

Natural Language Understanding and Communication for Multi-Agent

Systems

Sean Trott, Aurélien Appriou, Jerome Feldman, Adam Janin
International Computer Science Institute

1947 Center Street, #600
Berkeley, CA 94704

seantrott@icsi.berkeley.edu appriou.aurelien@berkeley.edu feldman@icsi.berkeley.edu janin@icsi.berkeleky.edu

Abstract

Natural Language Understanding (NLU) studies machine
language comprehension and action without human inter-
vention. We describe an implemented system that supports
deep semantic NLU for controlling systems with multiple
simulated robot agents. The system supports bidirectional
communication for both human-agent and agent-agent inter-
action. This interaction is achieved with the use of N-tuples,
a novel form of Agent Communication Language using
shared protocols with content expressing actions or inten-
tions. The system’s portability and flexibility is facilitated
by its division into unchanging “core” and “application-
specific” components.

Introduction

Historically, controlling multi-agent systems has been dif-

ficult, particularly for systems involving both human

agents and autonomous or semi-autonomous robotic

agents. Multi-agent problems introduce new difficulties,

including the sharing of world information and solving

problems by planning or coordinating collaborative actions

(Taylor et al. 2011).

 Much previous research in the field has focused on di-

rect planning without agent collaboration (Shi et al. 2014),

while other work has incorporated more collaborative ele-

ments (Allen and Perrault 1980), (Ferguson and Allen

2011), (Subramanian, Kumar, and Cohen 2006).

 We have implemented an approach based on our previ-

ous work on Natural Language Understanding (Fig. 2)

(Khayrallah, Trott, and Feldman 2015). This is grounded in

cognitive linguistics research on deep embodied semantics

with a focus on the semantics of action (Feldman 2007),

(Feldman, Dodge, and Bryant 2009) and uses Embodied

Construction Grammar (ECG) and the ECG Analyzer

(Bryant 2008) as the front-end for the natural language

interface. All grammar development has been greatly aided

by the ECG Workbench, an Eclipse-based application used

for grammar design and testing. More information is avail-

able at:

http://www.icsi.berkeley.edu/icsi/projects/ai/ntl.

 We have filed a patent application on this development,

LCAS (Language Communication with Autonomous Sys-

tems). This paper extends the previous work with demon-

stration and discussion of the system architecture, includ-

ing for multi-agent communication.

 In the LCAS system, human-agent and agent-agent in-

teractions are facilitated by N-tuples (Fig. 1), which con-

tain action protocols and semantic content. Our goal is to

develop a framework whereby all agents involved in an

application can send and receive information in the same

form. The mechanism of universal, but customizable, agent

IPC is grounded in general N-tuple Templates. The tem-

plate underlying Figure 1 consists of the argument names

followed by type restrictions. Mapping from natural lan-

guage input to completed N-tuples like Figure 1 is the key

NLU step in the system, as will be discussed below.

Figure 1: N-tuple "Team, push the blue box east together!"

System Architecture

The major components are shown in Fig. 2, which depicts

the layout of the components for a simulated robot appli-

cation with a single Agent/Problem Solver. A major design

goal is modularity, which we implement at two levels. At

the component level, the subsystems run as independent

programs communicating through well-defined protocols.

Although some code, such as the network communication

library, is shared among the components, they run inde-

pendently and potentially on separate machines. More de-

tails on the individual components are described later in

the paper.

 Another important level of modularity comes from sepa-

rating the components into Core and App parts. For each

component, the Core contains the parts of the component

that do not change from application to application. To re-

target the system to a new App, several steps of system

integration are needed, as will be discussed below. The

App parts comprise components that must be modified by

the system integrator when the application changes. We

believe that this separation will allow optimal repurposing

– some work must be done to integrate a new application,

but the majority of the language side need only be written

once in Core. The tractability of writing the language Core

only once arises from the restricted domain of control of

autonomous systems. General NLU across domains and

tasks remains intractable.

 The loose coupling between the language front-end and

the action (Fig. 2) allows the system to be retargeted for a

variety of tasks. Here, our implementation connects lan-

guage to a simulated robot, but ECG has also been used as

the language model for other tasks (Oliva et al. 2012).

