
Probabilistic Analysis of Learning in Arti�cial Neural Networks:

The PAC Model and its Variants

Martin Anthony
Department of Mathematics, The London School of Economics and Political Science, Houghton

Street, London WC2A 2AE, UK

Abstract

There are a number of mathematical approaches to the study of learning and generalization in
arti�cial neural networks. Here we survey the `probably approximately correct' (PAC) model
of learning and some of its variants. These models provide a probabilistic framework for the
discussion of generalization and learning. This survey concentrates on the sample complexity
questions in these models; that is, the emphasis is on how many examples should be used for
training. Computational complexity considerations are brie
y discussed for the basic PAC model.
Throughout, the importance of the Vapnik-Chervonenkis dimension is highlighted. Particular
attention is devoted to describing how the probabilistic models apply in the context of neural
network learning, both for networks with binary-valued output and for networks with real-valued
output.

Contents

1 Introduction 2

2 The Basic PAC Model of Learning 3

3 VC-Dimension and Growth Function 5

4 VC-Dimension and Linear Dimension 6

5 A Useful Probability Theorem 8

6 PAC Learning and the VC-Dimension 10

7 VC-Dimension of Binary-Output Networks 13
7.1 Introduction . 13
7.2 Linearly weighted neural networks . 14
7.3 Linear threshold networks . 15
7.4 Other activation functions . 17
7.5 The e�ect of weight restrictions . 19

8 Computational Complexity of Learning 20

0This work is supported in part by the European Union through the ESPRIT `Neurocolt' project.. Updates, corrections,
and comments should be sent to Martin Anthony at m.anthony@lse.ac.uk.

Neural Computing Surveys 1, 1-47, 1997, http ://www.icsi.berkeley.edu/~jagota/NCS

1

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 2

9 Stochastic Concepts 24

10 Distribution-Speci�c Learning 26

11 Graph Dimension and Multiple-Output Nets 28
11.1 The graph dimension . 28
11.2 Multiple-output feedforward threshold networks . 30

12 Pseudo-Dimension and Function Learning 30
12.1 The pseudo-dimension . 30
12.2 Learning real-valued functions . 31

13 Capacity of a Function Space 34
13.1 Capacity and learning . 34
13.2 Applications to sigmoid neural networks . 35

14 Scale-Sensitive Dimensions 36
14.1 Learnability of p-concepts . 36
14.2 Learnability of functions . 38

15 Conclusions and further reading 40

1 Introduction

Arti�cial neural networks have proved to be useful in a diverse range of applications, such as �nancial
prediction, robotics and pattern classi�cation. Given this, it is important to be able to provide performance
guarantees. One has to know how well a neural network will generalize from a certain amount of training
data and how long its learning algorithm will take if trained on a large sample. We are therefore led to
discuss issues of complexity. There are two important aspects of complexity in neural network learning.
First, there is the issue of sample complexity: in many learning problems, training data is expensive and
we should hope not to need too much of it. Secondly, there is computational complexity: a neural network
which takes an hour to train may be of no practical use in complex �nancial prediction problems. It is
important that both the amount of training data required for a prescribed level of performance and the
running time of the learning algorithm in learning from this data do not increase too dramatically as the
`di�culty' of the learning problem increases. Such issues have been formalised and investigated over the
past decade within the �eld of `computational learning theory'. In this article, I shall describe one popular
framework for discussing such problems. This is the probabilistic framework which has become known as the
`probably approximately correct', or PAC, model of learning. Of course, there are many other mathematical
frameworks in which to discuss learning and generalisation (see, for instance [118]), and I make no claim
that the framework discussed here is superior to others discussed elsewhere.

I do not survey here the whole area of the PAC model and its important variants. I have placed emphasis
on those topics I �nd to be of most interest and, consequently, there is more discussion of sample complexity
than of computational complexity. There are now a number of books dealing with probabilistic models of
learning: the interested reader might consult [115, 114, 95, 73, 90, 40, 10] for further information.

The �rst part of this work concerns the basic PAC model, applicable for classi�cation problems. The
second part concerns extensions of the basic PAC model, such as those relevant to neural networks with
real-valued outputs. The PAC theory is useful for a number of non-neural learning problems, such as the
inference of boolean functions. Therefore, while aiming to keep the discussion pertinent to neural networks,
I have tried also to retain the generality of the theory.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 3

PART 1: THE BASIC PAC MODEL

2 The Basic PAC Model of Learning

In this section, we describe the basic `probably approximately correct' (PAC) model of learning, which arises
from the work of Valiant [113, 112] and Vapnik and Chervonenkis [116, 114]. This model is applicable to
neural networks with one output unit which outputs either the value 0 or 1. Thus, it applies to neural
network classi�cation problems. In the PAC model as it applies to neural networks, it is assumed that the
neural network receives a stream of examples, each labeled with the value of a particular target function (or
target concept) t : X ! f0; 1g on that example. The set X here is the set of all possible inputs to the neural
network, which may, for instance be f0; 1gn or Rn if the network has n input units. The target function is to
be thought of as the function which is being `learned' and it is assumed that this is one of a set C of possible
target functions. Often, one would make the assumption that the target function is indeed computable
by the neural network, but we need not make this assumption in the general model to be presented. A
fundamental assumption of the PAC model is that these training examples are presented independently and
at random according to some probability distribution on the set of all examples. For instance, it may be
that X = f0; 1gn and each example is equally likely to be presented.

How should generalization be quanti�ed? Suppose that the set of all possible examples is X = Rn or
X = f0; 1gn where n is the number of inputs to the network, and suppose that the neural network is trying
to `learn' a target function t. A training sample for t of length m is a vector x = (x1; x2; : : : ; xm) 2 Xm

of m examples together with the values t(x1); : : : ; t(xm). Thus, more formally, the training sample for t
determined by x is s 2 (X � f0; 1g)m given by

s = ((x1; t(x1)); (x2; t(x2)); : : : ; (xm; t(xm))) :

An example x 2 X is said to be a positive (negative) example of t if t(x) = 1 (t(x) = 0). Thus a training
sample is a list of examples, each classi�ed as positive or negative examples of the target function. It is often
convenient to refer to a sequence x = (x1; x2; : : : ; xm) of (unlabeled) examples as a sample. We shall denote
by S(m; t) the set of all training samples of length m for t. The learning algorithm accepts the training
sample s and alters the state of the network in some way in response to the information provided by the
sample. It is to be hoped that, in the resulting state, the function computed by the network is a better
approximation to the target concept than the function computed beforehand.

Having set the scene for the PAC model in the context of neural network learning, we shall now take a
slightly more general approach. In this general approach, there are two key sets of f0; 1g-valued functions
de�ned on a set X of all possible examples. These are the concept space C, from which the target function
comes, and the hypothesis space H, from which the learning algorithm chooses its output L(s). In the context
of a neural network learning problem, the hypothesis space H would be the set of all functions computable
by the given neural network architecture. The relationship between C and H is crucial, as we shall see.
Recall that S(m; t) is the set of all training samples of length m for t. In our general learning framework, a
(C;H)-learning algorithm is a function1L from the set

S
t2C;m�1 S(m; t) of all possible training samples for

functions in C, to the set H of all possible output hypotheses. Given as input a training sample s 2 S(m; t)
for some positive integer m and some target t 2 C, the hypothesis L(s) output by the learning algorithm is
in H.

In order to measure the success of a learning algorithm, it is �rst of all important to be able to measure
how close a given hypothesis is to the target function. Since there is assumed to be some probability
distribution, �, on the set of all examples2, we may de�ne the error, er�(h; t), of a function h (with respect
to t) to be the �-probability that a further randomly chosen example is classi�ed incorrectly by h. In other

1At this stage it is convenient to regard a learning `algorithm' as a function rather than a proper algorithm. We shall address
algorithmic questions later.

2Strictly speaking, there is some �xed �-algebra � on the set X of examples and (X;�; �) is a probability space. When X
is �nite, we take � to be the power set of X and when X is a subset of Rn, we take � to be the Borel �-algebra. It is assumed
that all functions in C and H are �-measurable.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 4

words,
er�(h; t) = �(fx 2 X : h(x) 6= t(x)g):

When t is clear from the context, we often use the simpler notation er�(h) for er�(h; t). Now, we should
hope that the error of L(s) is `usually' `small'. Since each of the m examples in the training sample is drawn
randomly and independently according to �, the sample vector x is drawn randomly from Xm according
to the product probability distribution �m. Thus, more formally, we want it to be true that with high
�m-probability the sample s arising from x is such that the function L(s) computed after training has small
error with respect to t. This leads us to the following formal de�nition of PAC learning, �rst given by Valiant
in 1984 [113]3:

De�nition 2.1 (PAC learning algorithm) Let L be a (C;H)-learning algorithm. Then L is probably
approximately correct 4, or PAC if for any given �; � with 0 < �; � < 1, there is a sample length m�(�; �) such
that for all t 2 C and for all probability distributions � on the set of examples, we have

m � m�(�; �)) �m (fs 2 S(m; t) : er�(L(s); t) > �g) < �:

In other words, the algorithm is PAC if for each accuracy parameter � and each con�dence parameter �,
there is m�(�; �) such that if a sample has length at least m�(�; �) then it is `probably' the case that after
training on that sample, the function output by the learning algorithm is `approximately' correct (We should
note that the product probability distribution �m is really de�ned not on subsets of S(m; t) but on sets of
underlying vectors x 2 Xm . However, this abuse of notation is convenient and is unambiguous: for a �xed
t, there is a clear one-to-one correspondence between vectors x 2 Xm and training samples s 2 S(m; t).)
Note that the probability distribution � occurs twice in the de�nition: explicitly in the requirement that
the �m-probability of a misleading sample be small and implicitly through the fact that the error of L(s) is
measured with reference to �. The crucial feature of the de�nition is that we require the su�cient sample
length m�(�; �) to be independent of � and of t, depending only on � and �.

If L is a PAC (C;H)-learning algorithm, then the sample complexity, mL, of L, is the function such that
for �; � 2 (0; 1), mL(�; �) is the least integer which su�ces as a suitable m�(�; �) in the de�nition of PAC
learning.

It is fairly easy to show that if C and H are the same set and this set is �nite, then there is a PAC
(H;H)-learning algorithm. (Henceforth, we shall refer to a (H;H)-learning algorithm simply as a learning
algorithm (for H) when it is clear that the concept space is also H. Often, the terminology proper learning
algorithm is used for such learning algorithms.) We say that the learning algorithm L is consistent if, given
any training sample s = ((x1; t(x1)); (x2; t(x2)); : : : ; (xm; t(xm))) ; the functions L(s) and t agree on xi, for
each i between 1 and m. Let t 2 H and suppose h 2 H has error �h � � with respect to t and the distribution
�. Then the probability (with respect to the product distribution �m) that h agrees with t on a random
sample of length m is clearly at most (1� �)m. This is at most exp(��m), using a standard approximation.
Thus, since there are certainly at most jHj such functions h, the probability that some function in H has
error at least � and is consistent with a randomly chosen sample s is at most jHj exp(��m). For any �xed
positive �, this probability is less than � provided

m � m�(�; �) =
1

�
log

� jHj
�

�
;

a bound independent of both the distribution and the target function. This analysis shows that any consistent
(H;H)-learning algorithm is PAC.

The above analysis shows that if H is �nite then any consistent (H;H)-learning algorithm is PAC.
However, note that the argument fails completely unless H is �nite. It is not immediately clear that PAC
learning is possible in such circumstances. In the next few sections, we present a theory which shows that,
in many such cases, it is possible. However, for the moment, consider the following informal arguments.

3This is not exactly the de�nition given by Valiant.
4The terminology `probably approximately correct' is due to Angluin [2].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 5

If a particular example has not been seen in a large sample, the chances are that this example has low
probability (with respect to �) and therefore misclassi�cation of that example contributes little to the error
of the function computed after training. In other words, the penalty paid for misclassi�cation of a particular
example is its probability, and, very loosely speaking, the two occurrences of � in the de�nition can therefore
`balance' or `cancel' each other.

3 VC-Dimension and Growth Function

We now begin to present the mathematical theory which will enable us to ensure PAC learning is possible
in cases where the concept and hypothesis spaces are not �nite.

Suppose F is a set of f0; 1g-valued functions de�ned on a set X, and let x = (x1; x2; : : : ; xm) be a sample
of length m of examples fromX. We de�ne �F (x), the number of classi�cations of x by F , to be the number
of distinct vectors of the form

x�(f) = (f(x1); f(x2); : : : ; f(xm)) ;

as f runs through all functions of F . Although F may be in�nite, F jx, the set of functions obtained by
restricting the functions of F to domain Ex = fx1; x2; : : : ; xmg, is �nite and is of cardinality �F (x). Note
that for any sample x of length m, �F (x) � 2m. An important quantity, and one which turns out to be
crucial in learning theory, is the maximum possible number of classi�cations by F of a sample of a given
length. We de�ne the growth function �F by

�F (m) = maxf�F (x) : x 2 Xmg :
We have used the notation �F for both the number of classi�cations and the growth function, but this should
cause no confusion.

