal (R F) and feature (Sn·,)
frames. 

Figure 3.7: Retinal Frame mapped to SFF 
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In the current model, there is no top-down feedback from SFF to I{ I,' units. 
Any luning of the retinal frame is assumed to be captured in the mechanism for 
GAZE control. The flow of informalion in the other direction is, of course, the basic 
problem of low-level visual processing. The model postulates a distinct fovea and 
periphery in the retinal frame and assigns quite different functions to them. The 
fovea (8 x 8 in our case) is assumed to have enough resolution to determine which of 
the discrete (10 in our case) values of the stimulus features are present in the area 
foveated. The SFF is assumed to be able to integrate and retain information abollt 
hue, texture, shape but not to do the direct computation of the feature values. The 
main purpose of the SFF is incorporating and maintaining information about the 
entire visible scene that is only computable foveally. The SFF does not simply 
transcribe retinal input; the seven planes interact continuously to produce a feature 
frame which encodes "constancy" values of size, -hue, etc. The depth map is needed 
in the SFF to aide in constancy calculations and. in fact. there appear to be a IIlImber 
of other auxiliary calculations needed as well [Ballard, 1982}. The four units of the 
SFF currently mapped to the fovea of the RF dominate the calculation of feature 
values, but an overall consistancy must be maintained. 

The peripheral 36 units of the retinal frame are assllmed to pl(lY a dinerent 
role. If the SFF is blank, as when a new scene is first encountered, each unit in the 
RF provides the same value to all the (1, 4, or ]6) units in the SH: to which it is 
currently mapped. These crude values become the basis for the initial relaxation 
towards constancy features in the SFF and (because they are there) begin indexing
the visual primitives in the WKF. This crude indexing is asslJmed to provide some 
guidance to the choice of fixation points for further analysis of the scene. 

When analysis is well under way and the SFF is not blank, the periphery is 
assumed to function in a "change detection" mode. The coarse values compnted by
peripheral units are compared with average values from the (1, 4, or 16) SFF units 
covered. If there is too large a difference, an alerting signal is acti vated leading (in 
the simple case) to a saccade to the place of chan6e. The SFF is also assumed to 
contain networks for "smooth continuation" of Visual properties across fixatiolls. 
The networks for continuity and "filling in" phenomena are assumed to interact wiLh 
the coarse values computed by the peripheral RF. There is a wealth of ddta on 
visual illusions and meta-contrast phenomena which constrains the choices of how 
these networks function and io'teracl. 

Recall that this entire discussion is ignoring what we have called the "pursuit 
mode" of the system. In -pursuit mode, the periphery does not alert 011 all changes 
but is assumed to still be sensitive to optic flow patterns indicating collisions. Pursuit 
mode is discussed in Section 4.4. 
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4. Small World, expanded. 

The purpose of this section is to address a variety of technical questions that were 
suppressed in the previous overview, still without seriously confronting experimental 
data. The technical questions are all addressed relative to the specific formcllism 
described in Section 2, but most of the questions would arise in any aUell1pl to 
model vision and space at the current level of specificity. We will follow the same 
order of presentation as before, but will also include discllssion of some links l.Imollg 
the four frames that were ignored earlier. Most of the specific solutions to techilical 
problems will be carried out at the Small World scale, hopefully making it easier to 
see the ideas. 

4.1 The SFF reconsidered. 

The flrst technical questions concern the assumption Lhat the Stable '''CHtme 
Frame (SFP) can continuously maintain values for the hue, saturation, size, shape, 
color, texture, motion and distance of features in the current field of view. A large 
fraction of the current effort in computer vision is focussed on these prohlems and, 
while a great deal is known, quite a few problems remain. Without aLlempting to 
survey all this work, we can indicate extensions to the Small World SFF model that 
make it a reasonable abstraction of our current understanding of constancies ( = 
intrinsic images = extra-striate visual maps). 

There was a certain sleight-of-hand in the previous descriptioll of SFF 
functionality. In order to even define SFF features like shape and size, the image 
must already be segmented into regions, and we have not specified how this 
segmentation is to happen. (This is our first technical problem and is typical of the 
ones to follow.) OUf notions of how region analysis and feature extraction are 
cooperatively computed is described in detail in [Ballard. 1981J. The bask idea is that 
the SFF also contains parameter space networks represelltin~ the relative importance
of different feature values in a given scene. Color is a particularly easy example to 
examine. Our ten values of hue and lightness yield 100 color values that could he 
present in a scene. Imagine one unit for each of these 100 values whose activity is a 
measure of how much of this color is in the scene. Now consider the most active 
color and the points in the SFF whose hue and lightness yield that color. This 
collection of identically colored points is a good candidate for a meanillgful region.
especially if the points are adjacent. If there is no significant variance in depth, 
texture, or motion over such a region, it will almost certainly be segmented out and 
its size and shape can be computed. When the variolls features do not agree, people
have trouble with segmentation (e.g. camouflage). Algorithms for forming distinct 
regions within a cellular computer like ours are not trivial, but are in the literullire 
[Minsky & Papert, 1972]. The size and crude shafe of an identified region could he 
calculated by a parameter network [Ballard, 1981. We assume that for indexing, the 
properties of a region are represented by the uni t at its center of mass, with tlle other 
units reporting null values. 

Current Computer Vision research is directed at a slightly less abstract set of 
constancy features emphasizing e.g. local surface slant and tilt instead of our shape
features. There is no reason why the SFF could not incorporate mllltiple levels of 
features and we expect that it will have these as well as global parameters such as the 
direction and color of illumination. The model also should be refined Lo account for 
the fact that there are order relationships among the features. It tllrns out that depth
precedes lightness [Gilchrist, 1977] and that region properties like size alld shape 
presume some segmentation by depth, color, motion alld texture. All of these 
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calculations do interact with each other as well as the with the bidirectional (illuexing 
and context) links to knowledge of the appearance of objects (WKI·'). The model 
presumes that this giant network relaxes into a consistent stable coalition (Section 2) 
and preliminary simulations [Sabbah, 1981] are encouraging, but a great deal of work 
remains before we can have real confidence in the computational stability of the 
model. . 