Figure 2: System architecture. This API references the MORSE

simulator but other applications could be substituted.

Communication Paradigm: N-tuples

A key feature of our system is the shared ability across all

agents to send and receive N-tuples. Language input from a

human user is converted into N-tuples, and agents com-

municate with each other (to share information and plan

collaborative actions) and the human (when asking for

clarification, etc.) through the use of N-tuples. All avenues

of N-tuple communication are bidirectional.

 Agent communication to the human operator is done

using N-tuple information in pattern-based natural lan-

guage generation (e.g., “which box?” or “I have discovered

a new box at location x, y”). For most interaction purposes,

we feel the pattern-based responses are sufficient. In fact,

there are informal studies that suggest that habitability is

improved by making the system responses less human-

like.

 A crucial part of our design is that agent-agent commu-

nication can be accomplished solely through N-tuples,

without the need to generate natural language or another

type of agent communication language. The design does

not suggest that the N-tuples used for Agent-Agent com-

munication should be translated into natural language. One

should not expect end users to monitor the detailed interac-

tion of agents. Any language interaction with a user is

channeled through the Agent-UI as shown. Of course, an

App will likely interact with a user non-linguistically, such

as by modifying displays or other HCI capabilities. For

example, in the pilot system, the Morse App (using Blend-

er) provides realistic action displays.

N-tuple Implementation

The communication of N-tuples is provided by a Core fa-

cility known as Transport. Typically, each agent (the

Agent-UI and each Agent/Problem Solver) instantiates one

Transport using the agent's name (e.g. the Agent-UI

Transport is called "Agent-UI"; the top-level Problem

Solver is called "Boss-Agent"). An agent can then send an

N-tuple to any other agent (Fig. 4). It is also possible for

multiple agents to share a transport with the same name.

For example, Agent 1 and Agent 2 could both receive N-

tuples sent to the Transport "Team-Agent".

 The current implementation of Transport requires no

setup configuration – all agents automatically and trans-

parently announce themselves on the local area network. In

practice, it is likely that sites will require a component that

implements the Transport API following their own security

and authentication policies.

Language Front-End: Analyzer/Specializer

A human user gives a natural language command to an

Agent-UI (User-Interface Agent). The Agent-UI is respon-

sible for mediating communication between the human

agent and the agents involved in the application.

 Specifically, the Agent-UI (Figure 2) receives speech or

text input from a human user, performs a deep semantic

analysis using the ECG Analyzer (Bryant 2008) which

outputs and produces a SemSpec as shown in the lower left

of Figure 2. This operation is described in more detail in

the 2015 paper (Khayrallah, Trott, and Feldman 2015). The

SemSpec is intended to be independent of any application,

but we have not yet tested this extensively.

 The App-dependent aspects of the language analysis are

handled by the Specializer, which crawls the SemSpec

structure and outputs an N-tuple (like Fig. 1) for the Prob-

lem Solver. The Agent-UI then sends the N-tuple to the

Problem Solver. Task relevant information is defined de-

claratively in the N-tuple templates, which are shared be-

tween the Specializer and the Problem Solver.

 The Agent-UI is capable of receiving feedback from the

Problem Solver (as a different N-tuple), as well as interact-

ing with the user through speech or text. As mentioned

above, natural language generation is accomplished with

the use of pattern-based responses, which are geared to-

wards the types of information or dialogs a human might

need to hear. The most common forms of interaction are

requests for clarification (if the user input is under-

specified), responses to queries, or notifications of object

discovery.

Front-End Modularity

 Both the Analyzer and the Specializer are divided into

Core and App sides. The Analyzer core contains gram-

mars, schemas, ontologies, and code that support the subset

of a language related to control of autonomous systems;

most of our work has been in English, but we have also

implemented the robot demo in Spanish and French.

 A system integrator adds domain-specific words and

ontology entries relevant to the application to the Analyzer

App. For example, the Analyzer Core has grammar and

words for commanding an autonomous system to move.