We noted above that the number of possible classi�cations by F of a sample of length m is at most 2m,
this being the number of binary vectors of length m. We say that a sample x of length m is shattered by F ,
or that F shatters x, if this maximumpossible value is attained; that is, if F gives all possible classi�cations
of x. (We shall also �nd it useful to talk of a set of points, rather than a sample, being shattered. The notion
is the same: the set is shattered if and only if a sample with those entries is shattered.) Note that if the
examples in x are not distinct then x cannot be shattered by any F . When the examples are distinct, x is
shattered by F if and only if for each subset S of Ex, there is some function fS in F such that for 1 � i � m,
fS(xi) = 1() xi 2 S:

Based on the intuitive notion that a set F of functions has high expressive power if it can achieve all
possible classi�cations of a large set of examples, we use as a measure of this power the Vapnik-Chervonenkis
dimension, or VC-dimension, of F , de�ned as follows. The VC-dimension of F is the maximum length of a
sample shattered by F ; if there is no such maximum, we say that the VC-dimension of F is in�nite. Using
the notation introduced above, we can say that the VC-dimension of F , denoted VCdim(F), is given by

VCdim(F) = maxfm : �F (m) = 2mg ;
where we take the maximum to be in�nite if the set is unbounded. We state this de�nition formally, and in
a slightly di�erent form, for future reference.

De�nition 3.1 (VC-dimension) Let F be a set of functions from a set X to f0; 1g. The VC-dimension
of F is (in�nite, or) the maximal size of a subset E of X such that for each S � E, there is fS 2 F with
fS(x) = 1 if x 2 S and fS (x) = 0 if x 2 E n S.

When we have a binary-output neural networkN with set of all possible inputsX, there is a corresponding
hypothesis space, H, de�ned on example space X. This consists of all functions from X to f0; 1g which
can be computed by the network in some state. As a set of f0; 1g-valued functions, this hypothesis space
has a VC-dimension. When X is clear from the context, we refer to this as the VC-dimension of the neural
network and denote it simply by VCdim(N). When X is not clear, we shall use the notation VCdim(N ; X),

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 6

and refer to this quantity as the VC-dimension of N on example set X. (For example, we may wish to
consider the VC-dimension of a particular network �rst on real inputs and then on only binary inputs, and
these quantities might well be di�erent.) We state this de�nition formally.

De�nition 3.2 (VC-dimension of neural network) Let N be a binary-output neural network capable of
taking on a number of states5, and let
 denote the set of all possible states. Suppose that X is the set of
all possible inputs. Let N! be the function from X to f0; 1g computed by N when its state is !, and let

HN = fN! : ! 2
g

be the set of functions computable byN . Then the VC-dimension ofN on example setX, denoted VCdim(N ; X)
(or VCdim(N) if X is clear), is de�ned to be the VC-dimension of HN .

A result which is often useful is that if F is a �nite set of f0; 1g-valued functions then F has VC-dimension
at most log jF j. This follows from the observation that if d is the VC-dimension of F and x 2 Xd is shattered
by F , then jF j � jF jxj = 2d. (Here, and throughout, log denotes logarithm to base 2 and ln denotes natural
logarithm.)

The growth function �F (m) of a space of �nite VC-dimension is a measure of how many di�erent
classi�cations of an m-sample into positive and negative examples can be achieved by the functions of F ,
while the VC-dimension of F is the maximumvalue ofm for which �F (m) = 2m. Clearly these two quantities
are related, because the VC-dimension is de�ned in terms of the growth function. But there is another, less
obvious, relationship: the growth function �F (m) can be bounded by a polynomial function of m, and the
degree of the polynomial is the VC-dimension d of F . Explicitly, we have the following theorem [99, 107, 116],
usually known as Sauer's Lemma. The second inequality is elementary|a proof was given by Blumer et
al. [37].

Theorem 3.3 (Sauer's Lemma) Let d � 0 and m � 1 be given integers and let F be a set of f0; 1g-valued
functions with VCdim(F) = d � 1. Then

�F (m) �
dX
i=0

�
m

i

�
<
�em
d

�d
;

where the second inequality holds for m � d. (Here, e is the base of natural logarithms.)

The �rst inequality of this theorem is tight; there are F of VC-dimension d having growth function
�F (m) =

Pd
i=0

�
m
i

�
.

We have motivated our discussion of VC-dimension by describing it as a measure of the expressive power
of a set of functions. We shall see that the VC-dimensions of the concept space and hypothesis space turn
out to be key parameters for quantifying the di�culty of PAC learning.

4 VC-Dimension and Linear Dimension

In this section, by way of example, and because it will prove useful, we present a result of Dudley which
relates linear (vector-space) dimension to the VC-dimension.

A homogeneous halfspace of Rn is a subset of the form fx 2 Rn :
Pn

i=1wixi > 0g, for some constants
wi, (1 � i � m). A homogeneous linear threshold function is the indicator, or characteristic, function of a
homogeneous half-space. Note that such functions are precisely those computable by a simple perceptron|a
single linear threshold neuron|with n inputs and weight vector w. We have the following characterisation
of the sets which are shattered by homogeneous threshold functions.

5By a state of the network, we mean an assignment of values to the variable parameters of the network (that is, the weights
and thresholds, and so on). Thus, given a neural network and a state, there is a corresponding function, namely the function
computed by that neural net architecture when the state is �xed to be the given one.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 7

Proposition 4.1 A set E = fx1; x2; : : : ; xkg of points of Rn can be shattered by the set of homogeneous
linear threshold functions if and only if the points of E are linearly independent.

Proof Suppose that the points are linearly dependent. Then at least one is a linear combination of the
others. Without loss of generality, suppose x1 =

Pk
i=2 �ixi for some constants �i, (1 � i � k), not all

zero. Suppose the vector w is such that for 2 � j � k, the inner product hw; xji is positive if �j > 0 and

non-positive if �j � 0. Then hw; x1i =
Pk

i=2 �ihw; xii > 0. It follows that there is no homogeneous linear
threshold function such that the following holds: x1 is a negative example and, for 2 � j � k, xj is a positive
example if and only if �j > 0. Thus the set E is not shattered.

For the converse, it su�ces to prove the result when k = n. Let A be the matrix whose rows are the
(linearly independent) row vectors x1; x2; : : : ; xn and let v 2 f�1; 1gn. Then A is nonsingular and so the
matrix equation Aw = v has a solution. The homogeneous linear threshold function t de�ned by this solution
weight-vector w satis�es t(xj) = 1 if and only if entry j of v is 1. Thus all possible classi�cations of the set
of vectors can be realized, and the set is shattered. ut

Recall that a set ff1; f2; : : : ; fkg of functions de�ned on a set X is linearly dependent if there are constants
�i (1 � i � k), not all zero, such that, for all x 2 X,

�1f1(x) + �2f2(x) + : : :+ �kfk(x) = 0;

that is, some non-trivial linear combination of the functions is the zero function on X. The following result
is due to Dudley [42]; we present here a proof from [6].

Theorem 4.2 Let V be a real vector space of real-valued functions de�ned on a set X. Suppose that V has
linear dimension d. For any f 2 V, de�ne the f0; 1g-valued function f+ on X by

f+(x) =

�
1 if f(x) > 0
0 if f(x) � 0,

and let posV = ff+ : f 2 Vg. Then the VC-dimension of posV is d.

Proof Suppose that ff1; f2; : : : ; fdg is a basis for V and, for x 2 X, let

xV = (f1(x); f2(x); : : : ; fd(x)):

Suppose the subset E of X is shattered by posV. Then for each S � E there is fS 2 V such that fS (x) > 0 if
x 2 S and fS(x) � 0 if x 2 E n S. Now, since ff1; : : : ; fdg is a basis of V, there are constants wi (1 � i � d)

such that fS =
Pd

i=1 wifi. Then the condition fS(x) > 0 for x 2 S and f(x) � 0 for x 2 E n S is equivalent

to
Pd

i=1wifi(x) > 0 if x 2 S and
Pd

i=1 wifi(x) � 0 if x 2 E n S. But this is true if and only if there is a
homogeneous linear threshold function (given by the vector whose entries are the wi) such that t(xV) = 1 if
x 2 S and t(xV) = 0 if x 2 E n S. It follows, �rst, that the VC-dimension of posV is at most d. Secondly,
it is equal to d if and only if there is a set fxV1 ; : : : ; xVd g of linearly independent `extended' vectors. Suppose
that this is not so. Then the vector subspace spanned by the set fxV : x 2 Xg is of dimension at most d� 1
and therefore is contained in some hyperplane. Hence there are constants �1; �2; : : : ; �d, not all zero, such
that for every x 2 X,

Pd
i=1 �i(x

V)i = 0; that is,
Pd

i=1 �ifi(x) = 0 for all x. But this contradicts the fact
that the functions f1; : : : ; fd are linearly independent. It follows that the VC-dimension of posV is d. ut

For a positive integer n, let Pn be the simple perceptron, or single linear threshold neuron, having n
inputs and a single computation unit. The arcs carrying the inputs have real-valued weights w1; w2; : : : ; wn
and there is a real threshold value � at the active unit. As will be familiar, the weighted sum of the inputs
is applied to the active unit and this unit outputs 1 if and only if the weighted sum exceeds the threshold
value �. We have the following useful result.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 8

Theorem 4.3 Let Pn be the simple perceptron on n inputs. Then

VCdim(Pn;R
n) = n + 1 and VCdim(Pn; f0; 1gn) = n + 1:

Proof These results follow either by slightly adapting the proof of Proposition 4.1 or by taking the space V
of Theorem 4.2 to be, respectively, the set of all a�ne functions from Rn to R, or f0; 1gn ! f0; 1g. Each of
these has basis ff0; f1; : : : ; fng, where f0 is the identically-1 function and fi(x) = xi. ut

5 A Useful Probability Theorem

In this section, we prove a result of Vapnik [114]. This result and related ones have been central to the
mathematical development of PAC learning theory. The paper of Vapnik and Chervonenkis [116] gave the
�rst such results. Results of a similar form, but speci�cally for learning theory applications, were given by
Blumer et al. [37], who were the �rst to highlight the importance of this area of probability for the theory
of PAC learning. Their results were subsequently improved in [12, 105].

The precise result presented here is a slight improvement of a special case of a result of Vapnik, and the
proof is based on one from [5].

Suppose that H is a set of functions fromX to f0; 1g, and let S be the cartesian product X �f0; 1g. For
s = ((x1; b1); (x2; b2); : : : ; (xm; bm)) 2 Sm and h 2 H, the observed error of h on s is de�ned to be

ers(h) =
1

m
jfi : h(xi) 6= bigj :

Note that if s 2 S(m; t) for some function t, so that bi = t(xi) for each i, then this quantity is simply the
proportion of training examples which h misclassi�es. For h 2 H, Eh � S is de�ned as Eh = f(x; b) 2 S :
h(x) 6= bg. The following result is due to Vapnik.
Theorem 5.1 (Vapnik) Let P be any6 probability distribution on S. With the above notation, for � > 0,

Pm

(
s 2 Sm : 9h 2 H with

P (Eh) � ers(h)p
P (Eh)

> �

)
� 4�H (2m) exp

�
�1

4
�2m

�
:

Proof Let

Q =

(
s 2 Sm : 9h 2 H with

P (Eh)� ers(h)p
P (Eh)

> �

)
;

R =
n
rs 2 S2m : 9h 2 H with ers(h) � err(h) > �

p
errs(h)

o
:

Then it can be shown, as in the original proof of Vapnik, that Pm(Q) � 4P 2m(R) for m > 2=�2. This
technique, relating the required probability to the probability of a `sample-based' event, is known as `sym-
metrization' [95]. The next part of the proof is to bound the probability of this latter event, using a technique
known as `combinatorial bounding'. Let � be the `swapping' subgroup of the symmetric group of degree
2m. This is the group generated by the transpositions (i;m + i) for 1 � i � m. Thus, � consists of those
permutations of f1; 2; : : :; 2mg which swap i with m + i for some numbers i in the range 1 to m. � has a
natural group action on S2m; given z = (z1; : : : ; z2m) and � 2 �, we de�ne

�z = (z�(1); : : : ; z�(2m)):

6As mentioned earlier, there is a �xed �-algebra � on X, which is 2X if X is �nite, and the Borel algebra if X is an in�nite
subset of some Rn. The probability measure P is de�ned on the product �-algebra �� 2f0;1g. To ensure the measurability of
the sets occuring in the result and its proof, one assumes that H satis�es certain conditions. These conditions, which may be
found in [95], will hold in all cases considered here.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 9

Denote by �(z) the number of permutations � in � for which �z belongs to R, and de�ne �(2m) to be the
maximum over all z 2 S2m of this parameter. Because the action of � is measure preserving (with respect
to the product measure P 2m), it can easily be shown (see, for example, [37, 116]) that

P 2m(R) � �(2m)

j�j :

Fix z = ((x1; b1); (x2; b2); : : : ; (x2m; b2m)) 2 S2m and let x = (x1; x2; : : : ; x2m). Suppose h1; h2; : : : ; ht 2 H
are such that t = �H (x) and

fx�(h1);x�(h2); : : : ;x�(ht)g = fx�(h) : h 2 Hg :
For each i between 1 and t, let Ri � S2m be given by

Ri =
n
rs 2 S2m : ers(hi) � err(hi) > �

p
errs(hi)

o
:

In order to bound �(z), we observe that if � 2 � and �z 2 R then, for some i between 1 and t, �z 2 Ri.
Hence �(z) � Pt

i=1�
i(z) where, for each i, �i(z) is the number of permutations in � taking z into Ri.