Another important issue is the role played by points of discontinllity (edges) in 
the SFF. Both the behavioral and physiological data indicate strongly that the visual 
system responds primarily to differences (e.g. in color), but the SI'V encodes point 
values of features. The model uses the SFF primarily as a buffer memory and for 
indexing - both functions are better served by attempting to capture the (constancy) 
values of visual features. It might be useful to add additional planes representing. ' 
e.g., depth discontinuities, to the SFF and there is no problem in doing so. Depth 
discontinuity points would be particularly useful in grouping regions into separate 
objects and this, in turn, would greatly simplify indexing (which is a major ttx:hnical 
problem to be addressed below). More generally, the conversion from relinal 
(difference) information to SFF (constancy value) information is a meUor prediction 
of the modeL The model postulates that the SFF continuously computes, among 
other things, smooth continuation values for feature plane units not foveated 
recently. 

In Section 3, we described the RF -+ SFF mapping as involving moving the 
]ogarithmic retinal frame over the SFF spatial map. The next task is to show how this 
is accomplished using the mechanisms of Section 2. The same idea of a variable 
mapping will occur repeatedly below. All of our variable mappings will rely on 
conjunctive connections; the particular scheme for the RF -+ SFF map is shown in 
Figure 4.1. First consider tlJe case where a position in the SFF is currently covered 
by a equal size piece of the RF. For example if gaze were directed to its maximum 
extent in the upper right corner of the field (8,8), then the SFF units at position (6,5) 
would get values from the RF unit (64) in the spiral numbering order. This is shown 
in Figure 4.1 as a conjunctive connection on the (6,5) unit of links from [gaze = 
(8,8)] and RF position = (64), The same gaze value maps RF position (73) to SFF 
position (9,5), and so on. Also shown is one of the 64 other conjunctive inputs to the 
SFF (6,5) units; this for gaze (7,8). The mapping for unequal sizes of RF and SFF 
fields is only slightly more complicated. Coarse RF units map the same value to 
several SFF units. Fine RF units would have to compute some summary vallie of 
their findings, for each of the seven planes of the SFF. There is no difficulty here ill 
mapping, but the nature of the RF foveal computations and their use is a technical 
question to which we will return in Section 4.4. 

Figure 4.1: Mapping retinal to SFF coordinates, Detail 

Another genera] issue is the choice of one unit per feature value as a basis for 
reRresenting information. Although this unit/value principle is a convenient way to 
bUlld models and appears to be a reasonable abstraction of the experimental data, 
the real sit!lation is more complex. Even on pure compuultional grounds, it is much 
more effiCient to use some encoding tricks such as the coarse-fine coding trick 
described in. Section 2. These tricks also exploit conjunctive connections to reduce by 
a large .r~actlon the number of units that would be required to capture a given level 
of preCISion for a feature value. The assertion here is that these technical tricks are 



37 

sufficient to solve the problem of combinatorial explosion in the lIumber of uniLs as 
we move to realistic numbers. Our exposition will continue to employ pllfe value 

.. units (e.g. in the planes of the SFF) with the understanding that any physiologital 
predictions would have to be translated to realisilic encodings. 

4.2 Indexing and Context Mappings 

In this section we attempt to confront a complex set of interacting technical 
questions upon which the viability of the provisionary. model will stand or fall. The 
crucial issue is how to convert from a spatial, visual, syntactic representation to the 
more general, modality-independent semantic network which is claimed to embody 
one's world knowlege. Esssentially the same problem arises in any formillation and 
our attempted solutions may be of some heuristic value even If the fOllr-frames 
model turns out to be useless. 

Recall that Section 3 presented a simple and direct model of indexing from visual 
features (SFF) to visual primitives (WKF). A primitive was simply any node (- unit) 
in the WKF which could be indexed by a vector of feature values. AlLhough it was 
not stated explicitly, the implication was that conjunctive connections would be lIsed 
to activate the visual primitive when the appropriate feature values all appeared at 
the same point in space (and thus in the SFF). More complex ohjects and situations 
were assumed to be built up recursively from primitives using standard relationships 
(e.g. "below") from semantic network theory. In addition, context links from the 
WKF to the SFF were supposed to prime certain feature value units from general 
knowlege and expectations. The remainder of the section lays Ollt how the model 
does all these things without attempting to specify the details of semantic network 
representation in the WKF, this being a major intellectual problem, independent of 
vision and space. 

. The classic problem in parallel models of indexing is cross-talk or confusion of 
features. If a red circle and a blue square appear together, how does the parallel 
network avoid activating the red square primitive? The obvious way to handle the 
red-circle, b1ue-square problem is to have a red-circle conjunctive lInit for every 
position in the visual field. This quickly becomes infeasible for more complex
combinations of features. For example, in the Small World with six lO-valued 
features, one would require a million units for each position in the SFF ill order to 
implement our naive notion of mapping from visual feature vectors to visual 
primitives. For realistic numbers the problem grows too fast for our coding 
technlques [Feldman & Ballard, 1982] and other ideas must be invoked. The 
particular solution used here to the feature-cross-talk problem will be presented in 
some detail, both becuase of its importance and as an indication of how the 
elaboration of the model is proceeding. 

The basic idea is to maintain spatial coherence tor all pam; of properly values alH.! 
to in.dex use conjunctions of pairs. Figure 4.2 depicts the basic situation for a go~f 
ball 111 the Small World. We assume for now that the appearallce of a golf ball IS 
characterized by exactly one value for each of the six visual features, appearing 
together at a point in the visual field (SFF). There are 15 (5 + 4 + 3 + 2 + ]) ways
of making pairs of values from six features, any subset of which could be used for 
indexing. Suppose we just use shape conjoined with each of lhe olhers, yielding five 
pairs involved in the indexing of golf ball appearance. The important point is that 
the feature-pair units are all spatially independent; there is ollly one whi te-sphere
unit. The feature-pair units are themselves activated only by the simultaneous 
appearance of their component features at the same point in the visual field (Figure 
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4.2 shows size and shape at (1,6) in the SFF). For the Small World, this would mean 
100 conjunctions of two inputs each to -feature-pair cells. [f allIS pairs were laid out, 
there would be 15 x 102 or 1500 pair units because each element of each pair could 
have ten different values. Even counting the 100 separate input sites to each of lhese 
pair nodes as a unit, one gets only 150,000 units as opposed to the 100,000,000 
needed for directly encoding each vector of 6 feature values at each posi Lion. Si nce 
each feature pair unit responds to the entire visual field, the model automatically 
generalizes from an object learned at one spatial location. 