The system integrator could add a specific term "dash"

meaning to move at the robot's top speed. The speed of

“dash” is application-specific, so must be implemented by

the App side. Adding words and ontology entries will be

quite common, and we provide a specific user interface

called the Token Editor (Fig. 3) to make it easy. If the ap-

plication requires grammar that isn't in Core, the applica-

tion integrator must add it to Core, using the ECG Work-

bench. We believe that this will be rare.

 The Specializer Core contains code that traverses the

SemSpec produced by the Analyzer component. The Spe-

cializer-App includes the Core, as well as task-relevant N-

tuple templates and code that specify how to build N-tuples

from a SemSpec. As mentioned above, these templates are

shared between the Specializer and Problem Solver; this

establishes a shared set of vocabulary and communication

language between the two modules. The values in an N-

tuple (Fig. 1) are all ontology values. A key part of our

design is a “shared ontology” (Fig. 2) between the lan-

guage and application sides; the Token Editor (Fig. 3) can

be used to specify mappings from the text to language and

application ontologies.

Figure 3: Token Editor, used to add "dash" and other tokens to

grammar.

Action: Problem Solver

The Problem Solver uses information from an N-tuple, as

well as its world model, to make decisions and solve com-

plex problems. It makes API calls to the underlying appli-

cation – in this case, the MORSE robot simulator (Eche-

verria et al. 2011). A Problem Solver’s capabilities are

inherently dependent upon the constraints of the underly-

ing application. As such, the Problem Solver core is quite

small, consisting mainly of code to scan, build, and trans-

mit N-tuples, as well as answering queries and requesting

clarification from the human by communicating with the

Agent-UI, as discussed in the earlier 2015 paper (Khayral-

lah, Trott, and Feldman 2015).

 In this case, the MORSE simulator offers realistic mo-

tion physics, as well as various proximity sensors, which

are used in detecting or discovering new objects. If new

information is gleaned about the world (by contact in the

current demo), the Problem Solver communicates this in-

formation in an N-tuple to the Agent-UI, which informs the

user via speech or text.

 Part of our new multi-agent system is the development

of multiple levels of complexity, which involve more than

one Problem Solver.

Levels of Multi-Agent Complexity

The first level of complexity uses only one Problem Solver

and involves only one Agent Problem Solver (as depicted

in Fig. 2), which has one world model. If a robot discovers

a new object in the world, the shared world model is up-

dated. The Agent Problem Solver communicates all re-

quests and other N-tuples back to the Agent-UI and in-

structions to application modules.

 The second level of complexity uses multiple Problem

Solvers (Fig. 4). There is a Boss-Agent, and there are also

Application-Agents, each with its own separate world

model. The Boss-Agent contains its own world model. The

Boss-Agent receives incoming N-tuples from the Agent-UI

and conveys them to the Application-Agents. The Boss-

Agent also performs high-level problem solving, such as

determining which Application-Agent is best suited for a

given task. In this model, there is no communication be-

tween the individual Application-Agents, but Application-

Agents and Boss-Agents communicate with each other

using N-tuples.

 The third level of complexity, like the second, involves a

Boss-Agent and individual Application-Agents (Fig. 4).

The chief difference is that Application-Agents can also

send N-tuples to each other and coordinate actions among

themselves, as depicted by the arrow in the lower right of

the diagram below (Fig. 4).

Figure 4: System architecture for second and third level of com-

plexity.

Applications

 Our current demonstration involves two simulated robots

(“Robot1” and “Robot2”), and boxes of varying color and

size. The user can address a particular robot, such as “Ro-

bot1, dash behind the blue box!” In this case, the Boss-

Agent routes the resulting N-tuple to one of the Applica-

tion-Agents.

 The user can also address the system as a whole using

the word “Team”, such as: “Team, push the blue box east

together!” The Analyzer produces a SemSpec as usual, and

the Specializer’s resulting N-tuple (Fig. 1) notes that the

“protagonist” of the process is “team_instance”. The N-

tuple also notes that the process is meant to be collabora-

tive.

 In this case, the Boss-Agent must perform high-level

problem solving. This process is also collaborative, mean-

ing the Application-Agents should work together to solve

it. The Boss-Agent composes its own N-tuples from the

command, which contain detailed instructions, and dis-

patches versions to each Application-Agent. Ultimately,

the two robots move into position and use their combined

power to push the blue box east.

