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Abstract
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constancies and the stable visual world, indexing and context effects, perceplual
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connectionist terms, allowing biological as well as psychological experiments to be
included. The model! relies heavily on contemporary work in Artificial Intelligence,
but is claimed to be consistent with all relevant findings.
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1. Introduction

- This paper is an attempt to specify a computationally and scientifically plausible
model ofp how mammals perceive objects and deal with their visual environments,
The provisionary model is perforce crude, but is claimed to be consislent with all of
the known behavioral, structural and computational constraints. The perspective
taken is that of a designer of complex information processing sysltems--one simply
sets out to see how a visual system meeting the known behavioral specifications
might be built out of the neural componentry, as described in the lilerature. The
resulting four-frames model appears to be a reasonable slarl.

The rest of this introduction is mainly concerned wilh describing the main
phenomena to be covered by the model and the role of the four representation
frames that are the core of the model. The actual specification of the model requires
a fair amount of machinery and this is outlined in Section 2. The necessary
machinery includes a formal specification of an abstract neural computing unit and a
variety of constructions built of these units and their properties. All of this is part of
the connectionist modelling (CM) development [Feldman & Ballard 1982; I‘eldman
1981] and readers familiar with that material will discover nothing new in Section 2.

In Section 3, we describe the four-frames model of vision and space as it would
apply to a "Small World" of limited complexity and resolution. By limiting ourselves
to six visual features and a 10 x 10 visual map; we are able to describe precisely how
the basic operations are intended to work. Section 3 is also oversimplified in that
only the main pathways are mentioned and in the suppression of many technical
problems in reducing the Small World to the mechanisms of Section 2. Section 3 can
be read before Section 2 without much loss, for people who prefer to view the forest
before the trees.

The serious work begins in Section 4 where we attempt o carry out the reduction
of the four-frames model to CM structures. Although the examples are presented at
the scale of the Small World, the computational techniques are claimed lo work at
realistic scale. The purpose of the section is to confront all the basic compulational
issues that have come to my attention and to show that none are insurmountable.
The solutions are presented at varying levels of detail and some refer lo previous
computational -results. There is no attempt in this section (o relate lhe four-frames
model to experimental findings in the behavioral and biological sciences.

Section 5 contains a preliminary atlempt to relate the model to experimental
findings. The claim that the model is consistent with all established resulls cannot be
tested except by readers such as yourself. What is-presented is a range of solidly
established findings that fit in well with the current model. Some experiments that
could yield challenging results for the current model are also suggested, probably not
with sufficient detail.

The discursive comments of Sections 1, 3 and 5 derive from the delailed
computational models of Section 4 and may not be easy Lo interprel in isolation. The
particular computational models are intended to show the feasibility of the model
and should not be taken too literally. More generally, the provisionary nature of the
current model cannot be stressed too strongly. The four frames are an altempl to
provide a scaffolding for the establishment of theories of vision and space; if it
proves to be useful and none of the scaffolding is visible in Lhe resulting structure, it
will have done its work.



The entire development is based on a action-oriented notion of perception. The
observer is assumed to be continuously sampling the ambient light for information of
current value. We initially consider the issues raised by the four-frames as
phenomena to be captured independent of any particular structural model. A
"frame" in this view 1s a set of experiences and experiments that seems to share a
common representation. Most people have found the following kind of loose
discussion an adequate reason to suppose that we will need at least four frames of
reference to describe vision and space.

The representation of information in the first frame is intended to model the
view of the world that changes with each eye movement. The second frame must
deal with the phenomena surrounding what used (o be called "the illusion of a stable
visual world." A static observer has the experience of (and can perform as if he held)
a much more uniform visual scene than the foveal-periphery first frame is processing
at each fixation. One can think of the second frame asassocialed with the position of
the observer’s head; this is an oversimplification but conveys the right kind of
relation between the first two frames. Of course, neither of these (wo frames is like a
photographic image of the world--as even the most casual examination of the
structure of the visual system shows clearly. Light striking the retina is already
transformed and the layers of the retina, the thalamus and visual cortex all compute
complex functions. The crucial difference between the first two frames is that the
first one is totally updated with each saccade and the second frame is not. The
current model also assumes that the first (retinal) frame (RIF) compultes proximal
stimulus features and the second frame captures distal (constancy, intrinsic) features
as well as being stable; it is therefore called the stable feature frame (SI'Y). Thal these
two representations of visual information are distinct does not seem an unreasonable
hypothesis. :

The third and fourth representational frames are bolh mulli-modal and thus
unlikely to be the same as the first two. The third representation is not geometrical
and will be described in the next paragraph. The fourth, or environmental frame
(EF), is intended to model an animal’s representation of the space around it at a
given moment. It cafptures the information that enables one to locale quickly the
source of a stimulus from sound, wind, smell or verbal cue as well as maintaining the
relative location of visual phenomena not currently in view. I'or a variety of reasons,
the model proposes a single allocentric environmental frame which gets mapped, by
situation links, to the current situation and the observer’s place in it.

The final representational frame to be considered is the observer's general
knowledge of the world, including items not dealing with either vision or space. We
follow the conventional wisdom in assuming that this knowledge is captured in
abstract or propositional form, modelled in our case by a special kind of semantic
network. One kind of knowledge encoded will be the visual appearance of objects.
Since the other three representations are geometrically organized, we will refer (o the
collection of semantic knowledge as the world knowledge formulary (WKI), o
emphasize its nature as a collection of formulas. The WKF will carry much of the
burden for integrating information from the other three frames and is far from
adequately worked out in this paper. But all we need for now is the nolion that the
semantic network representalion is likely to be quite different from that of the
retinal, stable feature or environmental frame. All of this suggests that even a
provisionary model of vision and space will require at least four representational
frames; that four frames suffice is the contention of this paper.

The initial exposition of the four frames was based on a static observer and a



basically static environment. Most of the detailed discussions in subsequent seclions
will retain this restriction, but the model does attempt to cover motion as well. The
major additional construct needed for moving objects is to poslulate explicitly that
the entire system has a second mode of operation, which we call rpursuit mode. To gel
a feeling for the difference between the two modes, track your finger as you move it
along the second line of text on this page. Now go back and read the line of texl,
using your finger as a pointer. There is considerable evidence that the pursuit mode
is computationally distinct and is used for navigation while moving as well as for
tracking. The interactions among the four frames in the model are different in
pursuit mode, but we will not discuss these seriously until Sections 4 and 5.

One of the principal devices employed in the current model is the assumption
that all the visual features of interest can be reduced to explicit parameler values in
some representational space. Typical parameter spaces include color spaces, spatial
frequency channels and slant-tilt maps for surface orientation. The mapping of
primitive shapes, of textures and of motions lo parameter spaces remains
problematic, but the model assumes that it must be done. A computalional
advantage of this total parameterization of visual features is that all the subsequent
discussion can be framed as discrete computational problems. More importantly, the
assumption that early vision computes discrete values of fixed parameters supports a
clear view of phenomena such as apparent motion. From the stream of visual input,
the visual system continuously calculates the best fit to the critical parameters, The
best fit is, of course, sometimes non-veridical giving rise to apparent molion, shape,
etc. If our computational model is sound, then careful study of illusions, meta-
contrast, etc., should lead to an understanding of the critical parameters and their
possible values. This is the traditional goal of perceptual psychology: an explicit
fhomp.utational model permits the expression of more comprehensive and quantitative

eories.

The essential requirement .of a compultational model of vision and space is that it
be massively parallel. In addition to the obvious parallelism of the retina and early
vision, we require simultaneous massive interaction between computational units
within and across levels of organization of the visual system, By exploiting the
reduction of all visual features to explicit parameters we can devote an individual
computational unit to each separate value of each parameter and allow all these units
to interact, Competing coalitions of such units will be the organizing principle behind
most of our models. Consider the two alternative readings of the Necker cube shown
in Figure 1.1. At each level of visual processing, there are mutually contradictory
units representing alternative possibilities. The dashed lines denote the boundaries of
coalitions which embody the alternative interprelations of the image. The units
connected by circular-tipped arcs are assumed to inhibit one another and the olhers
to excite. The units in Figure 1.1 each represent a distinct entity and are thus like the
infamous "grandmother cells." Most of our constructions will employ such dedicated
units for simplicity; my suggestions on how this relates to neural encodings are
outlined in Section 2 and 3.

Figure 1.1: Necker Cube

The technical tools suggested for describing and analyzing computational
systems with billions of interacting units are outlined in Section 2 and are
prerequisite for any detailed consideration of the model. 1‘or this introductory
discussion, we need only keep in mind that all of the computations within and
among the four frames are assumed to be conlinuously interacting across myriad



channels. The need for these multiple interacting computations is most clearly seen
in the Stable Feature Frame, the starling point for each of our discussions.

The Stable Feature Frame (SFF) lakes its name from its two basic functions in
the system. The SFF is intended to be the representation of whal was called the
illusion of a stable visual world. It captures, in a spatially organized buffer, the visual
information in the current field of view and is stable over fixation eye movements.
The model also suggests that this visual information is held in terms of cerlain
invariant (constancy% features of the scene such as size and hue rather than in terms
of the immediately sensed values of intensity, retinal projection, etc. The SI‘F
contains a set of spatially registered planes, each of which continuously computes the
best value of some constancy feature for every point in the visual field using both
retinal input and the current values in all the other planes. The ST’ serves partially
as a visual buffer memory, but what is stored are features constantly undergoing
refinement. It is quite close in spirit to the Al notion of Intrinsic Images [Barrow &
Tenenbaum, 197§;] as extended by the inclusion of global parameler computations
[Ballard, 1981].

The major use of the distal visual feature information captured by the SI‘I is for
indexing into models of the visual appearance which are part of one’s basic
knowledge and thus in the World Knowledge Formulary (WKI‘). An appearance
model is assumed to be a hierarchical structure whose base elements are visual
primitives each of which can be accessed (indexed) by cerlain combinations of SI‘I*
visual features appearing in the same place. It is obviously easier to match an
appearance model to distal features values than to direct image measurements,
Recognition of an object or situation is modelled as a mutually reinforcing coalition
of active nodes in the WKF. The relaxation of feature and model networks also
involves top-down, context, links from visual primitives to the fealure unils that are
appropriate. The network representation of a situation includes objecls not currently
in view and has the links ‘to other modalities.

In my technical sense, a situation network in the WKI- is a hierarchical structure
like a complex object with one additional property. Any WKI* situation can become
connected by situation links from the Environment FFrame (EIF) and thus become the
observer’s structure for dealing with the space around him at that moment. The
Environment Frame is modelled as a tesselation by neural units of the three-
dimensional space surrounding the observer. Its mapping o the current WKI
situation is allocentric (external) and the changing e%ocemnc position and viewable
places are represented by changes in activation of LI° units. Moving to a new
situation is captured by a discrete switch of situation links, mapping the I[F to a
different WKF situation network. ‘

The final frame to be outlined here is the first one in the perceptual cycle, the
Retinal Frame (RF). The RF is intended to capture all the computational structures
which reinitialize with each eye movement. A major problem addressed in the paper
1s how separate fixations could be integrated effectively. Less allention is given here
to the questions of exactly what computations are being carried out for color, lexture,
motion, etc. because these computer vision questions are under extensive study in
our lab [Ballard, 1981] and elsewhere. And, of course, most of the contemporary
work in visual system physiology and psychophysics is focused on the retinal frame.

Figure 1.2:  [Four [F'rames



The four frames model is mainly an attempt (o provide a coherent structure for
relating the myriad findings on vision and space. In order to keep the paper of
manageable size, emphasis is placed on filling in the gaps between exisling theories
and models of different aspects of vision and space. Somewhat surprisingly, [ have
encountered no other contemporary effort to do this, even at a discursive level. There
are, of course, a large number of researchers whose ideas have had a marked effect
on the enterprise. Barlow’s Ferrier Lecture [Barlow, 1981] stresses the use of
computational as well as physiological constraints in studying the visual system and
suggests an important role for parameter spaces. Among perceptual psychologists,
Gregory and Hochberg are closest in spirit to the current enterprise. Haber [Haber,
1982] has recently suggested a synthesis of this line of thought with Gibsonian ideas
on early vision and his treatment of low-level vision and space appears (o agree with
ours.

Our approach to the problem is quite like that of Marr in placing primary
emphasis on computational adequacy while requiring consistency with biological and
behavioral findings. Much of Marr’s effort was directed lowards problems al a lower
level than those addressed here. His primal sketch (augmented with motion, color
and disparity data) could serve as our retinal frame. In the areas of overlap, the two
models agree on the use of hierarchical, object-oriented descriptions and disagree on
the stable feature frame and the importance of context and visual cues other than
shape. More generally, our treatment of the SFF and WKI-, indexing and context
appear to be the natural extension of current Computer Vision practice [Ballard &
Brown, 1982], to massively parallel hardware. There has been relatively liltle
computational work on space models [Kuipers, 1973; McDermott, 1980] but what
there is fits well into our "situation” treatment. We will discuss how the four-frames
model articulates with behavioral and biological studies in Section S.