Fi~ure 4.2: Indexing and Priming. Detail 

What price do we pay for this dramatic reduction in unit COUllt? The maill cost is 
an increase in the chances of false indexing, the feature-cross-talk problem with 
which we began this section. While each feature-pair is required to be spatially 
coherent, the fairs could all come from different parts of space. For example, if an 
orange at (4,7 and a flying ping-pong ball at (1,6) occurred in the same image, the 
network of Figure 4.2 could falsely activate golf balL In a more complete version. 
with all fifteen pairs, several pairs (pocked flying, pocked white, pocked I-inch) 
would not activate and this might be enough to prevent falsely activating golf ball. 
Other factors include mutual inhibition by ping-pong-ball and the effects of the 
situation context, but there remains a possibility of false activations through 
coincidence. In fact, just this kind of cross-talk is found in lTreisman, 1982] One 
cannot effectively index the entire scene and must use fixations and internal focus of 
attention to deal with things sequentially. Changes in region grouping and problems 
like transparency also require sequentiality. 

There are also some minor technical questions to be allswered about lhis scheme. 
One obviously must allow for indexing by more than a single value of variolls 
features. There are two cases, both of which fit quite well with other aspects of the 
model. When a range of values (e.g. lightness) is possible, we assume indexing is 
done with a coarse-valued cell which we need for other reasons anyway. I f no values 
of some feature are criterial (e.g. hue of jelly beans), that feature IS simply not used 
in indexing. Also, the disjunctive input sItes of Section 2.2 provide a natural way of 
encoding separate visual appearances of a single primitive. The hard problem is how 
all this structure could get built for new objects, and this will be treated fairly 
carefully in Section 4.5. 

Once an object instance has been recognized, it has a representation ill the 
current situation independent of whether it is currently ill view. For top-down 
context mapping to be effective, there must also be a link from visual primitives in 
the WKF to their component features in the SFF. Assume that the 11IIks without 
arrows in Figure 4.2 are bi-directional. Then anticipating the appearance of a golf 
ba!l would prime all the appropriate feature-pair units (e.g. I" sphere). The feature 
parr units could, in turn, prime the appropriate feature-at-position units (e.g. sphere 
at (1, 6), I" at (4, 7». This would give some advantage in the WTA competition at 
~ach .point to anticip~ted features but could not be very effective becallse it would be 
Ider:tucal across the VIsual field (SFF). A much more powerful context efTecl can be 
achl~ved by adding spatial focus units depicted as a diamond unit in Figure 4.2. Each 
spaUal focus unit could conjoin with context links so that only the anticipated 
feature-at-position units were primed. Spatial focus has been shown [I :eldman & 
Ballard, 1982] to be a general solution to many cross-talk problems and appears to be 
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related to attention [posner, 1978; Treisman et aI., 1980]. The coordination of spatial 
focus with the action of the RF will be discussed in Section 4.4. 

Meanwhile, for spatial focus to be feasible, one needs a mapping from the 
instance (hexagonal) nodes of Figure 4.2 to the spalial foclIs (diamond) ones. Such a 
mapping encodes the (rapidly changing) information that some object instance is 
currently at a particular position in the visual field. This is just the kllld of mapping 
for which the uniform connection networks of Figure 2.4 were developed. Once the 
links are established, the activation of either a spatial position or an object instance 
will strongly prime the partner. It is also not difficult to augment the spatial foclis 
network so that the expected position of visible objects after head movements can be 
primed. For both computational and scientific reasons, the current model assumes 
that this expectation is done for only one object and the rest of the SFF is 
recomputed, using a little context priming but mostly direct visllal input. 

Complex objects (and situations) are represented in the model as networks (in the 
WKF) of nodes describing visual primitives or other complex objects. There are 
tremendous problems of several different kinds in these semantic network models 
and these are the subject of the next paper in the current series. Our goal here is just 
to provide a plausible (although crude) model of how network representation of 
visual appearance could fiL in the four-frames paradigm. 

As mentioned in Section 3, the basic idea is that each· visual primitive of a 
complex object is represented by a node that .corresponds to a particular set of 
feature values as computed in the SFF. Since indexing from features to primitives 
occurs in parallel, there will usually be several simultaneously active primWve nodes 
for a complex object currently in view. This simultaneous activation of subparts will 
tend to cause the correct complex objects to be activated, independent of the details 
of how the relationships among the subparts are modelled. When we consider the 
derails of complex object representations, a number of difficult technical problems 
arise. This is the subject of Hrechanyk's forthcoming dissertation [Hrechanyk & 
Ballard, 1982], and we will be content here with a loose discussio/l, based on the 
example of representing the visual appearance 0 f horses. Recall that the W K F visual 
appearance models are far from complete they are more like a verbal description 
of something not currently in view. 

Obviously enough, the side and bottom views of a horse have relatively lillie in 
common. Even within the side view, the horse could appear in a variely of 
orientations and scale configurations and the relative positions of its subparts could 
also differ considerably. We must also account for the facts that there could be 
several distinguishable horses in a scene and that some of these may be partially 
occluded. Our current solution, depicted in Figure 4.3, involVe!) instance nodes, 
separate sub-networks for different views and cross-referenced structural 
descriptions. The prototype horse has a general hierarchical description where, e.g., 
the trunk is composed of a body, legs and a tail. What visual primitives might be 
involved in recognizing a horse will depend on whether it is a front, side or other 
view. Thus the matching process would select together a prototype and a view which 
best matched the active visual primitives. Figure 4.4 shows a typical relation in the 
triangle notation of [Hinton, 1981]. As always, there is assumed to be mutual 
inhibition among competing object descriptions and view nodes. A serious weak ness 
of the current scheme is that it has no verification apparatus for checking that the 
pieces of the putative horse are all connected in appropriate ways. A eM approach to 
the verification of the detailed geometric correspondence between a WKF model and 
an image is described in [Hrechanyk & Ballard, 19~2]. Their suilltion requires all 
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auxiliary structure for computing the correspondence and entails a hierarchical 
matching strategy that is compatible with the hierarchical descriplions in the WKF. 

. Thus far our discussion of object recognition has been tradilional in its treatment 
of occ1usion--we ignored it entirely. We did discuss discontinuities (edges) earlier in 
this section and certain discontinuities (e.g. depth, motion) provide cues to possible 
occlusion. A more thorough treatment would include explicit occlusion-feature 
recognizers in the SFF, but this requires no qualitative changes. The hard problem is 
how to make use of occlusion cues in matching partial collections of visual features 
to appearance models. Our indexing scheme does not depend on totally matching 
features with primitives. but we need to make much stronger use of occlusion 
information. 