 The Boss-Agent must also make high-level decisions if

the user’s instructions are less precise, such as: “Team,

push the blue box east!” In this case, the user is requesting

the same desired effect – the blue box being pushed east –

but specifies neither the actual agent (“Robot1” or “Ro-

bot2”) or whether the process should be done collabora-

tively. The Boss-Agent takes into account various factors

from its world model to decide how the task ought to be

executed. For example, if Robot1 is closer to the blue box,

the Boss-Agent might build and dispatch an N-tuple to

Robot1 ordering it to push the box east. However, if Ro-

bot1 is occupied with another task, or is unable to perform

this task, the Boss-Agent would select Robot2 and send a

customized N-tuple with instructions for action (Fig. 5).

Alternatively, if the box was too heavy for one robot to

push, the Boss-Agent would order the robots to work col-

laboratively. Of course, the factors taken into consideration

by the Boss-Agent are contingent on the task and applica-

tion domain.

Figure 5: Sample N-tuple fragment sent from Boss-Agent to Ap-

plication-Agent (Robot2).

A video demonstration of this example can be found at:

https://www.youtube.com/watch?v=46jYgBIw_VA.

A compilation video demonstrating various features of

our robot system can be found at:

https://www.youtube.com/watch?v=mffl4-FqZaU.

Limitations and Future Work

Currently, communication from the Boss-Agent back to the

user – such as requests for clarification – is translated from

an N-tuple into a “pattern” response, such as: “which red

box?” The addition of more complex natural language gen-

eration might improve the system.

 In an attempt to modularize the system further, we are

implementing a model that communicates N-tuples across

different network channels; this would be invaluable for

situations such as communicating with an autonomous

submarine from land.

 Finally, we are integrating a speech front-end to the lan-

guage module.

Acknowledgments

This work is supported by the Office of Naval Research

grant number N000141110416.

References

Taylor, M. E., Jain, M., Kiekintveld, C., Kwak, J. Y., Yang, R.,

Yin, Z., & Tambe, M. (2011). Two decades of multiagent team-

work research: past, present, and future. In Collaborative Agents-

Research and Development (pp. 137-151). Springer Berlin Hei-

delberg.

Shi, Z., Zhang, J., Yue, J., & Yang, X. (2014). A Cognitive Mod-

el for Multi-Agent Collaboration. International Journal of Intelli-

gence Science, 4(01), 1-6.

Allen, J. F., & Perrault, C. R. (1980). Analyzing intention in ut-

terances. Artificial Intelligence, 15(3), 143-178.

Ferguson, G., & Allen, J. F. (2011). A Cognitive Model for Col-

laborative Agents. In AAAI Fall Symposium: Advances in Cog-

nitive Systems.

Subramanian, R. A., Kumar, S., & Cohen, P. R. (2006). Integrat-

ing joint intention theory, belief reasoning, and communicative

action for generating team-oriented dialogue. In Proceedings of

the National Conference on Artificial Intelligence (Vol. 21, No. 2,

p. 1501).

Khayrallah, H., Trott, S., & Feldman, J. (2015). Natural Language

For Human Robot Interaction. Proceedings of the Workshop on

Human-Robot Teaming at the 10th ACM/IEEE International

Conference on Human-Robot Interaction, Portland, Oregon.

Feldman, J., Dodge, E., & Bryant, J. (2009). A neural theory of

language and embodied construction grammar. The Oxford

Handbook of Linguistic Analysis., 111 —- 138.

Feldman, J. (2007). From Molecule to Metaphor. A Neural theory

of Language. The MIT Press.

Bryant, J. E. (2008). Best-Fit Construction Analysis. Analysis.

Oliva, J., Feldman J., Giraldi L., and Dodge E. (2012) Ontology

Driven Contextual Reference Resolution in Embodied Construc-

tion Grammar. In the proceedings of the 7th Annual Constraint

Solving and Language Processing Workshop. Orléans, France.

Echeverria, G.; Lassabe, N.; Degroote, A. and Lemaignan, S.

(2011). Modular open robots simulation engine: Morse. In the

proceedings of the 2011 IEEE International Conference Robotics

and Automation, 46-51 IEEE.