The first question one should ask of a model such as the current one is what
issues it claims to address. The four-frames model is most concerned with the
integration of visual information, and much less with the detailed analysis of color,
motion, etc. It purports to say things about eye movements, stability, constancies and
how these interact with general world knowledge. Another serious concern is the
representation of external space and how this relates to perception and action. All of
these considerations are addressed within a computational framework that aspires to
be physiologically predictive. The major shortcoming of the current effort, within its
own terms, is an inadequate treatment of moving objects and observers. [Zach of Lhe
four frames would require additional machinery to handle movement and changing
situations.

Any attempt to describe the phenomena of vision and space must deal with the
problems of interactions among the various kinds of representations and
computations. Since these interactions are clearly parallel compulations in both the
channel sense and the multiple-processor sense, a lechnical discussion will have to
use some kind of distributed computation formalism.. The particular formalism
presented in the next section is adequate to the task and has proved useful in a
variety of related problems.
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2. Connectionist Models
2.1 Background

Much of the progress in the fields constituting cognitive science has been based
upon the use of concrete information processing models (IPM), almost exclusively
patterned after conventional sequential computers. There are several reasons for
trying to extend IPM to cases where the computations are carried oul by a massively
parallel computational engine with perhaps billions of active units.

Animal brains do not compute like a conventional compuler. Comparatively slow
(millisecond) neural computing elements with complex, parallel connections form a
structure which is dramatically different from a high-speed, predominantly serial
machine. Much of current research in the neurosciences is concerned with Lracing
out these connections and with discovering how they transfer information. Neurons
whose basic computational speed is a few milliseconds must be made Lo account for
complex behaviors which are carried out in a féew hundred milliseconds [Posner,
1978]. This means that entire complex behaviors are carried out in about a hundred
time steps. Current Al and simulation programs require millions of lime sleps.

Various parallel computational models have been successfully used for certain
problems in machine perception for some time [Hanson & Riseman, 1978]. Whal has
occurred to us relatively recently is that all of these and more fil nicely into the
paradigm of widely interconnected networks of active elements like Lhose envisioned
in connectionist models. The generalization of these ideas to the connectionist view
of brain and behavior is that all important encodings in the brain are in terms of the
relative strengths of synaptic connections. The fundamental premise of
connectionism is that individual neurons do not transmit large amounts of symbolic
z)}[qrmazfon. Instead they compute by being appropriately connected (o large numbers
of similar units, We have been engaged for some time in elucidaling the properlies of
CM models [Feldman & Ballard, 1982; Feldman, 1981] and their application lo
particular problems in vision reseach [Ballard, 1981]. This paper is the first of this
series to atlempt a general description of a major function--the perception of objects
in space. The plan is to continue to address hard problems (e.g. ambiguity in natural
language [Small, 1982]) in technical CM terms so long as it appears to be fruitful.

2.2 Units

As part of our effort to develop a generally useful framework for connectionist
theories, we have developed a standard model of the individual unit, It will turn out
that a "unit" may be used to model anything from a small part of a neuron lo the
external functionality of a major subsystem. But the basic notion of unit is meant 10
1c;psely correspond to an information processing model of our current understanding
of neurons.

Our unit is rather more general than previous proposals and is intended 1o
capture the current understanding of the information processing capabilities of
neurons. Among the key ideas are local memory, non-homogeneous and non-linear
functions, and the notions of mutual ‘inhibition and stable coalitions.
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A unit i a computational entity comprising

{q} -- a set id discrete states, < 10

p -- a continuous value in [-10,10], called potential (accuracy of several digils)
v -- an output value, integers 0 < v < 9

i - a vector of inputs i),..i,

and functions from old to new values of these

p < flip.9)
q « g@i,p.g)
v ¢ h(i,p,q).

The form of the f,g, and h functions will vary, but will generally be restricled lo
conditionals and simple functions. Most often, the potential and output of a unit will
be encoding its confidence, and we will sometimes use this term. The " «™ nolation is
borrowed from the assignment statement of programming languages. This notation
covers both continuous and discrete time formulations and allows us lo talk aboul

some issues without any explicit mention of time.

The restriction that output take on small integer values is central 10 our
enterprise. The firing frequencies of neurons range from a few o a few hundred
impulses per second. In the 1/10 second needed for the basic mental events, there
can only be a limited amount of information encoded in frequencies. The len output
values are an attempt to capture this idea.

The inclusion of a discrete set {q} of different states has both biological and
computational advantages. It allows the system to accommodale models of faligue,
peptide modulators and other qualitative state changes. Computationally it permits
the use of analysis and proof techniques from compuler science.

For some applications, we will be able to use a parlicularly simple kind of unit
(p-unit) whose output v is proportional (o its potential p (rounded) when p > 0 and
which has only one state. In other words

pep+ BEwgly [o
v « if v > 0 then round (p - 4) else O [v

A

wp < 1]
0..9]

where B, 4 are constants and wj are weights on the inpul values. The weighls are the

sole locus of change with experience in the current model. The p-unit is somewhat
like classical linear threshold elements (Perceptrons [Minsky and Papert, 1972]), bul
there are several differences. The potential, p, is a crude form of memory and is an
abstraction of the instantaneous membrane potential thal characlerizes neurons; it
greatly reduces the noise sensitivity of our networks.

A problem with the definition above of a p-unit is that its potential does not
decay in the absence of input. This decay is both a physical property of neurons and
an important computational feature for our highly parallel models. One
computational trick to solve this is to have an inhibitory connection from the unit
back to itself. Informally, we identify the negative self feedback wilh an exponential
decay in potential which is mathematically equivalent. With this addition, p-unils can
be used for many CM tasks of intermediate difficulty. The Interactive Aclivation



models of [McClelland & Rumelhart, 1982] can be described nalurally with p-units,
and some of our own work [Ballard, 1981] and that of others [Marr & Poggio, 1970]
can be done with p-units. But there are a number of additional features which we
have found valuable in more complex modeling tasks [I‘eldman & Ballard, 1982].

It is both computationally efficient and biologically realistic to allow a unit (o
respond to one of a number of alternative conditions. In terms of our formalism, this
could be described in a variety of ways. One of the simplest is to define the potential
in terms of the maximum of the separale computations, e.g.,

P € p + BMax(i]+iye, 13+i479, 15+i6—i7-<p)

where 8 is a scale constant as in the p-unit and ¢ is a constant chosen (usually >
10) to suppress noise and require the presence of multiple active inputs [Sabbah,
1981].The max-of-sum unit is the continuous analog of a logical OR-of-AND
(disjunctive normal form) unit and we will sometimes use the latler as an
apgrc;)gimate version of the former. The OR-of-AND unit corresponding to the
definition above is:

p < p + a OR (& i3y is&ig&(nol i)

Most of the constructions in later sections will employ these “conjunctive
connection™ units.

2.3 Networks of Units

A very general problem that arises in any distributed computing situation is how
to get the entire system to make a decision (or perform a coherent action, elc.ﬁ. One
way to deal with the issue of coherent decisions in a connectionist framework is 10
introduce winner-take-all (WTA) networks, which have the properly that only the
unit with the highest potential (among a set of contenders) will have output above
zero after some settling time (Fig. 2.1). There are a number of ways to construct
WTA networks from the units described above, and several of these have been
disccussed in [Feldman & Ballard, 1982] and elsewhere. T'or our purposes it is
enough to consider one example of a WTA network which will operale in one time
step for a set of contenders each of whom can read the potential of all of the others.
Each unit in the network computes its new potential according to the rule:

p «if p> max(ij, l) then p else 0.
Figure 2.1: Winner-Take-All network.

A problem with previous neural modeling attempts is that the circuits proposed
were often unnaturally delicate (unstable). Small changes in parameter values would
cause the networks to oscillate or converge lo incorrect answers. What appears (o be
required are some building blocks and combination rules that preserve the desired
properties. For example, the WTA subnetworks of the last example will not oscillate
in the absence of oscillating inputs. This is also true of any symmelric mutually
inhibitory subnetwork.

Another useful principle is the employment of lower-bound and upper-bound
cells to keep the total activity of a network within bounds. Suppose thal we add two
extra units, LB and UB, to a network which has coordinated output. The LB cell
compares the total (sum) activity of the units of the network wilh a lower bound and
sends positive activation uniformly to all members if the sum is too low. The UB cell
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inhibits all units equally if the sum of activity is loo high. Under a wide range of
conditions (but not all), the LB-UB augmented network can be designed to preserve
order relationships among the outputs Yi of the original network while keeping the

sum between LB and UB. We will often assume that I.B-UB pairs are used to keep

the sum of outputs from a network within a given range. This same mechanism also

goes far towards eliminating the twin perils of uniform saturation and uniform

silence which can easily arise in mutual inhibition networks, Thus we will often be

%ble g) éeason about the computation of a network assuming that it stays active and
ounded.

For a massively parallel system such as the ones we are envisioning o make a
decision (or do something), there will have to be states in which some activity
strongly dominates. One example of this is the WTA network. But the general idea is
that a very large complex subsystem must stabilize, e.g. to a fixed inlerpretation of
visual input. The way we believe this to happen is through mutually reinforcing
coalitions which dominate all rival activity for a period of time. IFormally, a coalition
will be called stable when the output of all of its members is non-decreasing. Notice
that a coalition is not a particular anatomical structure, but a temporarily mutuall
reinforcing set of units, in the spirit of Hebb’s cell assemblies [Jusczyk, ]980]V.

The mathematical analysis of CM networks and slable coalitions continues to be
a problem of interest, We have achieved some understanding of special cases
[Feldman & Ballard, 19822 and these results have been useful in designing CM too
complex to analyze in closed form [Sabbah, 1981].

By combining the ideas of conjunctive connections, WTA and stable coalitions,
we can developnetworks of considerable power and flexibility. Consider (he example
of the relation between depth, physical size, and retinal size of a circle. (Assume thal
the circle is centered on and orthogonal to the line of sight, that Lhe focus is fixed,
etc.). Then there is a fixed relation between the size of retinal image and the size of
the physical circle for any given depth. That is, each depth specifies a mapping from
retinal to physical size (see Fig. 2.2).

Figure 2.2; Relations among depth, retinal size, and physical size.

Here we suppose the scales for depth and the two sizes are chosen so that unit
depth means the same numerical size. If we knew the depth of the object (by touch,
context, or magic) we would know its physical size. For example, physical size = 4
and depth = 1 make a conjunctive connection with retinal size = 4. Lach of Lhe
variables may also form a separate WTA netowrk; hence rivalry for different depth
values can be settled via inhibitory connections in the depth network. Nolice thal this
network implements a function phys = f{ret,dep) that maps from retinal size and
depth to physical size, providing an example of how to replace funclions wilh
parameters. For the simple case of looking at one object perpendicular to the line of
sight, there will be one consistent coalition of units which will be stable. ‘The network
does something more; the network can represent the consistency relation R among
the three quantities: depth, retinal size, and physical size. It embodies not only the
function f, but its two inverse functions as well (dep = fi(ret,phys), and ret =

f)(phys,dep)). Much of the vision work in our lab [Ballard, 1981] and elsewhere

.

[Hanson & Riseman, 1978] relies on the interaction among constraint nelworks like
those of Figure 2.2.



The stable coalition mechanism also has implications for the "grandmother cell”
issue. Even the 3-unit loop capturing a size-depth relationship could be viewed as a
“pattern of activity" of the three units. More generally, in any CM network, there
will always be many active units forming one or more coalitions. This does not mean
that one can usefully characterize the nelwork in terms of diffuse system states
instead of units with particular functions. On the other hand, a unit will participate
in several coalitions and need not have a simple response pattern. There are both
biological and computational advantages to employing the simultaneous activity of
multiple units to code some information of interest. ,

_ For example, suppose we wanted to represent 10 values each of ten low-level
visual features such as position, orientation, hue, contrast, motion, elc. Having a

separate unit for each vector of values would require 1010 units which is clearly too
many. Suppose instead we had units which were precise in only one dimension. Then
we would need only 10 x 10 units but it would take the simultaneous aclivity of ten
units to specify a full vector of values. There are a range of inlermediale
constructions [Hinton, 1981; Feldman & Ballard, 1982]. One of these techniques
(coarse-fine tuning) appears close to the coding used in primary visual corlex, where
units are broadly tuned in several dimensions and fine-tuned in one stimulus
dimension. Consideration of the particular coding techniques employed by the brain
will be deferred until Section 5 and we will use whatever coding seems easiest (0
understand in earlier sections.