We now bound �i(z). Following [55], for each 1 � j � 2m, let Xj = 1 if zj 2 Ehi (that is, if hi(xj) 6= bj)
and Xj = 0 otherwise and, for 1 � j � m, let Yj be the random variable which equals Xj � Xm+j with
probability 1=2 and Xm+j �Xj with probability 1=2. Let U be the uniform distribution on �. Then,

�i(z)

j�j = U

8><
>:� 2 � :

mX
j=1

�
X��1(m+j) �X��1 (j)

�
> �

0
@m

2

2mX
j=1

Xj

1
A

1=2
9>=
>;

= Prob

8><
>:

mX
j=1

Yj > �

0
@m

2

2mX
j=1

Xj

1
A

1=2
9>=
>; :

By Hoe�ding's inequality [62], this probability is bounded by

exp

� �2m

P2m
j=1Xj

4
Pm

j=1(Xj �Xm+j)2

!
� exp

�
�1

4
�2m

�
:

This holds for each 1 � i � t. Therefore

�(z)

j�j �
tX

i=1

�i(z)

j�j � t exp

�
�1

4
�2m

�
:

Since t � �H(2m) and since z was arbitrary, we therefore obtain

P 2m(R) � max
z

�(z)

j�j � �H (2m) exp

�
�1

4
�2m

�
:

Since Pm(Q) � 4P 2m(R), this proves the theorem for m > 2=�2. The bound of the theorem holds trivially
for m � 2=�2. ut

The above result concerns a probability distribution P on S = X �f0; 1g. For a function h : X ! f0; 1g,
we de�ne the error of h with respect to P to be erP (h) = P (f(x; b) : h(x) 6= bg); that is, erP (h) = P (Eh). Up
to now, we have discussed only the error of a function with respect to a probability measure � on X and a
target function t on X, but this notion is subsumed by the de�nition of error with respect to a distribution

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 10

on S = X � f0; 1g. For, consider any (measurable) function t from X to f0; 1g and any probability measure
� on X. Then it is fairly easy to construct a probability measure7 P on S such that for any (measurable)
subset A of X,

P (f(x; t(x)) : x 2 Ag) = �(A) and P (f(x; y) : x 2 A; y 6= t(x)g) = 0:

The details may be found in [5, 19]. We shall see later that this more general framework of a probability
distribution on X � f0; 1g is useful. The following result is a consequence of Theorem 5.1, together with
Sauer's Lemma. A better sample size bound, with smaller constants, improving a previous bound from [37],
has been obtained in [5, 19]. However, the following result is adequate for our purposes.

Theorem 5.2 Let H be a hypothesis space of f0; 1g-valued functions de�ned on an input space X. Let P
be any probability measure on S = X � f0; 1g, let 0 < � < 1 and let 0 <
 � 1. Then the probability (with
respect to the product measure Pm) that, for s 2 Sm, there is some hypothesis from H such that

erP (h) > � and ers(h) � (1�
)erP (h)

is at most

4�H (2m) exp

�
�1

4

2�m

�
:

Suppose H has �nite VC-dimension d and that 0 <
 � 1. Then, for any �; � 2 (0; 1), there is m0 = m0(�; �)
such that if m > m0 then, for s 2 Sm, with probability at least 1 � � (with respect to the product measure
Pm),

ers(h) � (1�
)� =) erP (h) � �:

A suitable value of m0 is

m0 =
8

2�

�
ln

�
4

�

�
+ d ln

�
48

2�

��
:

Proof Noting that erP (h) = P (Eh), the �rst part of the result follows easily from Theorem 5.1 on taking
� =

p
�. To obtain the sample length bound when H has �nite VC-dimension d, we use Sauer's inequality,

which tells us that for 2m � d,

�H(2m) <

�
2em

d

�d
:

With this, one can show that if m > m0, then

4

�
2em

d

�d
exp

�
�1

4

2�m

�
� �;

from which the result follows. The details, which are omitted here, may be found in [5, 19]. ut

6 PAC Learning and the VC-Dimension

In this section we show that basic PAC learning is characterised by the VC-dimension. More precisely,
suppose that L is a (C;H)-learning algorithm and that C � H. We shall see that if L is consistent and H
has �nite VC-dimension then L is PAC. On the other hand, we shall also see that if L is PAC then C must
have �nite VC-dimension. We give bounds on the sample complexity of PAC learning algorithms in terms
of these VC-dimensions. As a result of these, if one knows the VC-dimension of a neural network, one can
give fairly precise bounds on the sample complexity of PAC learning on the network. For the moment, we
proceed with the general theory. In the next section we deal speci�cally with neural networks.

7For A 2 � and y 2 f0;1g, one de�nes P (A�f0; 1g) = �
�
A \ t�1 (fyg)

�
. This de�nes a probabilitymeasure P on ��2f0;1g

having the required properties.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 11

Theorem 5.2 is a `uniform convergence' result. We mentioned that Theorem 5.1 is a special case of a
result of Vapnik. The most general form of that result is a statement about the rate of convergence of relative
frequencies of events to their probabilities. In the form presented here, the events are the error sets Eh, the
relative frequencies are the observed errors, and the true probabilities are the error of the hypotheses with
respect to P . We shall �nd the result in the form stated in Theorem 5.2 useful later. For the moment, it
su�ces to note the following corollary. Recall that, for a PAC learning algorithm L, the sample complexity
function mL is such that mL(�; �) is the least integer which may be taken as m�(�; �) in the de�nition of
PAC learning.

Theorem 6.1 Suppose that the concept space C is contained in the hypothesis space8 H. Suppose that H
has �nite VC-dimension. Let L be any consistent (C;H)-learning algorithm. Then L is PAC, and its sample
complexity mL satis�es the inequality

mL(�; �) � 8

�

�
ln

�
4

�

�
+VCdim(H) ln

�
48

�

��
:

Proof This follows immediately from the above results. We take
 = 1 in Theorem 5.2. For any �xed t 2 C
and any probability measure � on X, we take P to be the distribution on S corresponding to t and P , as
described above. The only other observation needed is that, in this case, P (Eh) is precisely er�(h; t). ut

The constants in the sample complexity bound of the above theorem can be improved; see [12, 105].
We now present a lower bound result, part of which is due to Ehrenfeucht et al. [43] and part of which is

due to Blumer et al. [37]. This provides a lower bound on the sample complexity of any PAC (C;H)-learning
algorithm when C has �nite VC-dimension and is `non-trivial'. (A result of this strength is not needed
simply to show that �nite VC-dimension of the concept space is necessary for PAC learning: a simpler result
proving this may be found in [37]. But we wish also to demonstrate that there are lower bounds and upper
bounds on the sample complexity of consistent PAC algorithms which do not di�er too greatly.)

Theorem 6.2 Let C be a concept space of VC-dimension at least 1 and consisting of at least three distinct
concepts. Suppose that H is some hypothesis space, and that L is any PAC (C;H)-learning algorithm. Then
the sample complexity of L satis�es

mL(�; �) > max

�
VCdim(C) � 1

32�
;
1

�
ln

�
1

�

��
;

for all � � 1=8 and � � 1=100.

Proof This proof is from [10]. In order to prove the �rst part of the result, we shall prove that there is
some probability distribution � and some t 2 C such that for any � � 1=8 and for any positive integer
m � (d� 1)=32�,

�m fs 2 S(m; t) : er� (L (s; t)) � �g � 1

100
:

Since C has VC-dimension d, there is a sample z = (z0; z1; : : : ; zd�1) of length d shattered by C. Let
Ez = fz0; z1; z2; : : : ; zrg ; where r = d� 1. De�ne a probability distribution � on X by

� (z0) = 1� 8�; � (zi) =
8�

r
(1 � i � r):

Then a randomly chosen sample x is, with probability one, a sample of examples from E. We therefore need
consider only samples drawn from E, and we can regard the concept space C to be simply the (�nite) space
of all f0; 1g-valued functions de�ned on domain E: we make this assumption throughout the rest of this
proof.

8What is really required is that for every t 2 C, for every positive integer m, if x 2 Xm, then there is some h 2 H which
agrees with t on x.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 12

Suppose that L is a PAC (C;H)-learning algorithm. For x 2 Xm and t 2 C, if s 2 S(m; t) is the
corresponding training sample, it shall be convenient to denote L(s) by L(x; t). Let C0 be the set of
functions c in C for which c(z0) = 0 and let F be the set fz1; z2; : : : ; zrg. Fix a particular sample y 2 Em,
and let l be the number of distinct elements of F appearing as examples in y. Let c 2 C0 and let x be any
one of the (r � l) examples in F not appearing in y. Now, C0 shatters F , since C shatters E = F [fz0g.
Hence precisely half of the functions c0 in C0 satisfy c0(x) = 1 (and half of them satisfy c0(x) = 0).

For x 2 F , let us de�ne �x(y; c) to be 1 if L(y; c) and c disagree on x and 0 otherwise. Then D(y; c) =P
x2F �x(y; c) is the number of x in F for which L(y; c) and c disagree. By the above remarks,

X
c2C0

D(y; c) =
X
c2C0

X
x2F

�x(y; c) =
X
x2F

X
c2C0

�x(y; c) �
X

x2FnEy

1

2
jC0j = 1

2
(r � l)jC0j:

If l < r=2 then (r � l) > r=2. Hence, noting that y is arbitrary in the above analysis, if S is the set of
samples which contain fewer than r=2 distinct elements of F , then we have

D =
X
x2S

X
c2C0

D(x; c) >
r

4
jC0jjSj:

We can interchange the order of summation to obtain

D =
X
c2C0

X
x2S

D(x; c) >
r

4
jSjjC0j;

from which it follows that for some t 2 C0,
P

x2S D(x; t) >
r
4 jSj.

For any x 2 S, D(x; t) � r, and so if N is the number of samples x in S such that D(x; t) > r=8, then

r

4
jSj <

X
x2S

D(x; t) � Nr + (jSj �N)
r

8
;

yielding N � jSj=7. Now, if D(x; t) � r=8 then L (x; t) has error at least (8�=r)(r=8) = �. Hence (observing
that each element of S has equal probability according to �m),

�m fs 2 S(m; t) : er� (L(s)) � �g � N

jSj�
m(S) � 1

7
�m(S):

The probability that a point chosen according to the distribution � lies in F = fz1; z2; : : : ; zrg is 8�. If
m � r=32�, the probability that a sample of length m has at least d=2 entries from F is therefore, by a
standard Cherno� bound (see [85], for example), at most 93=100. Therefore if m � r=(32�) = (d� 1)=(32�),
we have

�m fs 2 S(m; t) : er� (L(s)) � �g � 1

7

7

100
=

1

100
;

as required.
Now we prove the second bound. Since C has at least three distinct functions, it contains c1 and c2

such that for some a; b 2 X, c1(a) = c2(a) and c1(b) = 1; c2(b) = 0. Without loss of generality, we assume
c1(a) = c2(a) = 1. Let 0 < �; � < 1 and let � be the probability distribution for which �(a) = 1 � � and
�(b) = � (and � is zero elsewhere on X). The probability that a sample of length m has all its entries equal
to a is (1� �)m. Thus, if

m � (1� �)

�
ln

�
1

�

�
;

then, with probability greater than �, a sample x of length m has all its entries equal to a. Let a1 denote
the training sample a1 = ((a; 1); : : : ; (a; 1)) of length m. Then a1 is a training sample for both c1 and c2.
Suppose that L is a PAC (C;H)-learning algorithm. If b is a positive example of L(a1) then L(a1) has

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 13

error at least � (the probability of b) with respect to c1, while if b is a negative example of L(a1) then this
hypothesis has error at least � with respect to c2. It follows that there is t 2 C, either c1 or c2 as above,
such that

m � (1� �)

�
ln

�
1

�

�
=) �m fs 2 S(m; t) : er� (L(s)) > �g > �:

The result follows. ut

An immediate corollary of this result is that if a concept space C has in�nite VC-dimension then there
is no PAC learning algorithm for (C;H) for any hypothesis space H.

7 VC-Dimension of Binary-Output Networks

7.1 Introduction

Recall that the VC-dimension, VCdim(N ; X) of a neural network N with a single binary output is the
VC-dimension of the set of functions it can compute (over the set X of examples). The following two results
follow directly from the theory presented earlier.