The best use of occlusion information would be in connection with spatial focus 
and the kind of successive refinement of matching described in [Hrechanyk & 
Ballard, 1982J. Occlusion cues such as depth discontinuity could be Ilsed to separate 
areas of space believed to index separate objects and the appropriate subparL<; 
matched in the SFF. One could also add general matched-by-occlusion links to 
higher level nodes in the object appearance models [Sabbah, 1981]. If we are able to 
compute the overall position and scale (fairly accurately) of the occluded object, thell 
the various visible pieces could be separately foveated and used to index. This is not 
much different than what is needed to recognize an unoccluded object that occupies 
a large amount of the visual field. Presumably the instance nodes recruited for. the 
various objects could include occlusion links tied to the current situalion and 
viewpoint. In important cases, this occlusion information could become part of the 
situation description. 

Another major problem is multiple horses in a scene. To represent multiple
horses clearly requires some kind of "instance" nodes to keep track of the positions
and properties of the various horses in the scene. The model assumes thal people can 
deal with a few instances, but must recognize (foveate) one at a time for indexing to 
work. Basically we assume that when a particular horse instance is fovealed, the 
position, structure and other features are simultaneously active. The instance "node" 
IS the set of binding units (Section 2.4) recruited to hold the coalition together. The 
statistics of recruiting would be between the uniform networks of Figure 2.3 and the 
random networks of Figure 2.4 since there is an intermediate amount of structure. 
The coalition representing the horse-instance-at- position could also include nodes 
that captured detailed orientation parameters and presumably even LonceplS like gait,
although motion presents problems not yet solved. 

The model also includes in a natural way the occurance of special nodes and 
structures for particular horses that one knows well. Learning the appearance of a 
new object, such as a centaur, involves synthesizing new structures which make use 
of existing substructures. Such permanent structures are presumed to arise from 
temporary coalitions by strengthening connections as described in Section 2.5 and 
[Feldman, 1981]. The model suggests that people with horse structures for particular 
horses, breeds, liveries etc. should be able to effectively represent more complex 
scenes without cross-talk. We will return to the role of network structures and 
foveation in the section on the retinal map (4.4). The next topic is "situations" which 
are WKF networks which may include several complex objects. 
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. 4.3 Situations and the EF 

We are, again, tracing around the four-frames diagram of Figure 2.1. Recall that 
the Environmental Frame (EF) is postulated to be the multi-modal representation of 
the objects in the current situation. As was the case with complex object networks, 
the WKF network representing a situation will be more like a verbal description or 
sketchmap of something not currently in view. The nodes of a situation network 
represent either objects or sub-situations, in exact analogy to the networks for 
complex objects. The situation networks are assumed to be oriented by compass 
direction and to contain some distinguished objects that serve as landmarks. Sitllation 
networks can be conditionalized on points in time or seasons of the year. 

We assume for now that only one situation is aClive at a given lime. Since the 
active situation network is a stable coalition, all of the object and sub-situation nodes 
are also active to varying degrees, providing top-down context to perceptual 
processes. So far, this presents no technical difficulties; the problems arise 111 relati ng 
the current situation (in the WKF) to the hypothesized spatial frame in the EF. 

Recall that the EF was assumed to be organized as units representing fixed 
positions in space. The EF is organized around cardinal directions which we call 
N,E,S,W and Up and Down. The model suggests that this spatial frame does not 
necessarily change with body movements; it is an allocentric rather thall egocenlric
representation. The position and orientation of the ego within the EI: is also 
maintained at all times and used in directing actions. Conceptually, one would like to 
be able to map the current situation network (from the WKF) to the EI" such that 
each landmark object is mapped to its canonical position. This would enable the 
model to anticipate what should be seen at different positions and scale values in the 
environment and where to look for expected objects. Technical problems arise in 
trying to layout these WKF-EF mappings in a way that has plausible resource 
requirements and is resistant to cross-ta.lk. 

The basic form of our technical solution is shown in Figure 3.5. The central idea 
is to use special situation nodes (depicted as ovals in Figure 3.5) to bind together the 
mapping from a fixed place unit 1(1 the EF to object units in the WKF that are 
expected at that place in the active situation. For reasons we will get to later, there is 
no link from objects in the WKF to their positions in the liFo Conjunctive 
connections link a position in space, represented by an EF unit with a particular 
object node in the WKF. When a particular situation node (e.g. Harvard Sqllare) is 
activated, then activation of a particular EF node (East, Middle distance) could lead 
to activation of a node in the WKF representing a middle distance view of the 
Harvard Coop. The model assumes that the amount of EF -+ WKF activation is 
related to foveation and attention. There are also implications for relinal (RF)
mappings which we will discuss in the next section. 

There is a nice correspondance between the hierarchical situation representations 
in the WKF and the EF representations of space at different scales. The expected
view of a landmark object in a situation depends on both the direction of gaze and 
the computed position of self relative to the EF. Moving close to an object of interest 
could lead in a natural way to switching activation to a sub-situation which has a 
more detailed view of the object. The model thus suggests that situation nodes are 
arranged in a discrete hierarchical structure, and that changes of visual context are 
discrete. In addition to scale change, other reasons for changing the (unique)
currently active situation include moving out of a situation or passing a particular 
landmark [Kuipers, 1973]. We also assul1le that a change of interual focus of 
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attention is usually accompanied by a switch in active situations. The model can also 
accommodate scenarios (time sequences of situations), but we will not deal with 
scenarios in this paper. 

There appear to be no technical difficulties -in the CM represellttllioll of these 
ideas. Counting arguments limit the number of situation nodes to a few thollsand. 
but this seems plausible. Some situation networks are assumed to be general (e.g. 
office) and used when no more specialized network is available. New situations are 
assumed to be handled by recruiting additional binder units linking landmark objects 
with their EF positions, using the techniques of Section 2.4. It is this collection of 
binder units that we refer to as a "situation link," 

The amount of and accuracy of information captllred in a situation network is 
quite low, but this appears to be consistent with what is known about people. One 
consequence of the model in its current form is that there is no link from an object
situation pair to the EF node where it is expected. One could easily add these links 
but this would lead to vast numbers of input links to each EF node violating a 
constraint. In addition, these WKF-.EF connections could cause confusion between 
what objects were being activated in the WKF and where gaze was directed, The 
model currently allows one to think about one situation while visually coping with a 
different one, as long as the non-visual situation does not evoke (simulated) spatial 
reasoning or action. For the model, the position of objects in a situation is 
represented relationally in the WKF only and one's ability to locale objects not 
currently in view should be crude, unless a need for recalling the location was 
anticipated. This is typical of the kind of crude prediction of experimenlal 
consequences which will occupy us in Section 5. 