2.4 Memory and Change

In the previous section, we saw how fixed CM networks could be designed to
compute functions and relations quite efficiently. These fixed networks could have a
certain amount of built-in flexibility by explicitly incorporating parameters. One can
view the depth networks of Figure 2.2 as computing the physical size of objects from
the retinal size, parameterized by depth,

But there are also a number of situations where it does not seem plausible to
assume the existence of either fixed or parameterized links. An obvious, though
artificial, set of examples are the paired-associate tasks with nonsense syllables used
by psychologists. A closely related real task is learning someone’s name or the
Hebrew word for apple. One cannot assume that all the required connectlions are
pre-established, and it is known that they do not grow rapidly enough (in fact, very
little at all) [Cotman, 1978]. What does seem plausible is that there is a built-in
network, something like a telephone switching network, which can be configured to
capture the required link between two units. We refer to this as establishing a
"dynamic connection” in the uniform network. We are assuming (as is commonly
done) that the weight of synaptic connections cannot change rapidly enough to do
this, so that all dynamic connections are based on changes in the potential (p) and
state (q) of individual units. The other basic constraints that we impose on possible
solutions are that units broadcast their outputs and that there is no central controller
available to set up the dynamic connections. These assumptions differ from those in
the switching literature, and the results there don’t carry over in any obvious way.
The assumption is that only one dynamic connection is made al a time, but that
several (e.g. 7 = 2) must b€ sustainable without cross talk.

The example task we will be considering is to make arbilrary dynamic
connections between two sets of units labelled A. . .Z and a. . .z respectively. These
could be words in different languages, paired associates, words and images, and so
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on. Figure 2.3 depicts the situation for three units on each side.

The problem is how to establish, for example, the link B-c withoul also linking,
e.g. B-b, since the network is originally uniform. More precisely, we require an
algorithm which, given the simultaneous activation of B and ¢, will establish p and'cl
values in the units of our network such that (for some time) activaling B wil
stimulate ¢ but not a or b. For the most part we will consider symmetric_networks
where the "dynamic connection” B-c will also have the activation of ¢ stimulate B
and not A or C. It should be clear that primitive units withoul any internal slate
(memory) will not be usable in such tasks.

The basic solution to the dynamic link problem in CM networks relies upon
mutual inhibition between the alternative inter-units. For notational convenience, we
will sometimes represent this situation as an array of units, with the qnderstandmg
that the array is a winner-take-all (WTA) network. If the only aclive link were B-c,
then only the three starred units would be aclive.

Figure 2.3: Uniform dynamic link network.

The idea here is that there is a separate intermediate unit dedicaled Lo each
possible pairing. The starred unit for B-c is in two WTA networks, the column which
1s “inputs to c¢", and the "outputs from B" WTA net which is drawn in explicitly.
When B-c is active, it blocks all others uses of both B and ¢, which is the desired

effect. The fact that our solution requires N2 intermediate nodes to connect 2N unils

makes it im%ractical for linking up sets of 107 units like an educaled person’s
vocabulary. There are, however, more complex interconnection networks which

require about 4N3/2 ypits [Feldman, 1981]. This paper also gives detailed
descriptions of the unit compulations required and some examples.

2.5 Random Interconnection Networks

There are both anatomical [Buser, 1978] and computational reasons for looking
carefully at random interconnection schemes. We will first consider the possibility of
using random interconnection networks (in place of the uniform networks above) lo
dynamically connect arbitrary pairs of units from- (wo distinct layers. As before, each
unit is postulated to have links to some large number of intermediale unils, whose
role is strictly a linking one. In any random connection scheme there will be some
finite probability that the required path is simply not present. The remarkable fact is
that this failure probability can be made vanishingly small for networks of quite
moderate size [Feldman, 198]]. The idea is to have k (lwo or more) layers of

intermediate units so that there is a tree of BK+1 links across the network, where I
is the outgoing number of branches from each unit. This result has been known for

some time and has been used as the basis of a proposed highly parallel compuler
[Fahlman, 1980].

It is premature to speculate on the degree to which animals are more like the
uniform or random networks (if either) but we can say something about the
computational advantages of each. Uniform networks appear (o be most useful for
maintaining many simultaneous dynamic links which are easily turned on and off.
They could only be expected to occur in well-structured stable domains because of
the strong consistency requirements. In general, we would like lo view uniform
dynamic links as a mechanism roughly equivalent 1o modifiable or conjunclive



connections where the number of possibilities is oo great to wire up directly.

Random interconnection networks are not as stable and predictable as uniform
ones, but have some other advantages. The lower requirements on the number and
precision of wiring of intermediate units are clearly important. But the most
interesting property of the random networks is the relative ease wilh which they
could be made permanent. Suppose thal instead of ra8id change we wanled
relatively long term linkage of units from the two layers. Our model specifies that
this must be done by changing connection weights Wj. The point to be made here is

that the random networks already have some units biased lowards linking any
articular pair from the two layers. By selectively strenghthening the active inputs
on command) of the most appropriate units, the network can relatively quickly forge
a reliable link between the falr. The details of how we propose that this comes about
are given in [Feldman, 1981] and summarizxed in Section 2.5. Of course, one this has
happened, the network will not be able to represent compeling dynamic links, but ils
ability to capture new pairings will remain intact until a large fraction of the nodes
are used up {cf. [Fahlman, 1980]).

The fact that random (as opposed to uniform) interconnection networks could be
readily specialized suggests that random networks may play an important role in
permanent change and memory. Afier enough training, the originally random inter-
connection network would become one in which there was essentially a hard-wired
connection between particular pairs of units from the two spaces.

The problem with this scheme as a proto-model of long term memory is that
most of our knowledge is structured much more richly than paired associates. It is
technically true that one can reduce any relational structure 10 one involving only
pairings, and Fahlman [1980] suggests that the best current hardware approach is
along these lines. But the intuitive, psychological and physiological [Wickelgren,
1979] notions of conceptual structures involve the direct use of more complex
connection patterns. It turns out that the results of the previous section on random
interconnection layers extend nicely to the more general case.

The basic situation is shown in Figure 2.4. There are again N (= 16) units
connected to v N others, but without any layer structure. We are assuming that all
units and connections are identical and that each unit has, at each time step

v « 2p ’
p ¢ p + -2 (= decay when p = 0).

We suppose that at each time step the unit subtracts 2 from ils current potential if
not zero, and then adds the sum of its input values. The table in ['igure 2.4 shows
successive values of p for various units, assuming that at T = 0, units I' and [ have p
= 10 and are maintained for six time steps. The unit O happens to be direclly
connected to F and I and thus will eventually saturate (under the rules above).

Figure 2.4: Random chunking network.

After step 5, the coalition (F,0,]) is self-sustaining and would actually need to be
stopped by fatigue or an external input. In some sense, we can view this coalition as
having recruited unit O to maintain the dynamic link between IF and I. The main
differences from the examples given earlier is that here the linking can lake place
between any set of units and there is no distinclion between end and intermediate
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units. This is a simple example of the basic mechanism which we believe o support
associalive learning and appears (o be close to what Wickelgren [1979] had in mind.
If random chunking networks can be made to supporl short-lerm associations
through coalitions, the usual weight-changing algorithms would enable the
associations to be made permanent.

2.6 Changing Weights and Long-Term Memory

There was a brief discussion of changing weights earlier where it was suggested
that random networks could easily be made (o incorporate long-term change. We will
examine this problem more carefully in this section, still within the constraint that all
long-term change is caused by structural modification of connection weights, wi-.

There is some evidence for the growth of new conneclions in adulls Hﬂuser, 1978},
and for relatively rapid physiological change at synapses [Kandel, 1976], but neither
seems to be nearly widespread or selective enough lo play a dominant role in the
acquisition of knowledge. The discussion in this section will be mainly technical,
dealing with rules for changing weights, their properties, and some basic problems.

The standard basis of weight-changing algorithms [Sutton & Barto, 1981; Jusczyk
& Klein, 1980] is reinforcement of those weights (wj) whose inputs (ij) correlale with

desired outputs. This is almost trivially correct, but is subject to a wide ranFe of
interpretations, some of which won’t work. One widely used rule is to alw: gs
reinforce those Wj for which ij was active whenever the unit fires (rapidly). This is the

rule originally proposed by Hebb [Jusczyk & Klein, 1980] and has been the basis for
many studies of plasticity. However, this feedback-free reinforcement rule provides
no way for a system to learn from its mistakes and could not be the only rule used in
nature.

Our definition of weight changing in the abstract units depends on a
hypothesized ability for a unit to "remember" the activily state of is incoming
connections for long enough Lo get feedback. This assumption is commonly made by
modelers (e.g., see {Sutton & Barto, 1981]), and has some currency among
neurobiologists (e.g., [Stent, 1973]). The idea is that the activily al a receiving site
causes chemical changes that persist and remain localized for some time.

The change in weights will be determined by a function of the inputs (i),
potential (p), state (q), and outcome value (x) for each unil. The general case
includes a provision for dealing with situations where it is not possible lo decide
g,mrnedlately whether a given network behavior should be reinforced. We introduce a
memory" vector g and two functions, ¢ which updates g, and d. which (usually
later) uses values of u to bring about changes In the weights w. The general
definitions are given in [Feldman, 1981]. This paper will not deal with deferred
outcomes, so that we can use a simplified definition with p = w and ¢ = d. The rule
for weight change becomes -

w < d(,p,q.x,w).

As an example, let us consider augmenting the random network of Iigure 2.4 to
enable it to selectively strengthen connections. We will assume that all of the w; in

the network are initially set to .5. The table in Figure 2.4 is still applicable if we
assume that all units have output v = 4p (instead of 2p), because the initial weights
of .5 will even things out. We will also have o be more precise in our treatment of



bidirectional links. We interpret Figure 2.4 to mean that, for example, unil O has
inputs from and (separately) outputs to units F, I, L, and ?. Recruiting units (O, 1, I)
to form a more permanent chunk would be accomplished by strenglhening their
mutual positive effects.

The dynamic link established in Figure 2.4 provides the information necessary
for a uniform updating algorithm to choose the right weights to change. I‘or
example, the system could signal updating weights at time 5 for all units with p > 8.
The next thing that needs specifying is a parlicular updating rule. The next thing that
needs specifying is a particular updating rule. A lypical update rule might be

AWj = a

which increases weights at a rate proportional to the current input level. A well
known problem with this rule is that if weights only increase they will often all
saturate. One standard solution (e.g., [Sutton & Barto, 1981]), which works well
enough in this case, is to have an increase or decrease in weights which-depends on
the output or potential of the unit. We could do this discretely by selling a
conditional § = 1ifp > 8 and & = -1 if p < 8. A continuous version could be § =
p - 8 which would greatly penalize active Tnputs to dormant units. In either case,

Asza'lj'S

is an acceplable updating rule. Assuming that the fourth input of unit O is idle, the
new values of weights on inputs to unit O would be (« = .1):

I F L ?

old 5 S5 5
continuous .6 .6 .56
discrete .55 .55 .53

Notice that the weight on the mystery input remains unchanged because i9 is

zero. This might not be desirable if the goal were to cut off other inputs that might
cause confusion with the chunk (O, I, F). In general, differenl structures will be
better served by different updating algorithms and one should not expect o find 4
uniform scheme that will be applicable in all situations. Our major departure from
the literature is to allow non-linear updating rules that need not treal all w; on a

given unit identically. This is a natural extension of the more flexible compulational
rules we have found useful in our detailed models. Many of the results [Sutton &
Barto, 1981] on the convergence and stability of correlation weight changing schemes
will carry over to rules of our kind. More details on this and related questions can be
found in [Feldman, 1981].
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Figure 2.3: Uniform Dynamic Link Network
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3.  Small World

One problem in trying to think coherently aboul vision and space is the
enormous number of entities involved at every level. In this section we will present a
fairly detailed examination of the interactions among the four frames, but all done at
a very coarse grain. The small world development has been crucial to the elaboration
of the current model and will hopefully also be easier for others lo work with. Again,
we will push through a straight line of development that ignores many important
issues and then try to address all the major ones (in Section 4). This seclion and the
next one still contain no behavioral or physiological support for the choices being
made - the concern is strictly with the computational adequacy of the model. Only
after the model is specified will we address its relationships with past and future
experiments (Section 5).

Our discussion begins with the problem of linking visual feature inforiation
with the knowledge of how objects in the world can appear. The problem of going
from a set of visual features to the description of a situalion will be called the
indexing problem, following the terminology common in Al. ‘The small world we will
consider in detail has exactly six distinct visual features each with 10 possible values
(Figure 3.1). Assume for now that any object in the small world can be characterized
by some particular set of values for the six features. This would mean that each
object has a distinct 6-digit visual code (not unlike a zip code). If the system could
always reliably extract the values for the visual features, it would not be hard to
identify which objects were in which places in the currenlt environment. No

additional problems would arise if some objects had multiple codes among the 100
= 1,000,000 available. But the system, as specified. would totally break down if (wo
objects needed to share the same code, i.e. looked ideutical relative to our set of
lfeatures and values. We will have to address the question of ambiguous feature sels
ater. ,

The six particular visual features which we have chosen are intended Lo
elucidate the major scientific problems in intermediate level vision and would nol be
the best choice for a practical computer vision system. We assume for now that the
best value at each position of the current view is conlinuously maintained by
parameter network computations [Ballard, 1981] which will be elaborated below.
Features such as size and shape which cover several units are assumed to be
represented by a single unit, say at the center of the region covered. Of course, the
problem of breaking up the feature space into meaningful regions is a central one
and the model will have to address it in detail.