Theorem 7.1 Suppose that the binary-output neural network N can take on any state in a set
 of possible
states. Suppose that the network receives inputs from an example set X and that VCdim(N ; X) is �nite. Let
t : X ! f0; 1g and suppose that � is any probability distribution on X. For 0 < �; � < 1, let

m�(�; �) =
8

�

�
ln

�
4

�

�
+ VCdim(N ; X) ln

�
192

�

��
:

Suppose a training sample for t of length m � m�(�; �) is drawn randomly according to �m (in other words,
each example in the training sample is randomly drawn according to � and is then presented, together with
its correct classi�cation, to the network). Suppose that the state of the network is adjusted on receiving the
training sample. Then the following holds with probability 9 at least 1� � : if the state ! 2
 of the network
after training on the sample is such that the function N! then computed has observed error at most �=2 on the
training sample, then the network will classify a further randomly chosen example correctly with probability
at least 1� �.

In the statement of the following theorem, a learning algorithm forN simplymeans an (HN ;HN)-learning
algorithm, where HN is the set of functions computable by N on X.

Theorem 7.2 Suppose that N is a binary-output neural network. Suppose that the network receives inputs
from an example set X and that VCdim(N ; X) is �nite. Suppose that L is a consistent learning algorithm
for N . Then L is PAC and its sample complexity satis�es

mL(�; �) � 8

�

�
ln

�
4

�

�
+VCdim(N ; X) ln

�
48

�

��
:

Furthermore, the lower bound result, Theorem 6.2, shows that (for �xed � and �), one cannot guarantee
the conclusions of either of the above two theorems unless a sample of length at least proportional to the
VC-dimension of the network is used. In this sense, the VC-dimension fairly precisely quanti�es the sample
complexity of PAC learning. It is worth remarking that if an explicit bound is known on the growth function,
then signi�cantly better sample complexity upper bounds than those presented in the above theorem can
often be derived. However, often one only has some bound on the VC-dimension. (Of course, using Sauer's
Lemma, this gives a bound on the growth function; but it is precisely this that is used in deriving the above
bound.)

9The probability referred to here is the �m probability that a training sample of lengthm has the property stated.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 14

The size of a neural network of a particular type may be de�ned to be the number W of variable
parameters (the number of weights and thresholds). Suppose we want to design an e�cient PAC learning
algorithm for a class of neural networks. We shall discuss computational complexity later, but for the moment
we simply observe that if the PAC algorithm is to run in time polynomial in the size of the network, then,
certainly, it must have polynomial sample complexity. The theory already presented shows that this is true
if and only if the VC-dimension of a network in the class is polynomial in the number of weights. We now
present some results on the VC-dimensions of particular types of neural network.

7.2 Linearly weighted neural networks

We start with a fairly simple, but quite general, class of neural networks. These are the linearly weighted
neural networks. This type of network was �rst introduced in the 1960s and it includes simple `radial basis
function networks' and `polynomial discriminators'. A linearly-weighted neural network, with n real inputs
and a single binary output, is de�ned by a �xed set �1; �2; : : : ; �p of basis functions, each of which maps
Rn to R. The state of the network is determined by a variable weight vector w = (w1; w2; : : : ; wp). The
output corresponding to example x 2 Rn and state w is 1 or 0 according as the weighted sum

Pp
i=1wi�i(x)

is positive or not.
An example of a linearly weighted neural network is the polynomial discriminator, obtained when all

the functions �i are monomials, by which is meant products of the components of x, such as x21x3x
3
n. The

degree of a polynomial discriminator is the maximum total degree of any �i, in the usual sense. We have the
following result [6, 16, 15], which is proved using Dudley's result, Theorem 4.2.

Theorem 7.3 Suppose that N is a polynomial discriminator of degree at most k, on n inputs. Then

VCdim(N ;Rn) �
�
n+ k

k

�
; VCdim(N ; f0; 1gn) �

kX
i=0

�
n

i

�
;

and these bounds are tight in the sense that there are such N with VC-dimensions meeting these bounds.

Proof For all n and k, let B(n; k) be the set of all functions f : Rn ! R of the form f(x) = xr11 x
r2
2 : : :xrnn ,

where r1+r2+ : : :+rn � k. It is fairly easy to show that B(n; k) is a linearly independent set of functions on
Rn. For k � n, let C(n; k) be the set of all functions g : f0; 1gn! R of the form g(x) = xb11 x

b2
2 : : : xbnn , where

bi = 0 or 1 and at most k of the bi are 1. Then it can be shown that C(n; k) is a linearly independent set
of functions on f0; 1gn. Let hB(n; k)i be the real vector space of functions spanned by the set B(n; k). This
has linear dimension jB(n; k)j, which is easily seen to be

�
n+k
k

�
. Clearly, if N is a polynomial discriminator

of degree at most k on n inputs then HN , the set of functions computed by N , is contained in pos hB(n; k)i.
It follows that

VCdim(N ;Rn) � VCdim((pos hB(n; k)i) =
�
n+ k

k

�
;

where the equality follows from Theorem 4.2. If we consider only binary inputs, it is clear that no basis
function which contains powers of any xi greater than 1 is necessary; this is simply because, if x = 0 or 1
and r is any positive integer, then xr = x. It follows that the space (HN)jf0;1gn of functions computable
by N on f0; 1gn is contained in pos hC(n; k)i, where hC(n; k)i is the real vector space generated by C(n; k).
Using Dudley's result, we obtain

VCdim(N ; f0; 1gn) � VCdim((pos hC(n; k)i) = jC(n; k)j=
kX
i=0

�
n

i

�
:

The bounds are met when N uses as basis functions all functions in B(n; k) (respectively, C(n; k)). ut

The radial basis function networks (with �xed centers) are another important class of linearly-weighted
networks. Here each �i is de�ned in terms of the distance of the example from a �xed center yi: �i(x) =

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 15

�(kx � yik); where � is a �xed function and kzk is the usual Euclidean norm of z. We have the following
result, which is obtained using interpolation results of Micchelli [87]. Details of the proof may be found
in [16, 15, 64], where further results along the same lines are presented.

Theorem 7.4 Let N be a linearly weighted neural network based on p basis functions �1; �2; : : : ; �p where
�i(x) = �(kx� yik) and �(r) takes any one of the forms r, exp(�cr2), (r2 + c2)�, (r2 + c2)��; (with � and
� positive constants, with � < 1). Then the VC-dimension of this �xed-center radial basis function network
on example set Rn is exactly p.

7.3 Linear threshold networks

We now present upper bounds on the VC-dimension of linear threshold neural networks. In these networks,
each neuron|or computation unit|is a linear threshold neuron. It forms the weighted sum of its inputs
and it outputs 1 if this sum exceeds its threshold and 0 otherwise.

The following result, a bound on the VC-dimension of such networks on binary inputs, is due to Natara-
jan [89].

Theorem 7.5 Let N be a linear threshold network with N neurons (including the input nodes), n input
nodes and a total of W variable weights and thresholds. Then

VCdim(N ; f0; 1gn) � WN logN:

Proof The proof uses a result due to Hong (see [90] for details), which states that a linear threshold network
with N neurons and f0; 1g-inputs need only use integer weights which can be encoded using N logN binary

bits. It follows that the number of distinct functions computable by the network is at most
�
2N logN

�W
.

Since, for any �nite space H, VCdim(H) � log jHj, we have VCdim(N ; f0; 1gn) � WN logN . ut

This result is limited in that it concerns only networks with binary-valued inputs. The following result of
Baum and Haussler [27] applies to feedforward linear threshold networks. These are linear threshold networks
with no feedback; in other words, networks in which the underlying directed graph is acyclic. This result
applies for real inputs, as well as for binary inputs. Moreover, in the case of feedforward networks with
binary inputs, it is an improvement of Natarajan's result. (However, it should be noted that Natarajan's
result applies to certain types of threshold network which are not feedforward networks, namely those which
compute a function of their inputs in a �nite time, with no in�nite `cycling'.) The result presented here is
a slightly weaker version of Baum and Haussler's original result, with a simpler proof that makes use, as
in [82], of a form of Sauer's inequality.

Theorem 7.6 Suppose that N is a feedforward linear threshold network having a total of W variable weights
and thresholds, and n inputs. Then

VCdim(N ; f0; 1gn) � VCdim(N ;Rn) < 6W logW:

Proof Let X = Rn and suppose that x 2 Xm is a sample of m points from X. We bound the growth
function of H = HN by bounding �H (x) independently of x. Denote by N the number of computation
units (that is, the number of linear threshold neurons) in the network. Since the network is feedforward,
the computation units may be labeled with the integers 1; 2; : : : ; N so that if the output of computation
unit i is fed into unit j then i < j. Consider any particular computation unit, i. Denote the in-degree of i
by di. (This is the number of units, including the input units, whose output is fed into unit i.) Since the
computation unit is a linear threshold unit, the set of functions computable by that unit (in isolation) has
VC-dimension di+1, by Theorem 4.3. It follows, by a simple consequence of Sauer's Lemma, that if y is any
sample of length m of points in f0; 1gdi, then the number of ways in which unit i can classify y is at most

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 16

mdi+2 for m � di + 1. It follows that, (if m > maxi di + 1) the number of classi�cations �H (x) of x 2 Xm

by the network is bounded by the quantity

md1+2md2+2 : : :mdN+2;

which, since W = d1 + d2 + : : :+ dN + N , the total number of weights and thresholds, is at most mW+N .
Since W � N , this is at most m2W . Now, m2W < 2m if m = 6W logW , from which it follows that the
VC-dimension of the network is less than 6W logW . ut

This bound on the VC-dimension immediately yields an upper bound on the sample complexity of a
consistent learning algorithm in PAC learning with accuracy parameter � and con�dence parameter �. This
bound is of order ��1 (W logW log(1=�) + log(1=�)). (See Theorem 6.1.) However, as we noted earlier, it
may be possible to obtain a better bound using the explicit estimate we obtained for the growth func-
tion, namely �H (m) < m2W for m > W . If we do this, we obtain a sample complexity bound of order
��1W (log(W=�) + log(1=�)), as in [27].

The VC-dimension bound presented by Baum and Haussler, which is obtained in the same way, but by
using Sauer's Lemma a little more carefully, is 2W log(eN), where N is the number of computation units and
e is the base of the natural logarithm. This result has subsequently been improved by Sakurai who, in [98],
announces an upper bound ofW (log(N � 1) + o(logN)), as N !1. The constants in the bound are not of
any great theoretical signi�cance. The main thing to notice is that the upper bounds on the VC-dimension
of feedforward linear threshold networks are of order W logW where W is the total number of weights and
thresholds; that is, the total number of variable parameters determining the state of the network. We have
already seen that the simple perceptron on n inputs has VC-dimension n + 1, which is exactly the number
of variable parameters in this network. Furthermore, for the more general case of linearly weighted neural
networks, the theory presented above, together with Dudley's result, shows that the VC-dimension is at
most W , no matter what the basis functions are (and that it is exactly W if the basis functions are linearly
independent). It is natural to ask whether the bound of Theorem 7.6 is of the best possible order or whether
one should be able to prove that in this case the VC-dimension is of order W . This leads us to a discussion
of results providing lower bounds on the VC-dimension of linear threshold networks. In their paper, Baum
and Haussler [27] proved that there are threshold networks with one hidden layer (that is, of depth two) and
VC-dimension
(W), where W is the number of variable weights. Bartlett [22] showed that this holds for
all such networks and he showed also, by means of results such as the following, that, for large classes of
depth-three networks, the VC-dimension is
(W).

Theorem 7.7 Suppose that N is a depth-three feedforward linear threshold network having one output unit,
n inputs, k1 units in the �rst hidden layer and k2 in the second. Suppose also that N is fully connected
between layers. If k1 > n > 1 and k2 � k1, then

VCdim(N ;Rn) � nk1 +
k1(k2 � 1)

2
+ 1:

The lower bounds discussed so far are linear in the number of weights. We still, therefore, have the
following question: can it be true that some feedforward linear threshold networks have VC-dimension
signi�cantly larger than W , the number of variable parameters? The answer is `yes', and this was �rst shown
by Maass [80]. The following result may be found in [81].

Theorem 7.8 Assume that fNng is any sequence of feedforward linear threshold networks of depth at least
three (that is, having at least two hidden layers), fully connected between successive layers, and such that:
Nn has n inputs; Nn has
(n) threshold units in the �rst hidden layer; Nn has at least 4 logn units in the
second hidden layer. Then

VCdim(Nn; f0; 1gn) = �(n2 logn):

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 17

Note that, with Nn as in this theorem, n2 logn = �(W logW) since the network is fully connected.
Theorem 7.8 refers to networks taking binary inputs. It is perhaps surprising that, even with this restriction,
a network may have a `superlinear' VC-dimension. The result shows that no upper bound better than order
W logW can be given: to within a constant, the bound of Theorem 7.6 is tight.