4.4 Foveation, Pursuit Mode and the I~etinal Frame 

. The logarithmic scaling of Figure 3.6 is about all that has been spedt1ed so far 
about the Retinal Frame (RF). The model assumes that the RF continuollsly 
computes proximal (non-constancy) values of visual features and transmits values to 
the appropriate SFF units depending on the direction of gaze (Figure 4.1), Ohviollsly 
enough, the RF is intended to correspond roughly to primary visual cortex which is, 
by far, the best understood of the four frames. We will consider in Section 5 Lhe 
evidence on what the units in primary and secondary visual cortex compute and 
whether RF-SFF distinction makes sense of the data. 

For this section, the crucial questions are comptuational. One computational 
refinement that is required is that units in the RF can not be assumeu to respond to 
only one feature. As we have seen, units that respond coarsely along some feature 
dimensions and finely along one dimension have computational advantages and we 
assume that this is the nature of RF units. More difficult problems arise in specifying 
computationally how the direct measurements of the RF can be translated to the 
features postulated for the SFF. Let us consider motion, which is probably the most 
difficult case. . 

For RF units in a stalic eye, motion is indicated by "relinal slip" - a systelllatic 
~hange in input among neighboring units. It is not, a priori, obvious that this local 
mformation IS enough to determine the object motions and light changes that could 
cause the retinal changes. Recent research in our lab and elsewhere [Brady, 1982] has 
showr:t that these "optical flow" calculations are feasible under a range of conditions 
suffiCIently general for the purposes of the SFF model. which is not hypothesized to 
be perfect. The other SFF features -- hue, lightness. size, shape and surface lexture 
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are assumed to be computed cooperatively from RF measures of local detectors of 
orientation, motion, spatial extent and disparity with different spectral tuning. The 
details of how the RF-SFF computations are specified is a major part of current 
research in computer vision [Ballard & Brown, 1982]. The totality of this work is 
sufficiently advanced to give us confidence that these computational issues will flot 
be a major hurdle. Whether or not any such algorithms are used by nature is a 
primary experimental question raised by the four-frames model and Section 5 will be 
largely concerned with this issue. 

There are some other purely computational issues relating [0 the RF . particlilarly 
stereopsis and pursuit mode. Very little has been said so far about binocular vision, 
because the current model assigns it no great role. The SFF is assumed in the model 
to be cyclopean and to incoporate two RF readings and disparity information when 
available. The visual field covered by the SFF is partly monocular in any evelJL We 
have discussed gaze and saccadic eye movements briefly in a couple of places. The 
model says nothing explicit about the choice of fixation patterns although the WKF 
networks for complex objects and situations would presumably help direct saccades. 
The question we now address is how foveation effects indexing. 

The basic four-frames paradigm assumes that indexing (and its inverse, context) 
occurs continuously everywhere in the SFF. It also assumes that indexing is 
"stronger" at the place currently being fixated. In Section 3, we saw that this 
strengthening was a combination of selective top-down activation (through the EF 
and situation links) and selective bottom-up activation of the places in the SFF 
currently mapped to the fovea. The third strengthening effect described there was 
the ability to use directly the more accurate calculations of color, texture, elc. 
achievable by the fovea. This amounts to postulating a direct RF-WKF indexing link 
not shown in the four-frames diagrams. Such a link would be much simpler than the 
one described in Section 4.2 because it would not need spatial coherence and 
presumably would not have a top-down context inverse. 

A direct RF-WKF indexing link is also useful when we consider the "pursllit 
mode" of the visual system. As we saw in the introduction, it is totally different to 
track your finger across text than it is to read following your finger. The literature 
refers to the former as the pursuit system but we prefer the term mode be(.;allse mlJ(.;h 
of the same structure is used in both modes. Our assumption is lhat the system 
operates in pursuit mode both in tracking a moving target and while the observer is 
moving under visual guidance. 

Obviously enough, the purpose of pursuit mode is to keep a visual lar~et foveated 
despite target and/or observer motion. Pursuit is qualitatively different In the fOllr­
frames model because the accumulation of stable constancy data by the SFF can not 
be the same in pursuit mode as it is in scanning a stallc s(.;ene. (n scanning, the 
periphery of the RF receives input from a fixed scene (at varying resolution). During 
pursuit, the periphery sees a rapidly changing scene. In fact there are secial 
mechanisms to prevent optokinetic effects in the periphe(y from disrupting pursuit 
rCarpenter, 1977]. The model suggests that certain RFF functions such as depth and 
j-D motion of the target must be computed in scanning mode before pursuit. During
pursuit, we assume that the primary indexing occurs between the RF and WKI! 
refining the parameter values originally computed by the RFF. Meanwhile two other 
computations are active. Optical flow calculations are assumed to be continlJollsly
operating in the RF, allowing the detection of potential collisions. The W K I: is 
assumed to continue to register (low resolution) peripheral input from Ihe R F as best 
it can. The question of how much recognition (indexing) of peripheral objects occurs 
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is assumed to be one of attention; if the tracking task is not too denHlI1ding, some 
SFF+tWKF computations can be fit in. Such computations interfere with the 
convergence of the tracking function and are suppressed under heavy load. 

When the observer is moving, the situation networks must also be brought into 
play. We postulate that the observer navigates by sllccessively fixating and tr~cking 
landmarks. Again, peripheral vision and the SFl" can do some recognition If the 
tracking is not too demanding. Peripheral vision, prior knowledge and occasional 
scanning-mode saccades enable the observer to maintain a situation network 
adequate to provide successive landmarks. 

4.5 Learning in the eM }<'our-Frames Model 

Acquisition of new knowledge has been the most difficult prohlem in ~he 
development of eM and related paradigms. OUf eM model Includes an assumption 
that there is not enough growth of new connections to account for adlllL learning, 
and changing of weights must suffice. The problem becomes particularly acute in the 
current context, because we must model the continuous play of transient information 
on the WKF as well as the incorporation of some of the informaLion into permanent 
structures. The basic idea is to exploit the fact that randomly connected networks 
can essentially always be made to capture the required information llsing only 
weight-changing. 