One of the features which we employ in the small world is called “"motion."
Motion, as well as the other features, will be treated in this section as a properly of
objects which has ten discrete values and is continuously updated by computational
processes which will be specified later. Motion and change are clearly critical
problems and require much more careful treatment than an arbitrary assigniment of
ten values. But there is an important conceptual advantage 1o including motion as an
explicit parameter even at this early stage. If compuling the best discrete valued
characterization of object motion is a basic properly of low-level vision, then there is
nothing at all surprising about the various perceived motion phenomena. More
generally, the notion that low-level vision is concerned with continuously
maintaining the best current discrete value choices for specific visual features
provides a powerful organizing principle for helping o explain a wide range of
findings in perceptual psychology. We will consider some of these issues in Section 5,
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after the small world mode! has been worked out in detail.

The model specified so far has almost no conlent, bul several important points
can already be seen. The most important point is that discrete values for a fixed sel
of visual features provide a natural base for indexing, and all of our models will
assume this structure. The second point is that the visual features chosen will
determine which distinctions the sytem is capable of, as is already well known in
classical pattern recognition. An obvious consequence is that the fealures used for
indexing should be as invariant as possible under different viewing conditions. This
suggests that we should use the "constancy” properties like reflectance, physical size
and surface curvature rather than proximal or image features for indexing.

The six visual features used in indexing are the following: lightness, hue,
texture, shape, motion, and size. Obviously enough, ten values of these features (even
in logarithmic scales) is not enough to characterize visual appearance in the real
world; but the small world is rich enough to exhibil most of the required problems.
The model assumes that the six features are continously represented in six parallel 10
x 10 arrays which are intended to map the currently visible external world. There is
also assumed to be a (10 valued logarthmic) depth map maintained as part of the
same structure (Fig. 3.1). The depth map is needed for calculating constancy features
such as object size and is also used directly in mapping the environmenl. The depth
map is assumed to be calculated cooperatively with the six fealure planes, using
binocular and other cues. These seven parallel arrays, along with some auxiliary
structure, comprise the stable feature frame (Sl’l’g which is one of the four
cornerstones of the model.

Figure 3.1: The six feature (and depth) planes for the Small World SI‘l*,

The SFF takes its name from its two main properties: it encodes visual feature
values and it is stable over fixations. The SFF is the basic interface between the visual
system and the more general world knowledge represented in the World Knowledge
Formulary (WKF). The idea is that the SFF al all times maintains a map of the
visual properties of the part of the world that is currently in view. We will describe
below in some detail how the SFF interacts with the retinal frame (RI?) in
maintaining a stable visual world. Assuming that the SI‘l" is successfully maintaired,
we now address the problem of how ils feature values can be employed to capture
knowledge of the objects in the current environment (and their activities). Thus we
return to the indexing problem.

Our first view of appearance models was that each object could be
characterized by one or more sets of feature values. l‘or objects that are sufficiently
simple, this is not a bad approximation. You can probably name an object thal is an
approximately 1.5" white sphere and which is uniformly pock-marked even before
seeing it hook into the rough. But for complex objects like a horse or Harvard
Square, the single feature set isn’t even the right kind of visual information. Our way
of handling the appearance models for complex objects and situalions is, again, laken
directly from current Al practice. We assume that the appearance of a complex
object is represented (as part of one’s world knowledge) as a network of nodes
representing the “appearance possibilities™ of simpler components and relationships
among them. Figure 3.2 shows the description of a ¢hair scene from [Ballard &
Brown, 1982] which is typical. There are several unsolved lechnical guestions about
the number of separate views maintained, and how much fexibility should be
encoded in a description, bul the general idea of composition is all we need at the



moment.

Figure 3.2: A typical network representation of visual objects in a situation
[Ballard and Brown 1982]

Recall that the naive version of indexing was 1o use the 6-digil visual feature
code to look up the name of the object with that description. Complex objects are
assumed to be composed of parts, each part being either another complex object or a
visual primitive that can be indexed by the 6-digit code. Now recall that all of our
structures are assumed (o be parallel and continuously active. This means thal
"indexing" can be continuously in progress between different areas of the SI‘I* and
networks of visual appearance knowledge in the WKI-. 'The crude version of this idea
is to assume that each set of visual features (for a poinl in the 10 x 10 SI‘I* map)
picks out (indexes) the visual primitive which is appropriate. If this were (0 happen,
1t is not hard to see that a visible complex object would have many of ils visual
primitive parts selected simultaneously and should therefore be recogmzable. Parallel
indexing from the entire visual field without confusion is oo much to expecl.

In order to make these notions more precise and eliminate the ghosls from
our machine, we must describe all of this in considerably more detail, using the
technical definitions of Section 2. The various components of both the SI'l° and
WKF will be elaborated in terms of the "units" of Section 2. Obviously enough, we
will need separate units for each of the 100 spatial positions in each of the seven
separate maps. In fact, it is also important to follow the unit/value principle and
re%uu'e a separate unit for each value of each cell in the maps above, giving a (otal of
7000 units. Following the conneclionist dogma, we assume that visual primitives are
units which are connected to the appropriate set of visual-feature-value units. Vor
example, Figure 3.3 shows how golf and ping pong ball descriptions in the WKI*
might be connected (indexed) by visual fealures. It is easy to see how (0 make
connections do the same job as the index codes. Iiach code for a visual primitive is
assumed to be encoded as a conjunction of links from unils representing the
appropriate value of each feature. A visual primitive with multiple codes has several
disjunctive "dendrites,” one for each code. Visual primitives thal are part of a
complex object are also linked into a network for representing the appearance of the
object [Figure 3.4]. ‘

Figure 3.3: Ping-pong and golf balls

Figure 3.4: Harvard Square siluation network
Rectangles are situations, squares are {complex) objects

The general notion of representing a complex objecl as a network or graph of
nodes is standard in machine perception and will be followed here. I1n the small
world we will assume that a node corresponds to one visual primilive (set of feature
values) and is represented by a single unit as in Section 2. 'The links between nodes
are assumed to be conceptually labelled as in Figure 3.2. The encoding of labelled
links into CM connections will vary, but will mainly be through conjunclive
connections involving separate units which embody the link name.

An important aspect of the small world model is thal complex objects and
situations have the identical representalion as semantic networks in the WKI bul
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may include several complex objects and relations among them. A situation is for us -

- any oriented WKF network which can be maned lo the environmental frame (o

guide behavior [cf Section 4.2]. The question of whether a given network should be
viewed as a situation description is not fixed in advance, but is determined by the
way that the description is being used. Intuitively, il seems reasonable enough thal a
room or Harvard Square can be treated either as a situation or as an objecl viewed
from some distance and that the same relational knowledge could be employed in
each use. Both object and situation descriptions allow for nested sub-descriptions and
both can accommodate some stylized movement as will be discussed laler.

The question of when a network description is playing the role of a siluation
is quite sharply defined in our model. We assume that at any given lime Lhere is
exactly one currently active situation description and thal it represents the
environmenial situation at that time. Loosely speaking. the model assumes that there
are situation descriptions for places, routes, etc. and that these are linked in the WK/’
as a "patchwork cognitive map" [Kuipers, 1973]. The technical questions (0 be
addressed here are how these situation descriptions interact with early vision (SI'°)
and with the (modality-independent) frame which encodes knowledge of the space
around us at any time. It is this environmental frame (EI°) which is the fourth pillar
of our framework; the others being general world knowledge (WKI?, fealures of the
stable visual scene (SFF) and the instantaneous retinal information (RI¥). Again, il is
cructigl to think of all of these frames as continuously active and interacting with one
another.

The environmental frame in the small world is again unrealistically rectilinear.
We assume that the world around us is always represented as a box-like three-
dimensional spatial map, as shown in Figure 3.5. The nodes of the [{l' each represent
a position in the space surrounding the observer, and the activation of these nodes
varies with the direction of gaze. There is a mapping 1o nodes in the currently aclive
situation (in the WKF) from appropriate units in the environmental frame. livery
node in the currently active situation will get some potentialion just from being part
of the active situation. Additionally if one of these nodes is mapped to a position in
space that is currently being gazed upon, it will receive much more polentiating
input and can be said to be "anticipated.” Recall that in our discussion ofpamhiguous
visual input we said that mechanisms like this would lead to one interprelation being
preferred over another depending on the situation.

Figure 3.5:  Two EF units of different scales activate different objects in SI'T
435 = Harvard Square

. The model includes three levels of top-down input lo nodes representing
visual objects in the WKF: current situation, visible, and foveated. We will describe
the proposed representation for situations and the EI° in more detail and worry only
later about how one might come to learn the networks for situations (and objects).

. Our model of the environmental frame includes a subnetwork for
continuously updating the position and orientation of the observer within his
environment. This is clearly necessary for computing which parts of the environment
are visible and foveated. The same information is assumed (o be used in the GAZL
mapping linking the retinal and SFF frames. Although il is not so obvious, the ego
position within the frame also can provide scale information, allowing us (o
anticipate more precisely what should be visible from a given view poinl in the
environment. This scale information combines nicely with the hierarchical nature of
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the visual descriptions suggested for the WKI'. As the observer approaches some
object, different levels of substructure become visible and the operation of the
current model incorporates this in a natural way. The relalive position of objects to
the current egocentric position is also assumed 1o be the basis for physical actions on
objects. The model suggests that the SFF-WKF-system is crude and that visual or
other sensory guidance is needed for accurale location of objects.

For concreteness, we assume that the (fixed) environment frame has four
directions (N,E,S,W); we will not include objecls above or below the observer for
now. Starting from the center of the map, there are four (logarithmic) distances in
each direction. For things at distance one, the observer can resolve 10 x 10 spatial
postions. At distance two, the resolution is 5 x 5. At distance 3 il is 2 x 2 and at
distance 4 only one unit is active or not. The situations are encoded in a compalible
way. Each object descriplion in a situation network has a scale al which il could be
visible, if gazed upon.

As the observer moves, the visible scale and postion values are continuously
updated. There is no apparent difficulty in also computing occlusion information,
either generally through the EF or specifically in the situation description. We
assume that situations become mapped as the active current environiment, based on
how the observer has organized his situation memory. Some general cues as 10 when
situations would change include: going through a door, changing to a different scale
of consideration or switching from planning lo acting. The technical question is
exactly how the environmental frame interacls with the current siluation network.,
The major difficuity is providing for the mapping of a great number of possible
situations onto the single fixed environmental frame. Notice that any CM model will
face the problem of coupling distrubuted knowledge to fixed input and output
systems - the scientific questions are where and how to carry out this coupling. The
keys to our solution to the situation - EF mapping problems are: situation nodes,
conjunctive connections and directly encoding only the inverse mapping. We assume
that the environmental frame consists (inter alia) of units that each represent a region
of the currently surrounding space. Fach of these units will conjunctively connect to
all of the objects which might be visible in its region of space in some situation. Not
surprisingly, the other half of the conjunctive connection comes from a unit which is
active exactly for one particular situation. Figure 3.5 depicts the general situation, If
the current situation is “"Harvard Square” = S463 then all of the objects in thal
situation will be receiving some aclivation. This means that there will be some
greater than usual expectation that these objects will be chosen over their rivals in
non-visual as well as visual compulations. When gaze is of a direction and scale
appropriate for some object, its node (in the WKI- network) will be more strongly
activated because the corresponding position in the LI© will be active and this plus
the currency of S463 will cause high activation of e.g. ""T'he Coop" and “Brighams".
This provides top-down bias to the relaxation between the WKIF and the visual
features of the SFF, the details of which will be given later. FFinally, if a particular
known object (say the door of the Coop) is foveated. there will be even stronger top-
down bias through the WKIF to both the SFI° and Retinal computations.

The advantages accruing to a visual system with fovealion are the focus of our
description of the first basic component of the model - the retinal (RI°) frame. Iiven
before we fill in the details we can see that there are several reasons why foveating an
object of interest leads to better .recognition:

a) Certain complex calculations (e.g. color, texture) can only be done foveally.
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b) Bottom-up indexing of features to visual primitives can be restricled (o the
area of the SFF being foveated (by spalial focus units), greatly reducing the
possible confusions.

¢) In a known environment, top-down activation from the conjunction of
situation and gaze information can significanlly raise the activation of an
expected object or primitive.

All three of these advantages mutually reinforce “one another, leading lo an”
overwhelming advantage for foveal vision in the model. The role of peripheral vision

is to set and maintain contexts and to continuously monitor for change, as we will see

as the elaboration of the model continues.