The networks of Theorem 7.8 have depth at least three. The following result of Sakurai [98] shows that
there are feedforward linear threshold networks of depth two (with just one hidden layer) having superlinear
VC-dimension on real inputs. These networks are smaller than those of Theorem 7.8, but the result concerns
real inputs, not binary inputs and hence is not immediately comparable with Theorem 7.8. We also state a
fairly tight upper bound Sakurai obtained on the VC-dimension.

Theorem 7.9 Let N be a fully-connected depth-two feedforward linear threshold network having n inputs
and h units in the hidden layer. Then

VCdim(N ;Rn) � 1

2
nh

�
logh+ o(logh) +O

�
(logh)2

n

��

and
VCdim(N ;Rn) � nh (logh+ o(logh)) ;

as h; n!1.

7.4 Other activation functions

We now move on to discuss more complex types of neural networks, in which the computation units can
perform operations more sophisticated than simple linear thresholding of the weighted sum of their inputs.
The bounds obtained so far on the VC-dimensions of particular neural network architectures have been
fairly precise. In this section, we shall be content with rather looser upper bounds on the VC-dimension. In
particular, we should like to obtain upper bounds polynomial in the number of weights.

We �rst need some notation. Let us take i! j to mean that the output of unit i feeds into unit j. The
linear threshold networks we have discussed compute the output oj of unit j as follows:

oj = H
0
@X
i!j

wijoi � �j

1
A ;

where wij is the weight on the connection from i to j, �j is the threshold on unit j, and H is the Heaviside
step function: H(x) = 1 if x > 0 and H(x) = 0 if x � 0.

The Heaviside function H is just one example of an activation function and in practice it is often replaced
by a sigmoid function, f . This is some `smooth' function from R to [0; 1], with f(x) ! 0 as x ! �1 and
f(x)! 1 as x!1. The best-known example is the standard sigmoid function, given by �(x) = 1=(1+e�x).
We now consider networks with one linear threshold output unit and sigmoid activation functions at all hidden
units. (The linear threshold output unit ensures that the network computes f0; 1g-valued functions, so that
it is legitimate to discuss the VC dimension.)

Sontag has shown (see [111, 83]) that there is a neural network N of in�nite VC-dimension, having two
real inputs, two hidden units with sigmoid activation function

f(y) =
1

�
tan�1 y + cos y=(7 + 7y2) + 1=2;

and a linear threshold output unit. In view of this, it is not possible to obtain a general VC-dimension
bound for sigmoid neural networks and one must consider particular sigmoids or particular types of sigmoid
separately.

First, we present the following, quite general, result of Goldberg and Jerrum [48].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 18

Theorem 7.10 Suppose that fNW;n : W;n 2Ng is a family of binary-output neural networks, where NW;n

has n inputs and W variable real parameters (weights and thresholds). Suppose there is an algorithm AW;n,
for each W and n, which takes as input w 2 RW and an example x 2 Rn and decides whether NW;n outputs
1 on input x when in state w. Suppose that this algorithm uses only conditional jumps (conditional on
the equality and inequality of real numbers) and the standard arithmetic operations|addition, subtraction,
multiplication and division|on real numbers. Assume that each such operation is performed in constant
time. If the running time of AW;n is bounded by t = t(W;n), then VCdim(NW;n;R

n) = O(Wt).

This result is useful for a number of di�erent types of network. It can be applied by identifying the
computation of the algorithm AW;n on input (w; x) with the action of the network NW;n on input x when it
is in state w. The `conditional jumps' of the algorithm could correspond to de�ning the activation function
in a piecewise manner, and to thresholding. The arithmetic operations of the algorithm correspond to
calculating the input to a computation unit and the value of the activation function on this input. In order
for the theorem to apply usefully in this way, the activation functions must be based on thresholding and on
the simple arithmetical operations of addition, multiplication, subtraction and division. If this is so, then the
theorem implies that the VC-dimension of the network NW;n is of order Wt where t is a bound on the time
taken by the network to calculate its output. As a very simple example from [48], suppose that each NW;n

is a feedforward linear threshold network. The number of operations required for this network to produce
an output, given an input in Rn, is O(W) and hence the theorem yields an upper bound of O(W 2) for the
VC-dimension of NW;n. Of course, we know that there is a better upper bound of O(W logW), but the
O(W 2) bound is very easily obtained from Theorem 7.10. The theorem is very useful in obtaining polynomial
upper bounds on the VC-dimension of neural networks. However, it does not apply to the standard sigmoid
function or any other activation function involving exponentiation: it only applies if the computations in the
network use conditioning and standard arithmetic operations only. Nevertheless, there are sigmoid functions
which do not involve exponentiation. For example, Goldberg and Jerrum applied their result to networks in
which each hidden unit has activation function

f(x) =

�
1� 1=(2x+ 2) if x > 0;
1=(2� 2x) if x � 0,

and in which the output unit is a threshold unit. Theorem 7.10 implies that the VC-dimension of such a
network is polynomial in the number of weights.

Another application of Theorem 7.10 is to networks in which each activation function fj is a piecewise
polynomial function. Maass [80] proved that the VC-dimension of such networks can be polynomially
bounded provided the networks have constant depth. Applying Theorem 7.10 gives the following result [48,
83], in which no bound on the depth is necessary.

Theorem 7.11 Let fNW g be a family of feedforward neural networks with binary outputs, having piecewise
polynomial functions of bounded degree and bounded number of pieces as activation functions on the hidden
units. Suppose the network NW has W variable parameters. Then VCdim(NW ;Rn) = O(W 2).

Elaborations on this result have been obtained by Maass [79]. Whether this bound can be improved to
O(W logW) is an open problem.

Returning to sigmoid functions, the following result was obtained by Macintyre and Sontag [84], using
deep results from logic.

Theorem 7.12 Let N be a feedforward network with binary output and the standard sigmoid function as
activation function on the hidden units. Then N has �nite VC-dimension.

In view of Sontag's example of a sigmoid network with in�nite VC-dimension, this is an important result.
Macintyre and Sontag did not give an explicit upper bound on the VC-dimension of such networks, but the
bound one obtains by close examination of their proof is doubly-exponential in W . (This observation was
communicated to me by Wolfgang Maass.)

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 19

In practice, computers work to �nite accuracy and therefore in any computer simulation of a neural
network, the inputs (and weights) are discrete and the following theorem of Bartlett and Williamson [24] is
applicable.

Theorem 7.13 Let D be a positive integer and XD = f�D;�D+1; : : : ; D�1; Dgn: Suppose N is a depth-
two binary-output neural network having standard sigmoid activation functions on the hidden units. Then
VCdim(N ; XD) � 8W log(11WD); where W is the number of weights and thresholds.

Karpinski and Macintyre [67], using some fairly sophisticated mathematical machinery, obtained a poly-
nomial upper bound on the VC-dimension of standard sigmoid networks. Speci�cally, they proved the
following.

Theorem 7.14 Let N be a feedforward network with binary output and the standard sigmoid function as
activation function on the hidden units. Suppose that the total number of adjustable weights and thresholds
is W and that there are k computational units. Then N has �nite VC-dimension at most

Wk(Wk � 1) + lower order terms;

which is O(W 4).

Koiran and Sontag [75] showed that the VC-dimension of (unbounded depth) standard sigmoid nets is

(W 2), so there is a strict separation between the VC-dimension of threshold nets and sigmoid nets.

We have presented a number of results on the VC-dimensions of neural networks. Similar analyses [80, 67]
can be carried out if the activation functions do not take as input the linear weighted sum of the outputs,
oi, feeding in, but rather take as their arguments some polynomial function of these. Such units are often
known as sigma-pi units. The polynomial discriminators discussed earlier may be thought of as single units
of this type.

7.5 The e�ect of weight restrictions

In this subsection we brie
y discuss how restriction of the weights in some way can change the VC-dimension
of a network. First, we have a result like one due to Baum and Haussler [27], which concerns the VC-dimension
of a feedforward linear threshold network in which only a certain number of weights can be non-zero. These
relevant connections are not speci�ed in advance of training. All that is asserted is that, of a total of W
weights and thresholds, at most W 0 can be non-zero after network training. The hypothesis space in this
case is the set of all functions computable by the network in a state with at most W 0 non-zero weights and
thresholds.

Theorem 7.15 Suppose that N is a feedforward linear threshold network having a total of W variable
weights and thresholds and n inputs. Let H0 be the set of functions computable by N when at most W 0 of
the weights and thresholds are non-zero. Then

VCdim(H0) < 6W 0 logW:

ProofWe proceed in a manner similar to the proof of Theorem 7.6. First, note that there are
�
W
W 0

�
possible

selections for the non-zero weights and thresholds. Given a particular such choice, the network computes a
set of functions having growth function bounded by m2W 0

. This is proved as in Theorem 7.6. It follows that

�H0 (m) �
�
W

W 0

�
m2W 0

< WW 0

m2W 0

:

This quantity is less than 2m (for W greater than some �xed constant) if m � 6W 0 logW and this is,
therefore, a bound on the VC-dimension. ut

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 20

The theorem demonstrates that the power of a neural network decreases signi�cantly when it is forced to
set some number of weights to zero. Using the bound on the growth function obtained in the proof, as in [27],
one obtains a bound on the sample complexity of any consistent learning algorithm for N which produces
states with at most W 0 non-zero weights and thresholds. (Additionally, one obtains a sample length bound
for the property described in Theorem 7.1.) As earlier, the bounds obtained using the explicit bound on the
growth function are better than those obtained simply by using the VC-dimension bound.

Suppose that there are known symmetries inherent in the class of concepts being learned. These symme-
tries may be re
ected in learning algorithms for the neural network, by constraining groups of weights to have
the same value. Such techniques have been discussed in [102], for example. Shawe-Taylor [103] has bounded
the sample complexity of such learning algorithms by bounding the growth function in a manner similar to
that in [27]. His results, following [19, 104], also apply more generally to networks having more than one
output node, but we shall not discuss this aspect here. Let N be a feedforward linear threshold network.
Suppose that there are W � classes of weights and thresholds, so that all weights (and thresholds) within one
such equivalence class are forced to have the same value. Shawe-Taylor shows that the VC-dimension of the
set of functions computable by N , subject to the weight restrictions, is of order W � logN where N is the
number of computation units. Recalling that the upper bound of Baum and Haussler on the VC-dimension
of the unconstrained network is of order W logN , we see that W has been replaced by the e�ective number
of weights and thresholds, W �.

In both the above cases, restricting the weights reduces the VC dimension. A common technique in
neural network learning is to keep the magnitude of the weights as small as possible; see [61], for example.
It is natural to ask whether such a restriction signi�cantly decreases the VC-dimension. Lee, Bartlett and
Williamson [76] have investigated this problem for depth two feedforward networks with certain activation
functions on the hidden units and a linear threshold unit as the output unit. In particular, they have the
following result.

Theorem 7.16 Let N be a feedforward network with n inputs, one linear threshold output unit, and one
hidden layer of k units having activation function tanhx. Let W = k(n + 2) + 1 be the number of weights
and thresholds. Let U be any open subset of RW containing the origin and, for M > 0, let HM;U be the set
of functions on (�M;M)n computable by N using states in U . Then, for any M > 0,

VCdim(HM;U) � (k � 1)(n+ 1) + 1:

This shows that if we place a bound on the absolute values of the weights, and if we similarly restrict the
examples, then the VC-dimension is still at least
(W).

8 Computational Complexity of Learning

Thus far, a learning algorithm has been de�ned as a function mapping training samples into hypotheses. We
have noted that if learning is to take place in time polynomial in the size of the network, then a polynomial
bound on the VC-dimension is necessary. However, this condition is not su�cient. There is sometimes an
inherent computational intractability in producing a probably approximately correct hypothesis, as we see
in this section. The results of the previous section show that polynomial VC-dimension bounds hold for
many types of network. For these networks, then, the sample complexity for PAC learning is polynomial
and hence if there is not an e�cient PAC learning algorithm, it is for reasons of computational complexity.

In this section, we shall be more speci�c about the algorithmics. We shall concentrate on the case C = H,
where the hypothesis space and the concept space coincide. In the context of neural networks, this means
that all target functions are computable by the network we are training. If PAC learning by a learning
algorithm is to be of practical value, it must, �rst, be possible to implement the learning algorithm on a
computer; that is, it must be computable and therefore, in a real sense, an algorithm, not just a function.
Further, it should be possible to implement the algorithm `quickly'.