The current model assumes that the basic structure of the Retinal (RF), Feature 
(SFF) and Environmental (EF) frames are genetically and developmentally 
determined and do not change in normal learning. In particular, the coheren<.:e of the 
spatial representations and the mappings between them are assumed to be in place. 
In this case, most learning takes place in the World Knowledge Formulary (WKF) 
which encodes the observer's knowledge of the particular objects and situations that 
it has encountered. One must also learn the indexing - context links between the SFl; 
and WKF and have a way of recruiting situation links to relate the EF to situations 
in the WKF. A more realistic model would include some plasticity in all of the 
frames, but the same basic considerations seem to apply, 

All of the learning in the model is assllmed to be accomplished by the same 
(somewhat magical) algorithm described briefly in Section 2.4 and more carefully ill 
[Feldman, 1981]. The algorithm exploits the fact that large random networks have a 
radically skewed distribution of connections to a small subset of nodes. [<'or example,
in a graph of 1,000,000 nodes with 3000 random connections each, there will be 
about 29 binder nodes with three or more links into a set R of 20 randomly chosen 
nodes. If these binder nodes could be recruited properly, the binder nodes plus the 
previously unassociated recruiting base R would form a slable coalition. ThiS stable 
coalition would be a form of coherent active memory and could serve as the basis for 
permanent learning of the coalition as a "concept." SecLion 5 of [Feldman, 1981J is 
concerned with describing plausible eM algorithms for all this and we assume here 
that the arguments there are sound. 

The idea, then, is to assume LhaL Lhere are pools of ralldomly cOlllledeti units 
available to be recruited for binders. Consider the hexagonal node III I;igure 4.2. One 
clearly needs such instance nodes to be able to distinguish the various golf balls that 
might occur in a given situation. fn our model, such instance nodes are recruited as 
being the small set of units that bind together the crucial information--here the fads 
that the object is a golf ball belonging to Fred in situation 67, If lhere were some 
other noteworthy fact (e.g., il was pink) the recrtliting algorithm would include the 
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appropriate units. Usually the recruiting of a node for a visual objecL installce will 
include spatial relation links to other objects (particularly landmarks) ill the current 
situation. We can now see that a "node" in the WKF usually consists of some binder 
units with connections to the various concepts semantically linked to the new "node". 
Instance nodes are often transient, but sometimes get incorporated into a new or 
modified situation description. It will come as no surprise that the "situation links" 
hypothesized to link positions in the EF with objects in the WKF are also randomly 
recruited sets of binder nodes. If a situation is deemed to be important (or 
importantly changed), recruiting is initiated, linking the activated objects and 
positions in a coalitJon held together by the binding situation links. Obviollsly 
enough, a great deal more work is required on the details of these algorithms, but the 
general idea seems no flakier than several other aspects of the model. 

Even assuming that random recruiting will do all we ask of it, there remain 
questions of how the detailed WKF structures get buill. The cen tral qlIestioll here is 
the extent to which we should postulate pre-wired structures and how much can be 
attributed to recruiting. This is, of course, the nature:nurture issue appearing ill its' 
eM manifestation and is not something to be treated in passing. A feeling for the 
problem can be derived from Figure 4.3, some WKF structure for horses. It seems 
reasonable to me to suppose that some crude structure representing the general 
nature of animals (other moving things in the world) may have evolved from what 
the Frog's eye appears to tell its brain. The only alternative (within CM) is to assume 
that all such structures are learned and generalized from experience. The next paper 
in this series will attempt to deal more carefully with the relationship between WKF 
neural nets and semantic networks. 

Figure 4.3: General views of horse 

Assuming that the SFF structure and the basic structures of obje\;ts in the W K F 
are understood, the index-context mappings fall out nicely. Consider the detailed 
golf-ball mappings in Figure 4.2. The built-in structures are assumed to include all 
the round and diamond-shaped nodes and their connections. The general golf-ball
node is seen. to be recruited as a binder linking the appropriaLe property-pair units 
with units reprsenting other aspects of golf-balls and their place in the universe. The 
random recruiting process specifies that the binder links be bi-directional, so that 
indexing and context should work as suggested. Extending all this to complex objects 
like the horse of Figure 4.3 appears to be feasible, especially if we assume some prc­
wired structure. The point of all this is to provide a crude base for the claim that the 
four-frames model is not obviously wrong. The final section examines the claim a 
little more carefully in the light of a variety of experimental findings. 
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5. The Small World and the Real World 
The major claim made for the Four-Frames Model is that it is consisten t wi th all 

the established facts about vision and space. It will now be clear to the reader that 
the claim is, at best, a qualitative one; no particular systems or range of phenomena 
have been modelled at a scientifically adequate level of precision. The purpose of 
this section is to explore the qualitative adequacy of the Four-Frames Model and to 
describe some of the experimental results that led to its current form. Not 
surprisingly, I am currently unable to perceive any experimental results that do not 
fit within the model and need to have them brought to my attention. 

One of the basic criteria used in the formulation of the model is that it he 
intuitively plausible. The discursive presentation of the four frames in the 
introduction is also intended to suggest why the choices are reasonable. We make no 
further appeal to intuition here, but would be interested in reports of intuitive 
dissatisfacuon with the model. 

The current paper arose out of an attempt to specify more precisely some aspects 
of the connectionist model of visual memory described in [Feldman, 1981]. We first 
had to develop a technical language for specifying connectionist models and learn 
how to use the language on non-trivial problems [Feldman & Ballard, ]982; Sabbah, 
1981J. Before taking the formalism too seriously, I also had to convince myself that it 
was capable of incorporating short- and long-term change [Feldman, 1982]. This 
formalism, outlined in Section 2, has been stable for some time and is also being 
used in a variety of other tasks [Small, 1982; Hrechanyk & Ballard, 1982]. Its role 
here is to support detailed computational/anatomical representations of the various 
processing functions hypothesized for the model. 

The behavioral and neurobiological constraints on the model were chosen as 
broadly as possible. I deliberately attempted to incorporate only the least 
controversial and best established findings. This decision fits well with the relatively 
abstract level of the current model. It should not require delicate experiments or 
arguments to point out structural flaws in the Four-Frames model. Some potentially 
revealing experiments will be suggested later in this section. It is, of course, 
enormously easier to suggest experiments than to carry them out. The main purpose 
of this, or any other model, is to help suggest questions that are worth the 
experimental effort. 

Many of the elements of the four-frames model will be easily recognizable to 
workers in AI. The Stable Feature Frame has much in common with Ballard's 
parameter networks [Ballard, 1981] which is itself an extension of the intrinsic image 
notion which is currently a major topic in Computer Vision. The active semantic net 
of the World Knowledge Formul~ fits into almost any current knowledge 
representation scheme in AI or cognitive psychology. The Environment Frame and 
situation links are also quite like the AI models of space [Kuipers, 1973; McDermoLL, 
1980J to the extent that they have been worked out. The reason for mentioning all· 
this here is to suggest that the basic computational paradigms selected for the four 
frames are consistent with current mainstream AI notions of how these functions can 
be accomplished. The translation to CM terms is only partially specified in this 
paper, but there should be enough material to indicate that the standard AI 
structures and algorithms are expressible in terms of neuron-like computing units ill 
a way that is compact and fast enough to be plausible. 