The retinal frame (RF) is primarily concerned with bringing the enormous
spatial resolution and processing power of the fovea and its maps to bear on points
of interest. The RF is assumed to calculate the values of disparity, retinal motion,
intensity change, etc. which are the primary inputs to the SFI*. The currenl model
assumes that there are local grouping and smoothing processes active within each
feature network, but that interactions among features are carried out in the SI‘l%.

In keeping with the rest of the development we will describe a specific
incarnation of the retinal frame which is much (oo small and rectilinear, but should
be easier to understand. Our retinal frame will have 100 spatially organized units,
like the feature frame (SFF), but they will be laid out very differently. In the RI¥, 64
of the 100 spatial units will be uniformly packed into an area equivalent to a 2 x 2
array of the SFF. The remaining 36 units will be formed inlo three surrounding rings
of logarithmically decreasing resolution. In terms of SI'I* units, the units in the ouler
rings of the retinal frame will cover 1, 4, and 16 squares respectively. All of this is
depicted in Figure 3.6.

Figure 3.6: Logarithmic Retinal Frame

We assume that the retinal frame can (logically) move with respect to the
SFF. The center of the RF can "move" to any position in the SI‘l" except the lwo
outer most rings. Under these conditions, the entire SFF is covered by the RI- at all
times. Naturally, the parts of the SFF mapped by the coarse unils of the RI° get ouly
coarse information while the fovea is mapped elsewhere. [Yigure 3.7 depicls the
situation where the fovea is mapped to the upper left extreme of ils range, leaving
most of the SFF covered by 2 x 2 and 4 x 4 retinal units.

) First, a technical point. The relalive motion of the RI‘ must be implemented
in our scheme by a switchable conjunctive mapping. We assume that each RI° unit is
llnked appropriately with every combination of SI'F units to which it could map.
Every such RF-SFF link is conjoined with a connection that specifies the currentfy
active GAZE mapping. For example, in IFigure 3.7, the top-lefl corner unit of the
RFF arrays will be mapfped lo the unil just beyond the fovea which is the top-lefl of
its ring. The mappings for units other than those in this ring are not 1 to 1; this will
Igre Important as we consider the interactions of the retinal (RI9) and feature (SI°)
ames.

Figure 3.7: Retinal I'rame mapped 1o SIFF



In the current model, there is no lop-down feedback from St'I° to RI¥ units.
Any tuning of the retinal frame is assumed to be captured in the mechanisin for
GAZE control. The flow of information in the other direction is, of course, the basic
problem of low-level visual processing. The model postulales a distinct fovea and
periphery in the retinal frame and assigns quile ditferent functions to them. The
fovea (8 x 8 in our case) is assumed to have enough resolution to determine which of
the discrete (10 in our case) values of the stimulus features are present in the area
foveated. The SFF is assumed to be able 1o integrale and retain information aboul
hue, texture, shape bul not to do the direct computation of the feature values. The
main purpose of the SFF is incorporating and maintaining information aboul the
entire visible scene that is only computable foveally. The SI‘I° does not simply
transcribe retinal input; the seven planes interact continuously lo produce a fealure
frame which encodes “constancy” values of size, hue, etc. The depth map is neéded
in the SFF to aide in constancy calculations and, in fact, there appear to be a nuinber
of other auxiliary calculations needed as well [Ballard, 1982). The four units of the
SFF currently mapped to the fovea of the RF dominate the calculation of feature
values, but an overall consistancy must be maintained.

The peripheral 36 units of the retinal frame are assumed (o play a diflerent
role. If the SFF is blank, as when a new scene is first encountered, each unil in the
RI provides the same value to all the (1, 4, or 16) units in the SI‘l* to which it is
currently mapped. These crude values become the basis for the initial relaxation
towards constancy features in the SFF and (because they are there) begin indexing
the visual primitives in the WKF. This crude indexing is assumed o provide some
guidance to the choice of fixation points for further analysis of the scene.

When analysis is well under way and the SI'l is not blank, the periphery is
assuined to function in a “change delection” mode. The coarse values computed by
peripheral units are compared with average values from the (1, 4, or 16) SI*I" units
covered. If there is too large a difference, an alerling signal is activated leading (in
the simple case) to a saccade to the place of change. The SII is also assumed Lo
contain networks for "smooth continuation” of visual properties across fixations.
The networks for continuity and "filling in" phenomena are assumed to interacl with
the coarse values computed by the peripheral RI*. "There is a wealth of data on
visual illusions and meta-contras{ phenomena which constrains the choices of how
these networks function and interact.

Recall that this entire discussion is ignoring what we have called the "pursuit
mode” of the system. In-pursuit mode, the periphery does not alert on all changes
but is assumed to still be sensitive to oplic flow patterns indicating collisions. Pursuit
mode is discussed in Section 4.4.
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Figure 3.2: A typical network representation of visual objects
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[Ballard and Brown, 1982]
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4. Small World, expanded.

The purpose of this section is to address a variely of technical questions thal were
suppressed 1n the previous overview, slill without seriously confronting experimental
data. The technical questions are all addressed relative to the specific formalism
described in Section 2, but most of the questions would arise in any attempl (o
model vision and space at the current level of specificity. We will follow the same
order of presentation as before, but will also include discussion of some links among
the four frames that were ignored earlier. Most of the specific solutions 1o technical
problems will be carried out al the Small World scale, hopefully making it easier 10
see the ideas.

4.1 The SFF reconsidered.

The first technical questions concern the assumption Lhal the Stable I‘ealure
Frame (SFF) can continuously maintain values for the hue, saturation, size, shape,
color, texture, motion and distance of features in the current field of view. A large
fraction of the current effort in computer vision is focussed on these problems and,
while a great deal is known, quite a few problems remain, Withoul allempling 10
survey all this work, we can indicate extensions to the Small World SII* model that
make it a reasonable abstraction of our current understanding of constancies { =
intrinsic images = extra-striate visual maps).

There was a certain sleight-of-hand in the previous description of S
functionality. In order to even define SFI° features like shape and size, the image
must already be segmented into regions, and we have not specified how this
segmentation is to happen. (This is our first technical problem and is typical of the
ones to follow.) Our notions of how region analysis and feature extraction are
cooperatively computed is described in detail in [Ballard, 1981]. The basic idea is that
the SFF also contains parameter space networks representing the relative importance
of different feature values in a given scene. Color is a particularly easy example to
examine, Our ten values of hue and lightness yield 100 color values that could be
present in a scene. Imagine one unit for each of these 100 values whose activily is a
measure of how much of this color is in the scene. Now consider the most active
color and the points in the SFIF whose hue and lightness yield that color. This
collection of identically colored points is a good candidale for a meaningful region,
especially if the points are adjacent. If there is no significant variance in depth,
texture, or motion over such a region, it will almost certainly be segmented out and
its size and shape can be computed. When the various features do not agree, people
have trouble with segmentation (e.g. camouflage). Algorithms for forming distinct
regions within a cellular computer like ours are nol trivial, but are in Lhe literalure
[Minsky & Papert, 1972]. The size and crude shape of an identified region could be
calculated by a parameter network [Ballard, 1981]. We assume that for indexing, the
properties of a region are represented by the unit at its center of mass, with the other
units reporting null values.

Current Computer Vision research is directed at a slightly less abstract set of
constancy features emphasizing e.g. local surface slant and tilt instead of our shape
features. There is no reason why the SFF could nol incorporate multiple levels of
features and we expect that it wi{J have these as well as global parameters such as the
direction and color of illumination. The model also should be refined o account for
the fact that there are order relationships among the features. It turns oul that depth
precedes lightness [Gilchrist, 1977] and that region properties like size and shape
presume some segmentation by depth, color, motion and lexture. All of these
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calculations do interact with each other as well as the with the bidirectional (indexing
and context) links to knowledge of the appearance of objects (WKI). The model
presumes that this giant network relaxes into a consistent stable coalilion (Section 2)
and preliminary simulations [Sabbah, 1981] are encouraging, but a great deal of work
renéailns before we can have real confidence in the computational stability of the
model. ‘

Another important issue is the role played by points of discontinuily (edges) in
the SFF. Both the behavioral and physiological data indicate strongly that the visual
system responds primarily to differences (e.g. in color), but the SI‘I* encodes point
values of features. The model uses the SFF primarily as a buffer memory and for
indexing - both functions are better served by attempting (o capture the (constancy)
values of visual features. It might be useful to add additional planes representing,”
e.g., depth discontinuities, to the SFF and there is no problem in doing so. Depth
discontinuity points would be particularly useful in grouping regions into separale
objects and this, in turn, would greatly simplify indexing (which is a mag'or technical

roblem to be addressed below). More generally, the conversion from relinal
?difference) information to SFF (constancy value) information is a major prediction
of the model. The model postulates that the Sl continuously compules, among
other 1things, smooth continuation values for feature plane units not fovealed
recently.

In Section 3, we described the RIF — SKIF mapping as involving moving the
logarithmic retinal frame over the SFT spatial map. The next task is to show how this
is accomplished using the mechanisms of Section 2. The same idea of a variable
mapping will occur repeatedly below. All of our variable mappings will rely on
conjunctive connections; the particular scheme for the RI* -» SI'F map is shown in
Figure 4.1. First consider the case where a position in the SFI' is currently covered
by a equal size piece of the RF. For example if gaze were directed to its maximum
extent in the upper right corner of the field (8,8), then the SI‘I* units at position (6,5)
would get values from the RT7 unit (64) in the spiral numbering order, This is shown
in Figure 4.1 as a conjunctive connection on the (6,5) unit of links from [gaze =
(8,8)] and RF position = (64). The same gaze value maps RIF position (73) to SI'I¥
position (9,5), and so on. Also shown is one of the 64 other conjunctive inputs (o the
SFFE (6,5) units; this for gaze (7,8). The mapping for unequal sizes of R1< and SII*
fields is only slightly more complicated. Coarse RIF unils map the same value (0
several SFF units. Fine RF units would have to compute some summary value of
their findings, for each of the seven planes of the SFF. There is no difficulty here in
mapping, but the nature of the RF foveal computations and their use is a lechnical
question to which we will return in Section 4.4.

Figure 4.1: Mapping retinal to SFF coordinates, Detail

Another general issue is the choice of one unit per feature value as a basis for
representing information. Although this unit/value principle is a convenient way o
build models and appears to be a reasonable abstraction of the experimental data,
the real situation is more complex. Even on pure computational grounds, it is much
more efficient to use some encoding tricks such as the coarse-fine coding trick
described in Section 2. These tricks also exploit conjunctive connections Lo reduce by
a large fraction the number of units that would be required to caplure a given level
of precision for a feature value. The assertion here is that these technical tricks are



sufficient to solve the problem of combinatorial explosion in the number of unils as
we move to realistic numbers. Our exposition will continue lo employ pure value
-units (e.g. in the planes of the SFF) with the understanding that any physiological
predictions would have to be translated to realisitic encodings.

42 Indexing and Context Mappings

In this section we attempt to confront a complex sel of interacting technical
questions upon which the viability of the provisionary model will stand or fall. The
crucial issue is how to convert from a spatial, visual, syntactic representation (o the
more general, modality-independent semantic network which is claimed to embody
one’s world knowlege. Esssentially the same problem arises in any formulation and
our attempted solutions may be of some heuristic value even if the four-frames
model turns out to be useless.

Recall that Section 3 presented a simple and direct mode! of indexing from visual
features (SFF) to visual primitives (WKF). A primitive was simply any node (~ unit)
in the WKF which could be indexed by a vector of feature values. Although it was
not stated explicitly, the implication was that conjunctive connections would be used
to activate the visual primitive when the appropriale feature values all appeared at
the same point in space (and thus in the SFF). More complex objects and situations
were assumed to be built up recursively from primitives using slandard relationships
(e.g. "below") from semantic network theory. In addition, context links from the
WKF to the SFF were supposed to prime certain feature value units from general
knowlege and expectations. The remainder of the section lays out how the model
does all these things without attempting to specify the delails of semantic nelwork
representation in the WKF, this being a major intellectual problem, independent of
vision and space.

. The classic problem in parallel models of indexing is cross-talk or confusion of
features. If a red circle and a blue square appear together, how does the parallel
network avoid activating the red square primitive? The obvious way to handle the
red-circle, blue-square problem is to have a red-circle conjunctive unit for every
position in the visual field. This quickly becomes infeasible for more complex
combinations of features. For example, in the Small World with six 10-valued
features, one would require a million units for each position in the SI'FF in order to
implement our naive notion of mapping from visual feature vectors lo visual
primitives. For realistic numbers the problemi grows too fast for our coding
techniques [Feldman & Ballard, 1982] and other ideas must be invoked. The
particular solution used here to the feature-cross-talk problem will be presenled in
some detail, both becuase of its importance and as an indication of how the
elaboration of the model is proceeding.