We shall consider neural networks on binary inputs. If N is a network with n inputs, then the example
space is X = f0; 1gn. To keep the argument general at this stage, we shall phrase our discussion in terms of

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 21

general hypothesis spaces de�ned on f0; 1gn for some n, rather than deal speci�cally with neural networks.
It is convenient to make the following de�nitions. We say that a union of hypothesis spaces H =

S
Hn

is graded by example size n, when Hn denotes the space of hypotheses de�ned on examples of size n. For
example, Hn may be the space Pn of functions computable by the perceptron, de�ned on real vectors of
length n. By a learning algorithm for H =

S
Hn we mean a function L from the set of training samples for

hypotheses in H to the space H, such that when s is a training sample for h 2 Hn it follows that L(s) 2 Hn.
Consider a learning algorithm L for a hypothesis space H =

S
Hn, graded by example size. An input to

L is a training sample, which consists of m examples of size n together with the m single-bit labels. The
total size of the input is therefore m(n+1), and it would be possible to use this single number as the measure
of input size. However, there is some advantage in keeping track of m and n separately, and so we shall use
the notation RL(m;n) to denote the worst-case running time of L on a training sample of m examples of
size n.

A learning algorithm L for
S
Hn is said to be a PAC learning algorithm if L acts as a PAC learning

algorithm for each Hn. The sample complexity provides the link between the running time RL(m;n) of a
learning algorithm (that is, the number of operations required to produce its output on a sample of length
m when the examples have size n) and its running time as a PAC learning algorithm (that is, the number of
operations required to produce an output which is probably approximately correct with given parameters).
For a general hypothesis space G and for �; � between 0 and 1, let

m0(G; �; �) =
8

�

�
ln

�
4

�

�
+VCdim(G) ln

�
48

�

��
:

This quantity appeared in Theorem 6.1 as an upper bound on the sample complexity of a consistent (G;G)-
learning algorithm. Since a sample of length m0(Hn; �; �) is su�cient for PAC learning, the number of
operations required of L is at most RL(m0(Hn; �; �); n):

Until now, we have regarded the accuracy parameter � as �xed but arbitrary. It is clear that decreasing
this parameter makes the learning task more di�cult, and therefore the running time of an e�cient PAC
learning algorithm should be constrained in some appropriate way as ��1 increases. We say that a learning
algorithm L for H =

S
Hn is e�cient with respect to accuracy and example size if its running time is

polynomial in m and n and the sample complexity mL(Hn; �; �) depends polynomially on n and ��1.
We are now ready to consider the implications for learning of the theory of NP-hard problems. Let

H =
S
Hn be a hypothesis space of functions, graded by the example size n. The consistency problem for

H may be stated as follows.

H�CONSISTENCY
Instance A training sample s of labeled examples of size n.
Question Is there a hypothesis in Hn consistent with s?

In practice, we wish to produce a consistent hypothesis, rather than simply know whether or not one
exists. In other words, we have to solve a search problem, rather than a decision problem. But these problems
are directly related: if the search problem can be solved in polynomial time, so too can the decision problem.

If there is a consistent learning algorithm L for a graded hypothesis space H =
S
Hn such that

VCdim(Hn) is polynomial in n and the algorithm runs in time polynomial in the sample length m, and
in n, then the results presented earlier show that L PAC learns Hn with running time polynomial in n and
��1, and so is e�cient with respect to accuracy and example size. Roughly speaking we may say that an
e�cient `consistent-hypothesis-�nder' is an e�cient `PAC learner'. It is natural to ask to what extent the
converse is true. It turns out that e�cient PAC learning does imply e�cient consistent-hypothesis-�nding,
provided we are prepared to accept a randomised algorithm. For our purposes, a randomised algorithm A
has access to a random number generator and is allowed to use these random numbers as part of its input.
(See [39].) The computation carried out by the algorithm is determined by its input, so that it depends
on the particular sequence produced by the random number generator. It follows that we can speak of the
probability that A has a given outcome.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 22

We say that a randomised algorithmA `solves' a search problem � if it behaves in the following way. The
algorithm always halts and produces an output. If A has failed to �nd a solution to � then the output is
simply no. If there is no solution to the search problem �, the algorithm always outputs no, whereas if there
is a solution then, with probability at least 1=2, A outputs a solution. The probability that the algorithm
fails in k attempts is at most (1=2)k, which approaches zero very rapidly with increasing k.

The following result is from [93]. (See also [89, 56].)

Theorem 8.1 Let H =
S
Hn be a hypothesis space and suppose that there is a PAC learning algorithm for

H which is e�cient with respect to accuracy and example size. Then there is a randomised algorithm which
solves the problem of �nding a hypothesis in Hn consistent with a given training sample of a hypothesis in
Hn, and which has running time polynomial in n and m (the length of the training sample).

Proof Suppose that s� is a training sample for a target hypothesis t 2 Hn, and that s� contains m� distinct
labeled examples. We shall show that it is possible to �nd a hypothesis consistent with s� by running
the given PAC learning algorithm L on a related training sample. De�ne a probability distribution � on
the example space X by �(x) = 1=m� if x occurs in s� and �(x) = 0 otherwise. We can use a random
number generator with output values i in the range 1 to m� to select an example from X according to
this distribution. Thus the selection of a training sample of length m for t, according to the probability
distribution �, can be simulated by generating a sequence of m random numbers in the required range.

Let L be a PAC learning algorithm as postulated in the statement of the Theorem. Then, when �, �,
are given, we can �nd an integer mL(n; �; �) for which the probability (with respect to training samples
s 2 S(mL; t)) that the error of L(s) is less than � is greater than 1 � �. Suppose we specify the con�dence
and accuracy parameters to be � = 1=2 and � = 1=m�: Then if we run the given algorithm L on a training
sample s of length mL(n; 1=2; 1=m�), drawn randomly according to the distribution �, the PAC property of
L ensures that the probability that the error of the output is less than 1=m� is greater than 1� 1=2 = 1=2.
Since there are no examples with probability strictly between 0 and 1=m�, this implies that the probability
that the output agrees exactly with the training sample is greater than 1=2.

The procedure described in the previous paragraph is the basis for a randomised algorithm L� for �nding
a hypothesis which agrees with the given training sample s�. In summary, L� consists of the following steps.

� Evaluate mL = mL(n; 1=2; 1=m
�).

� Construct, as described, a sample s of length mL, according to �.

� Run the given PAC learning algorithm L on s.

� Check L(s) explicitly to determine whether or not it agrees with s�.

� If L(s) does not agree with s�, output no. If it does, output L(s).

As we noted, the PAC property of L ensures that L� succeeds with probability greater than 1=2. Finally,
it is clear that, since the running time of L is polynomial in m and its sample complexity mL(n; 1=2; 1=m�)
is polynomial in n and m� = 1=�, the running time of L� is polynomial in n and m�. ut

This result enables us to move from hardness results for the consistency problem to hardness results
for PAC learning. Recall that RP denotes the class of problems which can be solved by polynomial-time
randomised algorithms.

Theorem 8.2 Suppose H =
S
Hn and the H-CONSISTENCY problem is NP-hard. Then, unless RP equals

NP, there is no PAC learning algorithm for H which runs in time polynomial in ��1 and n.

The fact that computational complexity-theoretic hardness results hold for neural networks was �rst
shown by Judd [66]. In this section we shall prove a simple hardness result from [10, 11] along the lines of
one due to Blum and Rivest [36].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 23

The network has n inputs and k + 1 computation units (k � 1). The �rst k computation units are `in
parallel' and each of them is connected to all the inputs. The last computation unit is the output unit; it
is connected by arcs with �xed weight 1 to the other computation units, and it has �xed threshold k. The
e�ect of this arrangement is that the output unit acts as a multiple AND gate for the outputs of the other
computation units. We shall refer to this network as N k

n .
A state ! of N k

n is described by the thresholds �l (1 � l � k) of the �rst k computation units and the
weights wil on the arcs (i; l) linking the inputs to the computation units. We shall use the notation w(l) for

the n-vector of weights on the arcs terminating at l, so that w
(l)
i = wil:

We shall prove that the consistency problem for N k =
SN k

n is NP-hard (provided k � 3), by a reduction
from GRAPH k-COLORING. Let G be a graph with vertex-set V = f1; 2; : : :; ng and edge-set E. We
construct a training sample s(G) as follows. For each vertex i 2 V we take as a negative example the vector
vi which has 1 in the ith coordinate position, and 0's elsewhere. For each edge ij 2 E we take as a positive
example the vector vi + vj . We also take the zero vector o = 00 : : :0 to be a positive example.

Theorem 8.3 Let G be a graph. There is a function in N k
n which is consistent with s(G) if and only if G

is k-colorable.

Proof Suppose h is computable by N k
n and is consistent with the training sample. By the construction of

the network, h is a conjunction h = h1 ^h2^ : : :^hk of linear threshold functions. (That is, h(x) = 1 if and
only if hi(x) = 1 for all i between 1 and k.) Speci�cally, there are weight-vectors w(1); w(2); : : : ; w(k) and
thresholds �1; �2; : : : ; �k such that

hl(y) = 1 () hw(l); yi � �l (1 � l � k):

Note that, since o is a positive example, we have 0 = hw(l); oi � �l for each l between 1 and k. For each
vertex i, h(vi) = 0, and so there is at least one function hf (1 � f � k) for which hf (vi) = 0. Thus we may
de�ne � : V ! f1; 2; : : : ; kg by

�(i) = minff : hf (vi) = 0g:
It remains to prove that � is a coloring of G. Suppose that �(i) = �(j) = f , so that hf (vi) = hf (vj) = 0. In
other words,

hw(f); vii < �f ; hw(f); vji < �f :

Then, recalling that �f � 0, we have hw(f); vi + vji < �f + �f � �f : It follows that hf (vi + vj) = 0 and
h(vi + vj) = 0. Now if ij were an edge of G, then we should have h(vi + vj) = 1, because we assumed that
h is consistent with the training sample. Thus ij is not an edge of G, and � is a coloring, as claimed.

Conversely, suppose we are given a coloring � : V ! f1; 2; : : : ; kg. For 1 � l � k de�ne the weight-vector

w(l) as follows: w
(l)
i = �1 if �(i) = l and w

(l)
i = 1 otherwise. De�ne the threshold �l to be �1=2. Let

h1; h2; : : : ; hk be the corresponding linear threshold functions, and let h be their conjunction. We claim that
h is consistent with s(G). Since 0 � �l = �1=2 it follows that hl(o) = 1 for each l, and so h(o) = 1. In order

to evaluate h(vi), note that if �(i) = f then hw(f); vii = w
(f)
i = �1 < �1=2; so hf (vi) = 0 and h(vi) = 0,

as required. Finally, for any color l and edge ij we know that at least one of �(i) and �(j) is not l. Hence

hw(l); vi + vji = w
(l)
i +w

(l)
j ; where either both of the terms on the right-hand side are 1, or one is 1 and the

other is �1. In any case the sum exceeds the threshold �1=2, and hl(vi + vj) = 1. Thus h(vi + vj) = 1. ut

The proof that the decision problem for consistency in N k is NP-hard for k � 3 follows directly from this
result. We have shown that if there is a polynomial time algorithm for N k�CONSISTENCY, then there is
one for GRAPH k-COLORING. But GRAPH k-COLORING is NP-complete [47], and hence it follows that
the N k�CONSISTENCY problem is NP-hard if k � 3. (In fact, the same is true if k = 2. This follows from
work of Blum and Rivest [36].)

Thus, �xing k, we have a very simple family of feedforward linear threshold networks, each consisting
of k + 1 computation units (one of which is `hard-wired' and acts simply as an AND gate) for which the

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 24

problem of `loading' a training sample is computationally intractable. Theorem 8.2 enables us to move from
this hardness result for the consistency problem to a hardness result for PAC learning. The theorem tells us
that, since N k�CONSISTENCY is NP-hard, unless RP equals NP, there can be no computationally e�cient
PAC learning algorithm for the graded space N k =

SN k
n when k � 2.

We have only considered here the complexity of learning when the concept space and the hypothesis
space are the same (that is, when C = H). Although the above results shows that it is intractable to
learn N k if the hypothesis produced must also be in N k, it is still unknown whether or not the class can
be learned using a larger hypothesis space (for example, a family of larger neural networks, such that the
nth network can compute all the functions that N k can). In this sense, the hardness result just given is
`representation-dependent' [93]. Hardness results of a `representation-independent' nature, in which the only
speci�cation on the hypothesis space is the reasonable one that it be `polynomially evaluatable', have been
obtained using assumptions about the intractability of certain problems arising in cryptography; see, for
example [72].

PART 2: VARIANTS AND EXTENSIONS

There are a number of limitations to the applicability of the basic PAC model and many variants have
been studied in recent years in an attempt to generalize and extend the theory. In this part of the article,
we discuss some of these. A fuller treatment of these and other variants will be found in the forthcoming
book [8].

9 Stochastic Concepts

The results presented so far have nothing to say if there is some form of `noise' present during the learning
procedure. Further, the basic model applies only to the learning of functions: each example is either a positive
example or a negative example of the given target concept, not both. But one can envisage situations in
which the `teacher' has di�culty classifying some examples, so that the labeled examples presented to the
`learner' are not labeled by a function, the same example being on occasion classi�ed by the `teacher' as a
positive example and on other occasions (possibly within the same training sample) as a negative example.
For example, in the context of machine vision, if the concept is a geometrical �gure then points close to the
boundary of the �gure may be di�cult for the teacher to classify, sometimes being classi�ed as positive and
sometimes as negative. Alternatively, the problem may not lie with the teacher, but with the `concept' itself.
This may be ill-formed and may not be a function at all.