There are two lines of computational experiments that might be added to the 
work already underway. The small world system could be simulated as specified. The 
performance range would be limited but one could learn quite a 10L. especially from 
the SFF-WKF interactions. One of the nice features ofLhe model is that iL solves the 
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old AI problem of converting from numerical to symbolic representations of a scene. 
A second line of experimental AI work could focus on situatIOn maps and the EF. lL 
would be very informative to see if hierarchical and sequential situations cOllld be 
implemented and whether multiple situations could be worked Ollt complltalionally. 

But it is not computational experiment that is most needed at this stage. The 
Four-Frames model makes a number of predictions which should be behaviorally 
and physiologically testable. Computational requirements have played an imporlallt 
role in the development of the model, but major constraints have come from the 
structure and behavior of the visual system. Most of the assllmpLions in the fOllr­
frames model are part of a widely shared current world view and are not being 
explicitly addressed. What does need more discllssion is the rationale for the choices 
made in the novel integrative aspects of the work. The experimental basis for our 
choices is in no instance compelling; more research needs to be done in all or these 
areas. Various experimental findings suggesting the central features of the fOllr­
frames model are presented as suggestive. 

For the retinal frame, the data is greatly ahead of the model and the theory has 
relatively little to ofTer experimentalists. There are some new questions to be asked, 
but they are mainly concerned with the relation betwe.en the RF alld the SI'T. The 
four-frames model assumes that the detailed calculations of color, texture, and so on, 
are carried out by the RF and integrated by the SFF. We assume that striate cortex 
and the various psychophysical "channels" are at the RF level. Obviously any foveal 
functions are part of the RF. Most of [Marr, 1982J is concerned wi th RF calculations; 
he suggests a number of experiments that would also be of interest here. The most 
interesting prediction of the model concern the .inJeractions between the RF and the 
(hypothesized) SFF. One would expect mappings to extrastriate cortex that depended 
on gaze, and mapped RF units with similar response charactenslks. Figure 5.2 
suggests that at least the gaze information of Figure 4.1 is available for this milPping
through the LP-Pulvinar ~omplex (cf. also [Graybie! & Berson, ]981J). 

. The Stable Feature Frame is a major prediction of the four-frames model. It 
presents a computationally plausible and relatively well-specified theory of the 
functioning of extrastriate visual cortex. It is well established that there are reci procal 
connections among most extrastriate visual areas (Figure 5.1) and that the featllres to 
which each area is most responsive vary [Allman elol.. 1981; Cowey, 1982]. There is 
some evidence that extrastriate visual maps are concerned with constancy featmes 
[Zeki, 1980]. Experiments like those of [Mays and Sparks, ]980] demonstrate that 
saccades are directed towards points in space, not coded as relative displacements
from the current fixation. 

With one major proviso, the SFF makes preJictions that are subject to 
immediate experimental exploration. The proviso is (as mentioned earlier) that SI:F 
units are assumed for simplicity to respond only to a single feature. This is neither 
biologically plausible nor computationally efficient, which is a pity because it would 
make the experiments much easier. 

Given that we are dealing with multi-feature IInits, the sr:r makes strollg alld 
perhaps surprising predictions. One should find visual maps that are both spatially 
organized by head position (ill an upright statienary animal) and that respond to 
constancy values of visual stimuli. These should interact bi-directionally with 
parameter maps that are organized along non-spatial axes; this latter hYPolhesis is 
curren tly being tested [Ballard & Coleman, 1982]. , 

~'he obvious alternative to the SFI':" hypothesis is one that suggests that constallcy
and mdexing computations are done separately at each tixation, with illtegration of 
the scene occurring only at our WKF level. The crucial question is the eXistence of 
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spatial maps that are independent of eye position. There are isolated reports of units 
whose properties are independent of eye movement [Schlag eJ al., ] 980; Tomko eJ 
al., 1981], but the usual description of extrastriate maps is in retinal terms. However, 
the vast majority of neurophysiological experiments have been done on anaesthelized 
or fixated animals and would not distinguish retinal from spatial organization. It has 
also been noted that the receptive field size is much larger (up to the enLire field) as 
one moves towards more anterior visual areas [Gross el al.• 1981}. Since most 
fixations are with 150, the effective size of the SFF could be of the order of the 
receptive field sizes found in the extrastriate areas shown in Figure 5.2. Visually 
responsive areas more anterior than these will be discllssed in connection with 
indexing and the WKF. 

The psychological literature already contains extellsive data on non-retinal 
(spatial) encoding of visual data and on constancy calculations [Fisher el al.• 1981; 
Epstein, 1977; Howard, 1982]. The notion that these are carried out (along with 
perceptual fiIHng) by a single structure seems to be consistent with these .litera Lures, 
and is certainly testable. Behavioral experiments like the masking work of [Davidson 
et al., 1973] give some idea of the interactions of the retinal and spatial frame. In 
these letter naming experiments, masks were perceived to overlie the target letter that 
was in the appropriate SFF position, but it was the RF position thal could not be 
identified. The experiments of [Jonides, 1982] suggest that random patterns can be 
integrated surprisingly well across fixations. 

There is also evidence of important interactions among SFF computations. For 
example, apparent motion will not occur for objects which appear to be at greal
depth no matter what choices of retinal spacing and inter-stimulus interval [I-Iaber. 
1982] are used. There is wide range of experiments [Johansson. ]977] on the 
interactions of perceived depth, shape and motion, which are directly relevant. 
Another example is the work of rGilchrist, 1977} showing that lightness constancy is 
applied only to adjacent areas of the same apparent depth. If the different intrinsic 
image calculations interact in the way we suggest, one should be able to predict the 
perceptual effects of anamolous combinations. An effort to deal comprehensively 
with existing illusion data would be a strong test for the model. One would also 
expect that higher-order masking and adaptation experiments [Welsstein, 1978] mighL 
reveal some of the encodings' used in the SFF. 

The main use of the SFF in the model was in indexing from its visual feaLures Lo 
visual ptimitives in the WKF. The particular networks used (Figure 4.2) caIl for 
spatially independent units that respond to pairs of visual features. The most likely 
anatomical site for such units would be the infero-tem~ral (IT) cortex [Gross eJ al.• 
1981]. Gross el al. report that units in this area are spatIally independent and respond 
to complex stimuli and multiple features. The connections known for IT are also 
consistent with the model. There are apparently two processing stages belween 
primary visual cortex (VI) and IT. The outputs from IT include ones that could 
embody our spatial focus units and indexing links to the WKF. which we presume to 
be subsumed by anterior temporal and parietal structures. Needless Lo say, there are 
alternative treatments of the relatively small amount of information known abouL Lhis 
large area of cortex. 