The basic idea is to maintain spatial coherence tor all pairs of property values and

lo index use conjunctions of pairs. Figure 4.2 depicts the basic situation for a golf

ball in the Small World. We assume for now that the appearance of a golf ball is
characterized by exactly one value for each of the six visual features, appearing
together at a point in the visual field (SFF). There are 15(5 + 4 + 3 + 2 + 1) ways
of making pairs of values from six features, any subsel of which could be used for
indexing. Suppose we just use shape conjoined with each of Lhe others, yielding five
pairs involved in the indexing of golf ball appearance. The imporlanl point is that
the feature-tpair units are all spatially independent; there is only one white-sphere
unit. The feature-pair units are themselves activaled only by the simultaneous
appearance of their component features at the same point in the visual field (IMigure
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4.2 shows size and shape at (1,6) in the SFF). For the Small World, this would mean
100 conjunctions of two inputs each to-feature-pair cells. [f all 15 pairs were laid out,

there would be 15 x 102 or 1500 pair units because each element of each pair could
bave ten different values. Even counting the 100 separate inpul sites to each of Lhese
pair nodes as a unit, one gets only 150,000 units as opposed to the 100,000,000
needed for directly encoding each vector of 6 feature values at each position. Since
each feature pair unit responds to the entire visual field, the model automatically
generalizes from an object learned at one spatial localion.

Figure 4.2: Indexing and Priming, Detail

What price do we pay for this dramatic reduction in unit count? ‘The main cosl is
an increase in the chances of false indexing, the feature-cross-talk problem with
which we began this section. While each feature-pair is required 1o be spatially
coherent, the pairs could all come from different parts of space. ['or example, if an
orange at (4,7) and a flying ping-pong ball at (1,6) occurred in the same image, Lhe
network of Figure 4.2 could falsely activate golf ball. In a more complete version .
with all fifteen pairs, several pairs (pocked flying, pocked white, pocked 1-inch)
would not activate and this might be enough to prevent falsely activating golf ball.
Other factors include mutual inhibition by ping-pong-ball and the effects of the
situation context, but there remains a possibility of false activations through
coincidence. In fact, just this kind of cross-talk is found in |lreisman, 1982] One
cannot effectively index the entire scene and must use fixations and internal focus of
attention to deal with things sequentially. Changes in region grouping and problems
like transparency also require sequentiality.

There are also some minor technical questions to be answered about this scheme.
One obviously must allow for indexing by more than a single value of various
features. There are two cases, both of which fit quite well with other aspects of the
model. When a range of values (e.g. lightness) is possible, we asswine indexing is
done with a coarse-valued cell which we need for other reasons anyway. If no values
of some feature are criterial (e.g. hue of jelly beans), that feature i1s simply nol used
in indexing. Also, the disjunctive input sites of Section 2.2 provide a natural way of
encoding separate visual appearances of a single primitive. The hard problem is how
all this structure could get built for new objects, and this will be treated fairly
carefully in Section 4.5. :

Once an object instance has been recognized, it has a representation in the
current situation independent of whether it is currently in view. [lor top-down
context mapping to be effective, there must also be a link from visual primitives in
the WKF to their component features in the SFFF. Assumne that the links withoul
arrows in Figure 4.2 are bi-directional. Then anticipating the appearance of a golf
ball would prime all the appropriate feature-pair units (e.g. 1" sphere). The feature
pair units could, in turn, prime the appropriate feature-at-position units (e.g. sphere
at (1, 6), 1" at (4, 7)). This would give some advantage in the WTA compelition at
each point to anticipated features but could not be very effective becanse it would be
identical across the visual field (SFFF). A much more powerful context eflecl can be
achieved by adding spatial focus units depicted as a diamond unit in IYigure 4.2. [lach
spatial focus unit could conjoin wilth context links so that only the anticipated
feature-at-position units were primed. Spatial focus has been shown [l'eldman &
Ballard, 1982} to be a general solution to many cross-talk problems and appears 1o be



related to attention [Posner, 1978; Treisman et al., 1980). The coordination of spatial
focus with the action of the RF will be discussed in Section 4.4.

Meanwhile, for spatial focus to be feasible, one needs a mapping from the
instance (hexagonal) nodes of Figure 4.2 1o the spatial focus (diamond) ones. Such a
mapping encodes the (rapidly changing) information that some object instance is
currently at a particular position in the visual field. This is just the kind of mapping
for which the uniform connection networks of Figure 2.4 were developed. Once the
links are established, the activation of either a spatial position or an object instance
will strongly prime the partner. It is also not difficult to augment the spatial focus
network so that the expected position of visible objects afier head movements can be
primed. For both computational and scientific reasons, the current model assumes
that this expectation is done for only one object and the rest of the SUI¥ is
recomputed, using a little context priming but mostly direct visual input.

Complex objects (and situations) are represented in the model as networks (in the
WKF) of nodes describing visual primitives or other complex objects. There are
tremendous problems of several different kinds in these semantic network models
and these are the subject of the next paper in the current series. Our goal here is jusl
to provide a plausible (although crude) model of how network representation of
visual appearance could fil in the four-frames paradigm.

As mentioned in Section 3, the basic idea is that each visual primitive of a
complex object is represented by a node that corresponds to a particular set of
feature values as computed in the SFF. Since indexing from fealures to primitives
occurs in parallel, there will usually be several simultaneously active primitive nodes
for a complex object currently in view. This simultaneous activation of subparts will
tend to cause the correct complex objects to be activated, independent of the delails
of how the relationships among the subparts are modelled. When we consider the
details of complex object representations, a number of difficult technical problems
arise. This is the subject of Hrechanyk's forthcoming dissertation [Hrechanyk &
Ballard, 1982], and we will be content here with a loose discussion, based on the
example of representing the visual appearance of horses. Recall that the WKI’ visual
appearance models are far from complete -- they are more like a verbal description
of something not currently in view.

Obviously enough, the side and bottom views of a horse have relatively little in
common. Even within the side view, the horse could appear in a varielty of
orientations and scale configurations and the relative positions of its subparts could
also differ considerably. We must also account for the facts thul there could be
several distinguishable horses in a scene and that some of these may be partially
occluded. Our current solution, depicted in Figure 4.3, involves instance nodes,
separate sub-networks for different views and cross-referenced structural
descriptions. The prototype horse has a general hierarchical descriplion where, e.g.,
the trunk is composed of a body, legs and 4 tail. What visual primitives might be
involved in recognizing a horse will depend on whether it is a fronl, side or other
view. Thus the matching process would select together a prototype and a view which
best matched the active visual primitives. Figure 4.4 shows a lypical relation in the
triangle notation of [Hinton, 1981]. As always, there is assumed to be mutual
inhibition among competing object descriptions and view nodes. A serious weakness
of the current scheme is that it has no verification apparatus for checking that the
pieces of the putative horse are all connected in appropriate ways. A CM approach to
the verification of the detailed geometric correspondence between a WKI* model and
an image is described in [Hrechanyk & Ballard, 1982]. Their solution requires an
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auxiliary structure for computing the correspondence and entails a hierarchical
malching strategy that is compatible with the hierarchical descriptions in the WKI-,

- Thus far our discussion of object recognition has been tradilional in its treatment
of occlusion--we ignored it entirely. We did discuss discontinuities (edges) earlier in
this section and certain discontinuities (e.g. depth, motion) provide cues {o possible
occlusion. A more thorough treatment would include explicit occlusion-feature
recognizers in the SFF, but this requires no qualitative changes. The hard problem is
how to make use of occlusion cues in matching partial collections of visual fealures
to appearance models. Our indexing scheme does nol depend on totally matching
features with primitives, but we need to make much stronger use of occlusion
information.

The best use of occlusion information would be in connection with spatial focus
and the kind of successive refinement of malching described in [Hrechanyk &
Ballard, 1982]. Occlusion cues such as depth discontinuity could be used to segarale
areas of space believed to index separate objects and the appropriate subparls
matched in the SFF. One could also add general malched-by-occlusion links to

. higher level nodes in the object appearance models [Sabbah, 1981]. If we are able to

compute the overall position and scale (fairly accurately) of the occluded object, then
the various visible pieces could be separately foveated and used to index. This is not
much different than what is needed to recognize an unoccluded object that occupies
a large amount of the visual field. Presumably the instance nodes recruited for the
various objects could include occlusion links tied (o the current situation and
viewpoint. In important cases, this occlusion information could become part of the
situation description.

Another major problem is multiple horses in a scene. To represenl mulliple
horses clearly requires some kind of "instance" nodes to keep track of the positions
and properties of the various horses in the scene. The model assumes thal people can
deal with a few instances, but must recognize (foveale) one at a time for indexing lo
work. Basically we assume that when a particular horse instance is fovealed, the
position, structure and other features are simultaneously active. The instance "node”
1s the set of binding units (Section 2.4) recruited to hold the coalition together. The
statistics of recruiting would be between the uniform networks of I'igure 2.3 and the
random networks of Figure 2.4 since there is an intermediate amount of structure.
The coalition representing the horse-instance-at- position could also include nodes
that captured detailed orientation parameters and presumably even concepls like gail,
although motion presents problems not yet solved.

The model also includes in a natural way the occurance of special nodes and
structures for particular horses that one knows well. Learning the appearance of a
new object, such as a centaur, involves synthesizing new structures which make use
of existing substructures. Such permanent structures are presurned 1o arise from
temporary coalitions by strengthening connections as described in Section 2.5 and
[Feldman, 1981]. The model suggests that people with horse structures for particular
horses, breeds, liveries etc. should be able 1o effectively represent more complex
scenes without cross-talk. We will return to the role of network structures and
foveation in the section on the retinal map (4.4). The nexl topic is “situations” which
are WKF networks which may include several complex objects.



4.3 Situations and the EF -

We are, again, tracing around the four-frames diagram of Figure 2.1, Recall that
the Environmental Frame (EF) is postulated to be the multi-modal representation of
the objecls in the current situation. As was the case with complex object nelworks,
the WKF network representing a situation will be more like a verbal description or
sketchmap of something not currently in view. The nodes of a siluation network
represent either objects or sub-siluations, in exacl analogy to the networks for
complex objects. The situation networks are assumed (o be oriented by compass
direction and to contain some distinguished objects that serve as landmarks. Situation
networks can be conditionalized on points in lime or seasons of the year.

We assume for now that only one situation is active al a given time. Since the
active situation network is a stable coalition, all of the object and sub-situation nodes
are also aclive to varying degrees, providing top-down conlext o perceplual
processes. So far, this presents no technical difficulties; the problems arise 1n relating
the current situation (in the WKF) to the hypothesized spatial frame in the L',

Recall that the EF was assumed 1o be organized as units representing fixed
positions in space. The EF is organized around cardinal directions which we call
N,E,S,W and Up and Down. The model suggests that this spatial frame does not
necessarily change with body movements; it is an allocentric rather than egocentric
representation. The position and orientation of the ego within the LI is also
maintained at all times and used in directing actions. Conceptually, one would like to
be able to map the current situation network (from the WKFE) to the III' such that
each landmark object is mapped o its canonical position. This would enable the
model to anticipate what should be seen at different positions and scale values in the
environment and where to look for expected objects. l'echnical problems arise in
trying to lay out these WKF-EF mappings in a way that has plausible resource
requirements and is resistant to cross-talk.

The basic form of our technical solution is shown in Iigure 3.5. The central idea
is 1o use special situation nodes (depicted as ovals in I'igure 3.5) to bind together the
mapping from a fixed place unit in the EF to object units in the WKI" that are
expected at thal place in the active situation. For reasons we will get to later, there is
no link from objects in the WKF to their positions in the EIF. Conjunclive
connections link a position in space, represented by an EIX unit with a particular
object node in the WKF. When a particular situation node (e.g. Harvard Square) is
activated, then activation of a particular EF node (East, Middle distance) could lead
to activation of a node in the WKF representing a middle distance view of the
Harvard Coop. The model assumes that the amount of EIF — WKI' aclivation is
related to foveation and attention. There are also implications for retinal (RI7)
mappings which we will discuss in the next section.

There is a nice correspondance between the hierarchical situation representations
in the WKF and the EF representations of space at different scales. ‘The expected
view of a landmark object in a situation depends on both the direction of gaze and
the computed position of self relative to the EIF. Moving close to an object of interest
could lead in a natural way to swiltching activation to a sub-situation which has a
more detailed view of the object. The model thus suggests that situation nodes are
arranged in a discrete hierarchical structure, and that changes of visual context are
discrete. In addition to scale change, other reasons for changing the (unique)
currently active situation include moving out of a situation or ?assing a parlicular
landmark [Kuipers, 1973]. We also assume that a change of internal focus of
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attention is usually accompanied by a swilch in active situations. The model can also

- accommodate scenarios (time sequences of situations), but we will not deal with

scenarios in this paper.

There appear to be no technical difficulties in the CM representation of these
ideas. Counting arguments limit the number of situation nodes lo a few thousand,
but this seems plausible. Some situation networks are assumed lo be general (e.g.
office) and used when no more specialized network is available. New situations are
assumed to be handled by recruiting additional binder unils linking landmark objects
with their EF positions, using the techniques of Section 2.4. It is this collection of
binder units that we refer to as a “situation link."