To deal with these situations, we have the notion of a stochastic concept [70, 119, 37]. A stochastic
concept on X is simply a probability distribution P on X � f0; 1g. Informally, for �nite or countable X,
one interprets P ((x; b)) to be the probability that x will be given classi�cation b. This can be specialised to
give the standard PAC model, as we saw in section 5. Suppose we have a probability distribution � on X
and a target concept t. Then recall that there is a probability distribution P on X � f0; 1g such that for all
measurable subsets A of X,

P (f(x; t(x)) : x 2 Ag) = �(A); P (f(x; b) : x 2 A; b 6= t(x)g) = 0:

In this case, we say that the stochastic concept P corresponds to t and �. What can be said about `learning'
a stochastic concept by means of a hypothesis space H of f0; 1g-valued functions? The error of h 2 H with
respect to the target stochastic concept is the probability

erP (h) = P (f(x; b) 2 X � f0; 1g : h(x) 6= bg)

of misclassi�cation by h of a further randomly drawn training example. This is, as earlier, precisely P (Eh),
where Eh = f(x; b) : h(x) 6= bg is the error set of h. If P is truly stochastic (and not merely the stochastic

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 25

representation of a function, as described above) it is unlikely that this error can be made arbitrarily small.
As earlier, the observed error of h on a training sample s = ((x1; b1); (x2; b2); : : : ; (xm; bm)) is de�ned to be

ers(h) =
1

m
j fi : h(xi) 6= big j:

Clearly this may be non-zero for all h 2 H (particularly if the same example occurs twice in the sample,
but with di�erent labels). To discuss learning in this context, one minor modi�cation of the de�nition of a
learning algorithm is required. In this context, a learning algorithm (using hypothesis space H) is a mapping
from the set

S
m�1(X�f0; 1g)m to H. (Note that, previously, with a concept space C, L needed only to map

from training samples for functions in C.) What we should like, informally speaking, is that there is some
sample length mL, independent of the stochastic concept P , such that if a hypothesis has `small' observed
error with respect to a random sample of length at least mL then, with high probability, it has `small' error
with respect to P .

The following result was presented in section 5 as part of Theorem 5.2. We present it here again for
convenience. This result is a statistical result, in the sense that it does not concern the performance of a
particular learning algorithm. However, it implies, roughly speaking, that if a leaning algorithm manages to
produce an output hypothesis with small error, then that hypothesis is likely to be correct on most other
inputs.

Theorem 9.1 Let H be a hypothesis space of f0; 1g-valued functions de�ned on an input space X and
suppose that H has �nite VC-dimension. Let P be any stochastic concept on X. Suppose that 0 < �; � < 1
and 0 <
 � 1. If

m � 8

2�

�
ln

�
4

�

�
+ VCdim(H) ln

�
48

2�

��
then, with Pm-probability at least 1� �, a random sample s from (X � f0; 1g)m satis�es

ers(h) � (1�
)� =) erP (h) � �:

The notion of a stochastic concept can be applied to a number of situations. As already indicated, it can
be useful when the target `concept' is not a function. It can also be useful when there is `classi�cation noise'
(see [4]), that is, where there is an underlying target function, but the randomly chosen examples have their
labels `
ipped' occasionally. This corrupts the training data and results in a stochastic concept. Additionally,
in the standard PAC model, we have assumed that the concept space is a subset of the hypothesis space.
Suppose this is not so and t 2 C nH. Then there can be no h 2 H such that the error of h with respect to t
is 0 for all probability distributions � on X. However, Theorem 9.1 is applicable. Suppose � is a distribution
on X and take P to be the stochastic concept corresponding to t and �. Since the sample length given in
Theorem 9.1 is independent of the stochastic concept P , we obtain a type of learnability result when H has
�nite VC-dimension: there is a sample length m0(�; �) such that if a randomly drawn training sample of t
of length m0 is presented, then with probability at least 1� �, if h 2 H is correct on a fraction of at least
1� �=2 of the sample, then h has error at most �. (Here, we have taken
 = 1=2 for simplicity.)

In general, suppose that P is a stochastic concept on X and that H is a hypothesis space on X. Let

optH (P) = inf
h2H

erP (h);

which is a measure of how well the stochastic concept can be approximated by functions in H. We make the
following de�nitions.

De�nition 9.2 (Probably approximately optimal algorithm) Suppose that H is a hypothesis space
on X. We say that a learning algorithm L is a probably approximately optimal algorithm for H if for any
0 < �; � < 1, there is mL(�; �) such that for m � mL(�; �), the following holds for any stochastic concept P
on X: if s 2 (X � f0; 1g)m is randomly drawn then with probability at least 1� �,

erP (L(s)) < optH (P) + �:

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 26

De�nition 9.3 (UCE property) A set H of functions from X to f0; 1g has the uniform convergence of
errors (UCE) property if the following holds. Given real numbers � and � (0 < �; � < 1), there is a positive
integer m0(�; �) such that, for any probability distribution P on S = X � f0; 1g, if m � m0(�; �),

Pm (fs 2 Sm : for allh 2 H; jerP (h) � ers(h)j < �g) > 1� �:

Thus, roughly speaking, H has the UCE property if one can guarantee with high con�dence that the
observed errors of functions in H on a sample of large enough length are close to their actual errors, for
all stochastic concepts. Results of Vapnik and Chervonenkis [116] on the uniform convergence of relative
frequencies to probabilities show that H has the UCE property if and only if H has �nite VC-dimension.
(The fact that the VC-dimension is su�cient follows from Theorem 5.1.)

It is easy to see that if H has the UCE property then there is a probably approximately optimal learning
algorithm for H|the algorithm which returns the hypothesis which minimises the observed error.

Theorem 9.4 Suppose that hypothesis space H has the UCE property. Let the learning algorithm Lmin be
de�ned as follows: On input s 2 (X � f0; 1g)m, Lmin returns a hypothesis Lmin(s) 2 H which minimises the
observed error ers(h). Then Lmin is a probably approximately optimal learning algorithm for H.

Proof Let P be any stochastic concept. Since optH(P) = infh2H erP (h), there is h� 2 H such that
erP (h�) < optH (P) + �=3. Let �; � be given. Since H has the UCE property, provided m � m0(�; �=3), for
s 2 (X�f0; 1g)m, with probability at least 1��, erP (h) < ers(h)+�=3 for all h 2 H. Suppose that hmin is a
hypothesis with minimal observed error on s. Then, with probability at least 1��, erP (hmin) < ers(hmin)+�=3
and erP (h�) < ers(h�) + �=3. Using the fact that ers(hmin) � ers(h�), we therefore have

erP (hmin) < ers(hmin) + �=3 � ers(h
�) + �=3 < erP (h

�) + 2�=3 < optH(P) + �;

with probability at least 1��. It follows that Lmin is probably approximately optimal, with sample complexity
at most m0(�; �=3). ut

Of course, �nding a hypothesis in H with minimal observed error may be a computationally intractable
problem. In order to overcome the computational complexity problem, it is sometimes convenient to seek
to produce a hypothesis from a larger class H0, which does not necessarily have near-optimal error among
hypotheses from H0, but performs well with respect to H. This model of learning, in which the aim is to
produce, from a class H0 with H0 � H, an output hypothesis only slightly worse than the best approximation
in H, was introduced by Kearns, Schapire and Sellie [71], who called it agnostic learning.

10 Distribution-Specific Learning

Perhaps the main attraction of the de�nition of PAC learning is the `distribution-free' criterion: the sample
complexity is independent of the probability distribution. The proofs of the standard computational hardness
results for PAC learning, and the lower bounds on sample complexity, involve the use of very particular
probability distributions, so the theory presented earlier is very dependent on this criterion. If we know
in advance what the distribution on the examples is, or if we know that it is one of a particular set of
distributions, then the full strength of the PAC de�nition is not needed. Let us suppose that the concept
space and hypothesis space are both equal to H and that P is a class of probability distributions on X.
We may say that a learning algorithm L for H learns with respect to P if there is a sample length function
mL(�; �) such that for any t 2 H and any � 2 P, if m � mL(�; �), then with �m-probability at least 1��, if a
training sample s is presented, er�(L(s)) < �. This is a weakening of the PAC criterion, in that mL need exist
and be uniform only over P. In general, �nite VC-dimension is not necessary for such `distribution-speci�c'
learning. (Note, however, that the theory of previous sections shows that it is necessary when P consists of
all distributions.) Thus, it may be possible to learn with respect to a particular class of distributions even
when PAC learning is not possible. Furthermore, learning with respect to a particular distribution or class
of distributions may be computationally much easier than PAC learning; see [45, 117, 44, 68, 92, 50, 78, 46].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 27

The original statistical work of Vapnik and Chervonenkis [116] has something to say about learning
with respect to particular distributions. Let us consider the case P = f�g, in which P consists of just one
distribution. The results of Vapnik and Chervonenkis (see also [88]) imply that H is learnable with respect
to �, by any consistent learning algorithm, if

E�m (log�(x))

m
! 0 as m!1;

where E�m (:) denotes expected value with respect to the distribution �m.
Learnability with respect to a particular distribution has also been studied by Benedek and Itai [33, 32].

They show that if � is discrete|that is, if the support of � is a countable subset of X|then any hypothesis
space H is learnable with respect to �. For general distributions, they develop a theory involving `�-covers'.
In order to describe this, we �rst need the notion of an �-cover of a subset of a pseudo-metric space. A
pseudo-metric @ on a set A is a function from A� A to R such that

@(a; b) = @(b; a) � 0; @(a; a) = 0; @(a; b) � @(a; c) + @(c; b)

for all a; b; c 2 A. An �-cover for a subset W of A is a subset S of A such that for every w 2W , there is some
s 2 S such that @(w; s) � �. W is said to be totally-bounded if it has a �nite �-cover for all � > 0. When
W is totally bounded, we denote by N (�;W; @) the size of the smallest �-cover for W , known as the covering
number. Now, the probability measure � induces a pseudo-metric @� on the hypothesis space H: we de�ne

@�(h; g) = �(fx : h(x) 6= g(x)g):

Benedek and Itai show that H is learnable with respect to � if and only if the pseudo-metric space (H; @�) is
totally bounded. (They use the term `�nitely coverable'.) For simplicity of notation, let us denote by N�(�)
the covering number N (�;H; @�). Benedek and Itai show that any algorithm for learning H with respect to
� has sample complexity at least log ((1� �)N�(2�)) and that, further, if (H; @�) is totally bounded, then
there is an algorithm for learning H with respect to � having sample complexity bounded by

54

�
log

�
1

�
+ ln(N�(
=2))

�
;

where
 is the smaller of �; �. (We remark that, unlike standard PAC learning, it is not the case that any
consistent learning algorithm will do.)

The results of Benedek and Itai mentioned above show that a necessary and su�cient condition for H to
be learnable with respect to a distribution � is that N�(�) < 1 for all � > 0. It follows that if P is a class
of probability distributions and H is learnable with respect to P then for any � > 0, the set fN�(�) : � 2 Pg
is bounded. Benedek and Itai conjectured that this condition is also su�cient for learnability with respect
to P. However, by means of a counterexample, Dudley et al. [41] proved that this is not so.

We discussed the e�ciency of (distribution-independent) learning earlier, in which we required that a
learning algorithm for a graded space run in time polynomial in n, the size of the examples, and in ��1.
Let us concentrate on a single hypothesis space H, ungraded by example size. To be e�cient, a learning
algorithm for H should have running time which does not vary too dramatically as the parameters � and
� are decreased. Therefore we should desire a learning algorithm to have sample complexity polynomial in
1=� and 1=�. In the standard PAC model, this is always achievable: H is PAC learnable if and only if it
has �nite VC-dimension, in which case any consistent learning algorithm is PAC and has polynomial sample
complexity, from the standard bounds. The corresponding situation in distribution-speci�c learning is not
so easy. We now address the question of what conditions ensure that H is learnable with respect to � with a
sample complexity polynomial in 1=� and 1=�. It follows immediately from the bounds of Benedek and Itai
that a necessary and su�cient condition is that N�(�) < 2p(1=�) for some polynomial p, but this is not a very
manageable condition. Bertoni et al. [35] took a di�erent approach, following on from the work of Vapnik

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 28

and Chervonenkis. For x = (x1; : : : ; xm) 2 Xm, let Cm(x) be the size of the largest subset of fx1; : : : ; xmg
shattered by H. Bertoni et al. show that if there is a positive constant � such that

E�m

�
Cm(x)

m

�
= O(m��);

then any consistent learning algorithm for H learns H with respect to � and has polynomial sample com-
plexity. (Note that this is a stronger conclusion than described above, since it says that all consistent
learning algorithms learn and have sample complexity polynomial in the relevant parameters, rather than
simply that there is some e�cient learning algorithm.) Anthony and Shawe-Taylor [5, 17] found a further
su�cient condition for polynomial sample complexity. Let us say that a sequence fSkg1k=1 of subsets of X
is non-decreasing if for each k, Sk � Sk+1. For S � X, let HjS denote the set of functions in H restricted to
domain S. Suppose that X = [1k=1Sk, where fSkg is non-decreasing and VCdim(HjSk) � k. Anthony and
Shawe-Taylor [5, 17] proved that if the probability distribution � satis�es

1� �(Sk) = O(k��)

for some � > 0, then any consistent learning algorithm for H learns with respect to � and has polynomial
sample complexity.