Indexing by spatially independent feature "pair units is only one of a !lumber of 
possibilities. Treisman [Treisman, 1982] has a collection of experimenLs that limit lhe 
possible perfonnance of such a mechanism in humans. She shows that, under 
overload conditions, subjects cannot detect in parallel targets requiring feaLure pairs
(red square) but can do quite well at single-feature defections. Treisman hYPoLhesizes . 
that all feature-pair detections require an internal focus of attention (like our spaLial
focus), but this seems to me to be much too slow for coping with natural scenes. This 
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is another area in which the model is close enough Lo existing experiments for useful 
in teractio ns. 

The WKF, our network of world knowledge, is the least susceptible to direct 
biological experiments of the four frames. In the model, the WKF is recruiled from 
all modalities and output areas. Its fUllctions would be subsumed by a number of 
areas, presumably in the anterior portions of temporal and parietal cortex. Bulk 
metabolic experiments give some corroboration of this view. but all this is not much 
more than restating the classical notion of association areas. There is some eividence 
for multi-modal-feature cells of the sort required for Lhe WKF being found in the 
Superior Temporal Polysensory area of [Bruce el al., 1981]. Direct neurophysiological 
investigation of the WKF does not appear to be a promising route. 

Behavioral testing of the WKF does seem to be feasible at present. There is 
considerable work in experimental psychology on spreadina activation in semantic 
networks [Anderson, 1976; Collins, 1975; Smith el al., 1974j and a fair amount on 
the perception of scenes [Hintzman el al., 1981; Palmer, 1981]. The four-frames 
model suggests a number of experiments on priming. confounding, and other issues 
based on the proposed network structure of appearance models. 

The cortical structure most likely to subsume the functions of the Environmental 
Frame (EF) appears to be the posterior parietal region [Lynch, 1980; Robinson el al., 
1978]. The four-frames model suggests that it is multi-modal, allocenlrically 
organized and contains sub-structures that encode the currenL ego posiLion. The FF 
should playa crucial role in hand-eye and other visually guided tasks. Most of these 
characteristics have been attributed to the posterior parietal area, but there is still 
quite a lot of disagreement on specifics [Lynch, 1980]. The EF is assumed to act 
through situation links connecting to W KF networks. There is considerable 
behavioral evidence that people employ relatiopal, network-like descriptions of 
spatial situations [Hintzman el al., 1981J. The four-frames models entails a number of 
specific predictions about these networks and about cortical connections between EF, 
WKF and gaze structures. The constraint of one-way EF-WKF is a computational 
one -- it seems unreasonable to have every object link to its places in the EF. The 
model assumes that objects in a situation are located relationally (in the W K F) rather 
than in absolute space [Hintzman el al., 1981]. Results from child developmellt 
studies could also be helpful here; it is already known that the ability to lise 
allocentric frames of reference develops rather late [Piaget & lnhelder, 1967]. 

One way in which the four-frames model vastly oversimplies the visual system is 
in ignoring hemispheric laterality. Each hemisphere performs visual computations for 
the contralateral hemHield with very little communication before the infero­
temporal areas. The only systematic mapping across the hemispheres for earlier areas 
is of the vertical meridian, which is the border between the two hemi -fields. I n terms 
of the model, this means that the RF and SFF are duplicated and that our spatially­
independent-feature units (cf. Figure 4.2) are probably also separate but 
communicate across hemispheres. The WKI: obviously would cover multiple 
modalities and hemi-fields and would represent the first fully centralized level. There 
are a number of aspects of external space known to be coded separately in the two 
parietal lobes, but we postulate that the EF is subsumed by the right posterior 
parietal region. The major problem for the model is explaining how early vision (our 
SFF) copes with the switching of inputs between hemispheres with gaze shifts. This 
appears to be a difficult and important issue in allY account of vision and space. 

Even without new experiments, there is a great deal that might be learned from 
trying to fit the four-frames model to existing bodies of data. Doing this at a crude 
level has forged the current form or the model. Subsequent efforts are of two 
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different kinds: detailed fitting of small segments of data and further refinement of 
the global model. Detailed studies are underway at Rochester on the occulomotor 
system, on parameter networks in extrastriate cortex and on computational models of 
specific SFF and WKF computations. These studies plus responses to the current 
article will hopefully lead to an improved and elaborated second version of the four­
frames model. At the least, we would hope to direct some more attention to the 
global properties of the visual system, which is often treated as a large number of 
totally separate problems. The rationale of the whole enterprise is that it is not too 
early to benefit from more general considerations of the problems of vision and 
space. 
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Frontal 
eye field 01 

Figure 5.1: Connections among visual areas in owl monkeys. The areas are as 
in Figure 5.2, viz: PP (posterior parietal cortex), OM (dorsomedial 
temporal area), M (medial visual area, not in Fig. 5.2), 01 (dorso­
intermediate visual area), MT (middle temporal visual area) and 
OL (dorsolateral visual area). The primary visual areas are denoted 
VI and VI I. 

From: 	 R. E. Weller and J. H. Kaas, IIConnections of Visual Cortex in Primates," 
in C. N. Woolsey, Multiple Visual Areas, p. 137. 
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Figure 5.2: The tectopulvinar relay system. Retinal input to the superior 
colliculus from Y and Wcells is known from electrophysiological studies in 
macaque monkeys. Studies in owl monkeys indicate that the superior colliculus 
projects to two of the three subdivisions of the inferior pulvinar complex, and 
that each subdivision of the inferior pulvinar projects to separate regions of 
extrastriate cortex. The posterior (IPp), medial (IPm) and central (IPc) nuclei 
of the inferior pulvinar are from Lin and Kaas. The subdivisions of visual 
cortex of the owl monkey are from Allman and Kaas. Areas VI (primary visual 
cortex), VII (secondary visual cortex), MT (middle temporal visual area), 
OL (dorsolateral visual area), and OM (dorsomedial visual area) each contain 
a topographic representation of the contralateral visual hemifield and have 
distinctive architectonic features. Areas PP (posterior parietal cortex) and 
OJ (dorso~ntermediate visual area) are visually responsive, but their topography 
has not been fully determined. The rostral dashed lines mark the extent of 
visually responsive cortex (V), which includes subdivisions not yet fully defined. 

From: 	 R.E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates," 
in C. N. Woolsey, Multiple Visual Areas, p. 126. 
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