The amount of and accuracy of information captured in a situation network is
quite low, but this appears to be consistent with what is known aboul people. One
consequence of the model in its current form is that there is no link from an obij_ect-»
situation pair to the EF node where it is expected. One could easily add these links
but this would lead to vast numbers of input links to each IXF node violaling a
constraint. In addition, these WKF—EF connections could cause confiision between
what objects were being activated in the WKF and where gaze was directed. The
model currently allows one to think about one situation while visually coping with a
different one, as long as the non-visual situation does not evoke (simulated% spatial
reasoning or action. For the model, the position of objecls in a siluation IS
represented relationally in the WKF only and one’s ability lo locale objects nol
currently in view should be crude, unless a need for recalling the location was
anticipated. This is typical of the kind of crude prediction of experimental
consequences which will occupy us in Section 5.

44 YFoveation, Pursuit Mode and the Retinal Frame

-The logarithmic scaling of I‘igure 3.6 is about all that has been specified so far
about the Retinal Frame (RF). The model assumes that the RI° continuously
computes proximal (non-constancy) values of visual features and transmits values to
the appropriate SFF units depending on the direction of gaze (I'igure 4.1). Obviously
enough, the RF is intended to correspond roughly to primary visual cortex which is,
by far, the best understood of the four frames. We will consider in Section 5 the
evidence on what the units in primary and secondary visual corlex compute and
whether RF-SFF distinction makes sense of the dala.

For this section, the crucial questions are comptuational. One compultational
refinement that is required is that units in the RF can not be assuined to respond to
only one feature. As we have seen, units that respond coarsely along some feature
dimensions and finely along one dimension have computational advantages and we
assume that this is the nature of RF units. More difficult problens arise in specifying
computationally how the direct measurements of the RI' can be translated to the
features postulated for the SFF. Let us consider motion, which is probably the most
difficult case. :

For RF units in a static eye, motion is indicated by “retinal slip” - a systematic
change in input among neighboring units. It is not, a priori, obvious that this local
information is enough to determine the object motions and light changes thal could
cause the retinal changes. Recenl research in our lab and elsewhere [Brady, 1982] has
shown that these "optical flow" calculations are feasible under a range of conditions
sufficiently general for the purposes of the SFF model, which is not hypothesized to
be perfect. The other SFI° fealures -- hue, lightness, size, shape and surface texture



are assumed to be computed cooperatively from RI’ measures of local detectors of
~orientation, motion, spatial extent and disparity with different spectral tuning. The
details of how the RF-SFF computations are specified is a mafior part of current
research in computer vision [Ballard & Brown, 1982]. The lotality of this work is
sufficiently advanced to give us confidence thal these computational issues will not
be a major hurdle, Whether or not any such algorithms are used by nature is a
primary experimental question raised by the four-frames model and Section 5 will be
largely concerned with this issue. ‘

-

There are some other purely computational issues relating lo the RI7 - particularly

stereopsis and pursuit mode. Very little has been said so far about binocular vision,
because the current model assigns it no great role. The SI'T¥ is assumed in the model
to be cyclopean and to incoporate two RF readings and disparity information when
available. The visual field covered by the SFF is partly monocular in any event. We
have discussed gaze and saccadic eye movements briefly in a couple of places. ‘The
model says nothing explicit about the choice of fixation patterns although the WKI*
networks for complex objects and situations would presumably help direct saccades.
The question we now address is how foveation effects indexing.

The basic four-frames paradigm assumes that indexing (and its inverse, conlext)
occurs continuously everywhere in the SFF. It also assumes that indexing is
"stronger" at the place currently being fixated. In Section 3, we saw thatl this
strengthening was a combination of selective top-down activation (through the Il
and situation links) and selective bottom-up activation of the places in the SI1*
currently mapped to the fovea. The third strengthening effect described there was
the ability to use directly the more accurate calculations of color, texture, elc.
achievable by the fovea. This amounts to postulating a direct RE-WKI' indexing link
not shown in the four-frames diagrams. Such a link would be much simpler than the
one described in Section 4.2 because it would nol need spatial coherence and
presumably would not have a top-down context inverse.

A direct RF-WKF indexing link is also useful when we consider the "pursuit
mode” of the visual system. As we saw in the introduction, it is totally different to
track your finger across text than it is to read following your finger. The lilerature
- refers to the former as the pursuit system but we prefer the term mode because much
of the same structure is used in both modes. Qur assumption is that the syslem
operates in pursuit mode both in tracking a moving target and while the observer is
moving under visual guidance.

Obviously enough, the purpose of pursuit mode is o keep a visual targel fovealed
despite target and/or observer motion. Pursuit is qualitatively different in the four-
frames model because the accumulation of stable constancy data by the SI°1° can not
be the same in pursuit mode as it is in scanning a static scene. In scanning, the
periphery of the RF receives input from a fixed scene (at varying resolution). During
pursuit, the periphery sees a rapidly changing scene. In fact there are secial
mechanisms to prevent optokinetic effects in the periphery from disrupling pursuil
ngpenter, 1977]. The model suggests that certain RI‘[* functions such as depth and

-D motion of the target must be computed in scanning mode before pursuit. During
pursuit, we assume that the primary indexing occurs between the RI* and WKI
refining the parameter values originally computed by the RFI'. Meanwhile two other
computations are active. Optical flow calculations are assumed to be continuously
operating in the RF, allowing the detection of potential collisions. The WKI‘ is
assumed to continue to register (low resolution) peripheral input from the R1¥ as best
it can. The question of how much recognition (indexing) of peripheral objects occurs
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is assumed to be one of attention; if the tracking task is nol too demanding, somne
SFF=WKF computations can be fit in. Such computations interfere with the
convergence of the tracking function and are suppressed under heavy load.

When the observer is moving, the situation networks must also be brought into
play. We postulate that the observer navigates by successively fixating and tracking
landmarks. Again, peripheral vision and the SII¥ can do some recognition if the
tracking is not too demanding. Peripheral vision, prior knowledge and occasional
scanning-mode saccades enable the observer to maintain a situation nelwork
adequate to provide successive landmarks.

4.5 Learning in the CM FKour-Frames Model

Acquisition of new knowledge has been the most difficult problem in the
development of CM and related paradigms. Our CM model includes an assumption
that there is not enough growth of new connections to account for adult learning,
and changing of weights must suffice. The problem becomes particularly acute in the
current context, because we must model the continuous play of transient information
on the WKF as well as the incorporation of some of the informalion into permanent
structures. The basic idea is to exploit the fact that randomly connected networks
can essenlially always be made to capture the required information using only
weight-changing.

The current model assumes that the basic structure of the Retinal (RI7), [Feature
(SFF) and Environmental (EF) frames are genetically and developmentally
determined and do not change in normal learning. In particular, the coherence of the
spatial representations and the mappings between them are assumed to be in place.
In this case, most learning takes place in the World Knowledge [‘ormulary (WKY)
which encodes the observer’s knowledge of the particular objects and situations that
it has encountered. One must also learn the indexing - context links between the SI‘[¥
and WKF and have a way of recruiting situation links to relate the LI to siluations
in the WKF. A more realistic model would include some plasticily in all of the
frames, but the same basic considerations seem (o apply.

All of the learning in the model is assumed to be accomplished by the same
{somewhat magical) algorithm described briefly in Section 2.4 and more carefully in
Feldman, 1981]. The algorithm exploits the fact that large random nelworks have a
radically skewed distribution of connections to a small subset of nodes. I‘or example,
in a graph of 1,000,000 nodes with 3000 random connections each, there will be
about 29 binder nodes with three or more links into a set R of 20 randomly chosen
nodes. If these binder nodes could be recruited properly, the binder nodes plus the
previously unassociated recruiting base R would form a stable coalition. This stable
coalition would be a form of coherent active memory and could serve as the basis for
permanent learning of the coalition as a "concepl.” Section 5 of [Feldman, 1981] is
concerned with describing plausible CM algorithms for all this and we assume here
that the arguments there are sound.

The idea, then, is to assume thal there are pools of randomly connected unils
available to be recruited for binders. Consider the hexagonal node n I‘igure 4.2. Oune
clearly needs such instance nodes to be able to distinguish the various golf balls that
might occur in a given situation. In our model, such instance nodes are recruited as
being the small set of units that bind together the crucial information--here the facls
that the object is a golf ball belonging to Ired in situation 67. 1f there were some
other noteworthy fact (e.g., it was pink) the recruiting algorithm would include the



“appropriate units. Usually the recruiting of a node for a visual objecl instance will
include spatial relation links to other objects (particularly landmarks) in the current
~situation. We can now see that a "node" in the WKF usually consists of some binder
units with connections to the various concepts semantically linked to the new "node".
Instance nodes are often transient, but sometimes get incorporated inlo a new or
modified situation description. It will come as no surprise that the "siluation links"
hypothesized to link positions in the EF with objects in the WKI- are also randomnly
recruited sets of binder nodes. If a situation is deemed to be important (or
importantly changed), recruiting is initiated, linking the activated objects and
positions in a coalition held together by the binding siluation links. Obviously
enough, a great deal more work is required on the details of these algorithms, but the
general idea seems no flakier than several other aspects of the model.

Even assuming that random recruiting will do all we ask of il, there remain
questions of how the detailed WKF structures get buill. The central question here is
the extent to which we should postulate pre-wired structures and how much can be

attributed to recruiting. This is, of course, the nature-nurture issue appearing in its’

CM manifestation and is not something to be treated in passing. A feeling for the
problem can be derived from Figure 4.3, some WKF structure for horses. It seems
reasonable to me to suppose that some crude structure representing the general
nature of animals (other moving things in the world) may have evolved from what
the Frog’s eye appears to tell its brain. The only alternative (within CM) is (o assume
that all such structures are learned and generalized from experience. The next paper
in this series will attempt to deal more carefully with the relationship between WKI*
neural nets and semantic networks.

Figure 4.3: General views of horse

Assuming that the SFF structure and the basic struclures of objects in the WKI*
are understood, the index-context mappings fall out nicely. Consider the detailed
golf-ball mappings in Figure 4.2. The built-in structures are assumed (o include all
the round and diamond-shaped nodes and their connections. The general golf-ball
node is seen.to be recruited as a binder linking the appropriale properly-pair units
with units reprsenting other aspects of golf-balls and their place in the universe. ‘The
random recruiting process specifies that the binder links be bi-directional, so that
indexing and context should work as suggested. Extending all this to complex objects
like the horse of Figure 4.3 appears to be feasible, especially if we assume some pre-
wired structure. The point of all this is to provide a crude base for the claim thal the
four-frames model is not obviously wrong. The final section examines the claim a
little more carefully in the light of a variety of experimental findings.
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5. The Small World and the Real World

The major claim made for the Four-Frames Model is that it is consistent with all
the established facts about vision and space. It will now be clear to the reader thal
the claim is, at best, a qualitative one; no particular systems or range of phenomena
have been modelled at a scientifically adequate level of precision. The purpose of
this section is to explore the qualitative adequacy of the our-IFrames Model and lo
describe some of the experimental results that led to its current form. Not
surprisingly, I am currently unable to perceive any experimental results that do not
fit within the model and need to have them brought to my attention.

One of the basic criteria used in the formulation of the model is that it be
intuitively plausible, The discursive presentation of the four frames in the
introduction is also intended to suggest why the choices are reasonable. We make no
further appeal to intuition here, but would be interesled in reporis of intuitive
dissatisfaction with the model.

The current paper arose out of an attempt o specify more precisely sone aspects
of the connectionist model of visual memory described in [IFeldman, 1981]. We first
had to develop a technical language for specifying connectionist models and learn
how to use the language on non-trivial problems [FFeldman & Ballard, 1982; Sabbah,
1981]. Before taking the formalism. too seriously, I also had to convince myself that it
was capable of incorporating short- and long-term change [Feldman, 1982]. This
formalism, outlined in Section 2, has been stable for some time and is also being
used in a variety of other tasks [Small, 1982; Hrechanyk & Ballard, 1982]. Its role
here is to support detailed computational/anatomical represenlations of the various
processing functions hypothesized for the model.

The behavioral and neurobiological constraints on the model were chosen as
broadly as possible. 1 deliberately attempted (o incorporate only the least
controversial and best established findings. This decision fits well with the relatively
abstract level of the current model. It should not require delicale experiments or
arguments to point out structural flaws in the Four-Frames model. Some potentially
revealing experiments will be suggested later in this section. It is, of course,
enormously easier to suggest experiments than to carry them out. The main purpose
of this, or any other model, is to help suggest questions that are worth the
experimental effort.

Many of the elements of the four-trames model will be easily recognizable to
workers in Al. The Stable Feature Frame has much in common with Ballard’s
parameter networks [Ballard, 1981] which is itself an extension of the intrinsic image
notion which is currently a major topic in Computer Vision. The active semantic net
of the World Knowledge Formulary fits into almost any current knowledge
representation scheme in Al or cognitive psychology. The Lnvironmenl [“rame and
situation links are also quite like the Al models of space [Kuipers, 1973; McDermoll,

1980] to the extent that they have been worked out. ‘The reason for mentioning all -

this here is to suggest that the basic computational paradigms selected for the four
frames are consistent with current mainstreamn Al notions of how these functions can
be accomplished. The translation to CM terms is only partially specified in this
paper, but there should be enough material to indicale that the standard Al
structures and algorithms are expressible in terms of neuron-like computing units in
a way that is compact and fast enough to be plausible.

There are two lines of computational experiments that might be added to the

-work already underway. The small world system could be simulated as specified. ‘The

performance range would be limited but one could learn quite a lot, especially from
the SFFF-WKI- inleractions. One of the nice features of the model is that it solves the
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old Al problem of converting from numerical to symbolic representations of a scene.
A second line of experimental AT work could focus on situation maps and the EF, 1t
would be very informative to see if hierarchical and sequential situations could be
implemented and whether multiple situations could be worked out computationally.

But it is not compulational experiment thal is most needed al this stage. The
Four-Frames model makes a number of predictions which should be behaviorally
and physiologically testable. Computational requirements have played an imporlant
role in the development of the model, but major constraints have come from the
structure and behavior of the visual system. Most of the assumplions in the four-
frames model are part of a widely shared current world view and are not being
explicitly addressed. What does need more discussion is the rationale for the choices
made in the novel integrative aspects of the work. The experimental basis for our
choices is in no instance compelling; more research needs to be done in all of these
areas. Various experimental findings suggesting the central features of the four-
frames model are presented as suggestive.

For the retinal frame, the data is greatly ahead of the model and the theory has
relatively little to offer experimentalists. There are some new questions to be asked,
but they are mainly concerned with the relation between the RI° and the SI'l'. The
four-frames model assumes that the detailed calculations of color, texture, and so on,
are carried out by the RF and integrated by the SFFF. We assume that striate coriex
and the various psychophysical “channels" are at the RI* level. Obviously any foveal
functions are part of the RF. Most of [Marr, 1982] is concerned with RI* calculations;
he suggests a number of experiments that would also be of interest here. T'he most
interesting prediction of the model concern the inferactions between the RI° and the
(hypothesized) SFF. One would expect mappings 10 extrastriate cortex that depended
on gaze, and mapped RF units with similar response characleristics. I'igure 5.2
suggests that at least the gaze information of Figure 4.1 is available for this mapping
through the LP-Pulvinar complex (cf also [Graybiel & Berson, 1981]).

" The Stable Feature Frame is a major prediction of the four-frames model. It
?rese_nts a computationally plausible and relatively well-specified theory of the
unctioning of extrastriate visual cortex. It is well established that there are reciprocal
connections among most extrastriate visual areas (I'igure 5.1) and thal the features to
which each area is most responsive vary [Allman et al.. 1981; Cowey, 1982]. There is
some evidence that extrastriate visual maps are concerned with constancy features
[Zeki, 1980]. Experiments like those of [Mays and Sparks, 1980] demonstrale that
saccades are directed towards points in space, not coded as relative displacements
from the current fixation,

With one major proviso, the SI'F makes predictions that are subjecl Lo
immediate experimental exploration. The proviso is (as mentioned earlier) that SI'[V
units are assumed for simplicity to respond only o a single feature. This is neither
biologically plausible nor computationally efficient, which is a pity because it would
make the experimenis much easier.

Given that we are dealing with multi-feature units, the SI'l makes strong and
perhaps surprising predictions. One should find visual maps that are both spatially
organized by head position (in an upright statienary animal) and that respond 1o
constancy values of visual stimuli. These should interact bi-directionally with
parameter maps that are organized along non-spatial axes; this latter hypothesis is
currently being tested [Ballard & Coleman, 1982]. ‘

The obvious alternative to the SFIF hypothesis is one that suggests that constancy
and indexing computations are done separately at each fixation, with integration of
the scene occurring only at our WKI- level. The crucial question is the existence of
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spatial maps that are independent of eye position. There are isolated reports of units
whose properties are independent of eye movement [Schlag et al., 1980; Tomko et
al., 1981], but the usual description of extrastriale maps is in retinal terms. However,
the vast majority of neurophysiological experiments have been done on anaesthelized
or fixated animals and would not distinguish retinal from spatial organization. It has
also been noted that the receptive field size is much larger (up to the entire fieid) as
one moves lowards more anterior visual areas [Gross et al, 1981]. Since most
fixations are with 15, the effective size of the SIFI° could be of the order of the
receptive field sizes found in the extrastriale areas shown in [Figure 5.2. Visuallﬁ
responsive areas more anterior than these will be discussed in connection wil
indexing and the WKEF.

The psychological literature already contains extensive data on non-relinal
(spatial) encoding of visual data and on constancy calculations [IFisher er al., 1981;
Epstein, 1977; Howard, 1982]. The notion that these are carried out (along wilh
perceptual filling) by a single structure seems to be consistent with these literalures,
and is certainly testable. Behavioral experiments like the masking work of [Davidson
et al,, 1973] give some idea of the interactions of the retinal and spatial frame. In
these letter naming experiments, masks were perceived 1o overlie the largel letter that
was in the appropriate SFF position, but it was the R position thal could nol be
identified. The experiments of [Jonides, 1982] suggest that random patlerns can be
integrated surprisingly well across fixations.

There is also evidence of important interactions among SI'l* computations. {‘or
example, apparent motion will not occur for objecls which appear lo be at greal
depth no matter what choices of retinal spacing and inter-stimulus interval [Haber,
1982] are used. There is wide range of experiments [Johansson, 1977] on (he
interactions of perceived depth, shape and motion, which are directly relevant.
Another example is the work of [Gilchrist, 1977] showing that lightness constancy is
applied only to adjacent areas of the same apparent depth. 1f the different intrinsic
image calculations interact in the way we suggest, one should be able (o predicl Lhe
perceptual effects of anamolous combinations. An effort to deal comprehensively
with existing illusion data would be a strong test for the model. One would also
expect that higher-order masking and adaptation experiments [Weisstein, 1978] might
reveal some of the encodings used in the SIIF.

The main use of the SFF in the model was in indexing from ils visnal fealures lo
visual primitives in the WKF. The particular networks used (I'igure 4.2) call for
spatially independent units that respond to pairs of visual features, The most likely
anatomical site for such units would be the infero-temporal (I'T) cortex [Gross et al.,
1981]. Gross et al. report that units in this area are spatially independent and respond
to complex stimuli and multiple features. The connections known for [T are also
consistent with the model. There are apparently (wo processing slages belween
primary visual cortex (VI) and IT. The outputs from IT include ones that could
embody our spatial focus units and indexing links to the WKI-, which we presume to
be subsumed by anterior temporal and parietal struclures. Needless (o say, there are
alternative treatments of the relatively small amount of information known aboul this
large area of cortex.

Indexing by spatially independent feature pair units is only one of a number of
possibilities. Treisman [1reisman, 1982] has a colleclion of experiments that limit Lhe
possible performance of such a mechanism in humans. She shows that, under
overload conditions, subjects cannot detect in parallel targets requiring fealure pairs

(red square) but can do quite well at single-feature defections. Treisman hypothesizes

that all feature-pair detections require an internal focus of attention (like our spalial
focus), but this seems to me o be much 1oo slow for coping with natural scenes. This
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is another area in which the model is close enough Lo exisling experiments for useful
interactions.

The WKF, our network of world knowledge, is the least susceptible to direct
biological experiments of the four frames. In the model, the WK is recruited from
all modalities and output areas. Its functions would be subsumed by a number of
areas, presumably in the anterior portions of temporal and parietal corlex. Bulk
metabolic experiments give some corroboration of this view, bul all this is not much
more than restating the classical notion of association areas. There is some eividence
for multi-modal-feature cells of the sort required for the WKI* being found in the
Superior Temporal Polysensory area of [Bruce et al., 1981]. Direct neurophysiological
investigation of the WKF does not appear lo be a promising roule.

Behavioral testing of the WKF does seem (o be feasible at present. There is
considerable work in experimental psychology on spreading activation in semantic
networks [Anderson, 1976; Collins, 1975; Smith er al, 1974] and a fair amount on
the perception of scenes [Hintzman et al., 1981; Palmer, 1981]. The four-frames
model suggests a number of experiments on priming, confounding, and other issues
based on the proposed network structure of appearance models.

The cortical structure most likely to subsume the functions of the nvironmental
Frame (EF) appears to be the posterior parielal region [Lynch, 1980; Robinson et al,
1978]. The f%ur—frames model suggests that it is multi-modal, allocentrically
organized and contains sub-structures that encode the current ego position. The IIF
should play a crucial role in hand-eye and other visually guided (asks. Most of these
characteristics have been attributed to the posterior parietal area, but there is still
quite a lot of disagreement on specifics [Lynch, 1980]. The EI is assumed lo act
through situation links connecting 10 WKF networks. There is considerable
behavioral evidence that people employ relatiopal, network-like descriptions of
spatial situations [Hintzman et al., 1981%). The four-frames models entails a number of
specific predictions about these networks and about cortical connections between Lil,
WKF and gaze structures. The constraint of one-way EF-WKI is a computational
one -- it seems unreasonable to have every object link 1o its places in the LIF. The
model assumes that objects in a situation are located relationally (in the WKI*) rather
than in absolute space [Hintzman er al, 1981]. Results from child development
studies could also be helpful here; it is already known that the ability lo use
allocentric frames of reference develops rather late [Piaget & Inhelder, 1967)].

One way in which the four-frames model vastly oversimplies the visual system is
in ignoring hemispheric laterality. Each hemisphere performs visual compulations for
the contralateral hemi-field with very little communication before the infero-
temporal areas. The only systematic mapping across the hemispheres for earlier areas
is of the vertical meridian, which is the border between (he two hemi-fields. In terms
of the model, this means that the RFF and SFI* are duplicated and that our spatially-
independent-feature units (cf. Figure 4.2) are probably also separate but
communicate across hemispheres. The WKI‘ obviously would cover mulliple
modalities and hemi-fields and would represent the first fully centralized level. There
are a number of aspects of external space known to be coded separately in the Lwo
parietal lobes, but we postulate that the EF is subsumed by the right posterior
parietal region. The major problem for the model is explaining how early vision (our
SFF) copes with the switching of inputs between hemispheres with gaze shifts. This
appears to be a difficult and important issue in any account of vision and space.

_Even without new experiments, there is a great deal that might be learned from
trying to fit the four-frames model to existing bodies of data. Doing this at a crude
level has forged the current form ol the model. Subsequent efforls are of two
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different kinds: detailed fitting of small segments of data and further refinement of
the global model. Detailed studies are underway at Rochester on the occulomolor

- system, on parameter nelworks in extrastriate cortex and on computational models of

specific SFF and WKT computations. These studies plus responses 1o the current
article will hopefully lead to an improved and elaborated second version of the four-
frames model. At the least, we would hope lo direct some more atlention to the
global properties of the visual system, which is often treated as a large number of
totally separate problems. The rationale of the whole enterprise is that it is not 00
early to benefit from more general considerations of the problems of vision and

space.
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Figure 5.1: Connections among visual areas in owl monkeys. The areas are as

From:

in Figure 5.2, viz: PP (posterior parietal cortex), DM (dorsomedial
temporal area), M (medial visual area, not in Fig. 5.2), DI (dorso-

intermediate visual area), MT (middle temporal visual area) and

DL (dorsolateral visual area). The primary visual areas are denoted
VI and VII.

R. E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"

in C. N. Woolsey, Multiple Visual Areas, p. 137.
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Figure 5.2: The tectopulvinar relay system. Retinal input to the superior
colliculus from Y and W cells is known from electrophysiological studies in
macaque monkeys. Studies in owl monkeys indicate that the superior colliculus
projects to two of the three subdivisions of the inferior pulvinar complex, and
that each subdivision of the inferior pulvinar projects to separate regions of
extrastriate cortex. The posterior (IPp), medial (IPm) and central (IPc) nuclei
of the inferior pulvinar are from Lin and Kaas. The subdivisions of visual
cortex of the owl monkey are from Allman and Kaas. Areas VI (primary visual
cortex), VII (secondary visual cortex), MT (middle temporal visual area),

DL (dorsolateral visual area), and DM (dorsomedial visual area) each contain

a topographic representation of the contralateral visual hemifield and have
distinctive architectonic features. Areas PP (posterior parietal cortex) and

DI (dorso-intermediate visual area) are visually responsive, but their topography
has not been fully determined. The rostral dashed lines mark the extent of
visually responsive cortex (V), which includes subdivisions not yet fully defined.

From: R.E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"
in C. N. Woolsey, Multiple Visual Areas, p. 126.
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