For further discussion of distribution-dependent learning, we refer the reader to the papers of Benedek
and Itai [34], Ben-David, Benedek and Mansour [29], Bertoni et al. [35], Kharitonov [74], Li and Vitanyi [77],
Linial, Mansour and Nisan [78]. For discussion speci�c to neural networks, see [52, 86].

11 Graph Dimension and Multiple-Output Nets

The basic PAC model concerns learning f0; 1g-valued functions only; that is, it is concerned only with
classi�cation problems. A signi�cant and important extension of the basic PAC model is to the learning of
general function spaces.10

In this section we discuss the graph dimension and an application to arti�cial neural networks with more
than one binary output unit. Thus far, the only networks we have been able to consider have a single binary
output.

11.1 The graph dimension

We start with a very general framework. Suppose that C, H are sets of functions from an example space
X into a set Y (not necessarily f0; 1g) with C � H, and suppose that t 2 C. Suppose also that there is
a probability distribution � on X. Generalising in the obvious way from our previous de�nitions, we may
de�ne the error of h 2 H with respect to t to be

er�(h; t) = �(fx 2 X : h(x) 6= t(x)g):

That is, h is erroneous on example x if h(x) 6= t(x). When Y = R, for example, this may seem a little coarse;
we shall later discuss an alternative approach. With this measure of error, we may de�ne PAC learning as
earlier.

For h 2 H, let Gh be the function from X � Y to f0; 1g de�ned by

Gh(x; y) = 1() h(x) = y:

We call Gh the graph of h. Further, let GH = fGh : h 2 Hg, the graph space of H. We have the following
de�nition [89].

10In what follows, certain technical measure-theoretic conditions have to be satis�ed; we shall not discuss these, but the
reader may �nd the details in the paper of Haussler [55] or the book by Pollard [95].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 29

De�nition 11.1 For a set H of functions from X to Y , de�ne the graph dimension of H, denoted gdim(H),
is the VC-dimension of the set GH of f0; 1g-valued functions on X � Y .

Observe that if Y = f0; 1g, the graph dimension and the VC-dimension are equal. Now, it can be shown
that if the hypothesis space GH is PAC learnable (in the usual sense), then so too is H (in the generalized
sense), by any consistent learning algorithm. We have the following result, which has been phrased in terms
of a probability distribution P on X � Y rather than in terms of a probability distribution � on X and a
target function t 2 C. However, as mentioned earlier for the case when Y = f0; 1g, the notion of a probability
distribution on X �Y|a `stochastic function'|includes the situation where one has � on X and t 2 C. For
s = ((x1; y1); : : : ; (xmym)) 2 (X � Y)m, the observed error of h 2 H on s is de�ned to be

ers(h) =
1

m
jfi : h(xi) 6= yigj :

Theorem 11.2 Let 0 < � < 1 and 0 <
 � 1. Suppose H is a hypothesis space of functions from an input
space X to a set Y , and let P be any probability measure on S = X � Y . Then the probability (with respect
to Pm) that, for x 2 Sm , there is some h 2 H such that

erP (h) > � and erx(h) � (1�
)erP (h)

is at most

4�GH(2m) exp

�
�

2�m

4

�
:

Furthermore, if H has �nite graph dimension, this quantity is less than � for

m =
8

2�

�
ln

�
4

�

�
+ gdim(H) ln

�
48

2�

��
:

Proof De�ne the error set Eh of h 2 H by

Eh = f(x; y) 2 X � Y : h(x) 6= yg :
Observe that Eh = (X � Y) n G(h). The proof of Theorem 5.1 can easily be modi�ed11 to obtain the bound

Pm

(
s 2 Sm : 9h 2 H with

P (Eh) � ers(h)p
P (Eh)

> �

)
� 4�GH(2m) exp

�
�1

4
�2m

�
;

for � > 0, where S = X � Y . The result follows from this. ut

In the same way as Theorem 5.2 implies Theorem 6.1, this result tells us that if H has �nite graph
dimension and C � H, then any consistent (C;H)-learning algorithm is PAC. The result also gives an upper
bound on the sample complexity of any consistent algorithm.

We see from the above that if gdim(H) is �nite then H is PAC learnable (by H) by any consistent
algorithm. It is natural to ask whether �nite graph dimension is a necessary condition for learnability in this
generalized model. Natarajan showed that it is not: there are PAC learnable function spaces with in�nite
graph dimension (see Natarajan [90]). Natarajan �nds a weaker necessary condition for learnability, showing
that a certain measure, now known as the Natarajan dimension, must be �nite for H to be PAC learnable.
More recently, Ben-David, Cesa-Bianchi and Long [31, 30] have shown that when Y is �nite, the �niteness
of the graph dimension is a necessary and su�cient condition for H to be PAC learnable. Furthermore,

11In fact, the original result of Vapnik was quite a bit more general than our Theorem 5.1, concerning the relative uniform
deviation of relative frequencies from probabilities over a class of events. This result follows easily from the more general form
of Vapnik's result when one takes the events to be the error sets. Details may be found in [5, 19, 37].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 30

they show that in this case, the Natarajan dimension is �nite if and only if the graph dimension is �nite, so
that Natarajan's necessary and su�cient conditions are matching. For the case of �nite Y , Ben-David et al.
present a characterisation of the `dimension' measures whose �niteness is equivalent to the learnability of
H. An interesting consequence of their results may be described as follows. Suppose that H maps into the
�nite set Y and, for each h 2 H and each y 2 Y , let hy : X ! f0; 1g be de�ned by hy(x) = 1() h(x) = y:
Then, the function space H is learnable if and only if each of the spaces Hy = fhy : h 2 Hg is learnable;
that is, if and only if each of these `projection' spaces has �nite VC-dimension.

11.2 Multiple-output feedforward threshold networks

We now brie
y consider feedforward threshold networks with more than one binary output unit. We shall
obtain a bound on the growth function of the graph space of such a network and thereby obtain an upper
bound on the graph dimension. We do not explicitly present a bound on the sample complexity of a consistent
learning algorithm as a PAC algorithm, but such a bound could be derived either from the graph dimension
bound or (better) from the bound on the growth function (see [19, 104, 103]).

We �rst note that there is another way of describing the notion of graph dimension. For y = (y1; : : : ; ym) 2
Y m, let Iy : Y m ! f0; 1gm be de�ned by

Iy((z1; : : : ; zm)) = (a1; : : : ; am); where ai = 1() yi = zi:

For x = (x1; : : : ; xm) 2 Xm and h 2 H, de�ne x�(h) = (h(x1); : : : ; h(xm)). This de�nes a mapping x�

from H to Y m. For each y 2 Y m, the composition Iy � x� is a mapping from H to the �nite set f0; 1gm.
We de�ne �H(x) to be the maximum, as y ranges over Y m, of jIy � x�(H)j, the cardinality of the image
of H under Iy � x�. Further, we let �H(m) be the maximum of �H(x) over all x 2 Xm. Then, clearly,
�H(m) = �GH(m), and therefore the graph dimension of H (is either in�nite, or) is the largest integer d
such that �H(d) = 2d. Notice that for �nite Y ,

�H(x) � jx�(H)j � �H(m);

where �H (m) is the maximum over all x 2 Xm of jx�(H)j. It follows that if one can bound the quantity
�H(m), then a bound on the growth function of the graph space, and hence on the graph dimension, can be
obtained. This is the technique used in obtaining the following result. (See [104, 19, 103] for improvements
on this.)

Theorem 11.3 Suppose that N is a feedforward linear threshold network having W variable parameters
(weights and thresholds) and any number of output units. Let H be the set HN of functions computable by
N . Then, for m > W , �GH(m) < m2W and the graph dimension of the network is less than 6W logW .

Proof The bounds here are exactly the same as those obtained in Theorem 7.6. One uses a proof similar
to the proof of that result, obtaining an upper bound on �H (m) of m2W for m > W . The same proof
technique works since each computational unit computes a f0; 1g-valued function. One just has to be aware
that counting in this manner does indeed provide a bound on �H(m). ut

12 Pseudo-Dimension and Function Learning

12.1 The pseudo-dimension

We have seen that the graph dimension can be used to measure the expressive power of a hypothesis space
of functions, in somewhat the same way as the VC-dimension is used for f0; 1g-valued hypothesis spaces.
But there are other such measures. In passing, we have already mentioned the Natarajan dimension. We
now introduce a very useful dimension, known as the pseudo-dimension. This was introduced by Pollard [95]
and is de�ned whenever the set of functions maps into Y � R. (More generally, it may be de�ned when Y

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 31

is any totally ordered set, but this shall not concern us here.) Let H be a set of functions from X to R. For
any x = (x1; x2; : : : ; xm) 2 Xm, and for h 2 H, let

x�(h) = (h(x1); h(x2); : : : ; h(xm))

and let x�(H) = fx�(h) : h 2 Hg. We say that x is pseudo-shattered by H if some translate r + x�(H)
of x�(H) intersects all orthants of Rm. The pseudo-dimension of H, denoted pdim(H), is either in�nite or
is the largest length of a pseudo-shattered sample. The pseudo-dimension is often called the combinatorial
dimension or Pollard dimension. We state the de�nition formally in a rather more explicit way.

De�nition 12.1 (Pseudo-dimension) Let H be a set of functions from X to R and let x 2 Xm. We say
x is pseudo-shattered by H if there are r1; r2; : : : ; rm 2 R such that for any b 2 f0; 1gm, there is hb 2 H
with

hb(xi) � ri () bi = 1:

The largest d such that some sample of length d is pseudo-shattered is the pseudo-dimension of H, denoted
pdim(H). (When this maximum does not exist, the pseudo-dimension is taken to be in�nite.)

Note that when Y = f0; 1g, the de�nition of pseudo-dimension reduces to the VC-dimension. Further-
more, when H is a vector space of real functions, the pseudo-dimension of H is precisely the vector-space
dimension of H; see [55]. (This generalizes Dudley's result, Theorem 4.2.)

12.2 Learning real-valued functions

When considering a space H of functions fromX to Rk, as is appropriate for applications to neural networks
with k real outputs, it seems rather over-restrictive, and inappropriate, to say that a hypothesis h is erroneous
with respect to a target t on example x unless h(x) and t(x) are precisely equal. Up to now, this is the
de�nition of error we have used. There are other ways of measuring error, if one is prepared to ask not is
the output correct? but is the output close? in some sense. Haussler [55] has developed a `decision-theoretic'
framework encompassing many ways of measuring error by means of loss functions. We shall describe this
framework in a way which also subsumes the discussion on stochastic concepts.

First, we need some de�nitions. A loss function is, for our purposes, a non-negative bounded function
l : Y �Y ! [0;M] (for someM). Informally, the loss l(y; y0) is a measure of how `bad' the output y is, when
the desired output is y0. An example of a loss function is the discrete loss function, de�ned by l(y; y0) = 1
unless y = y0, in which case l(y; y0) = 0. This is the loss function one uses to measure error in the standard
PAC model and in the above discussion of graph dimension. It seems reasonable if the outputs are in f0; 1gk,
for example, as occurs in a threshold network with k output units. However, other loss functions are more
appropriate if the outputs are real numbers. One useful loss function is the L1-loss, or linear loss, which is
de�ned when Y � Rk. This is given by

l(y; y0) =
1

k

kX
i=1

jyi � y0ij:

In both of these examples, the loss function is actually a metric, but there is no need for this. For example,
a loss function which is not a metric|and which is often used|is the L2-loss, or quadratic loss, de�ned on
Rk by

l(y; y0) =
1

k

kX
i=1

(yi � y0i)
2:

There are many other useful loss functions, such as the L1-loss, the logistic loss and the cross-entropy loss.
The reader is referred to the paper of Haussler [55] for a far more detailed discussion of the general decision-
theoretic approach and its applications. As in our discussion of stochastic concepts, we consider probability

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 32

distributions P on X � Y . Suppose that l : Y � Y ! [0;M] is a particular loss function. For h 2 H, we
de�ne the error of h with respect to P (and l) to be

erP;l(h) = EP (l(h(x); y)) =

Z
X�Y

l(h(x); y)dP (x; y);

the expected value of l(h(x); y). When P is the stochastic concept corresponding to a target function t and
distribution � on X, then this error is E�(l(h(x); t(x)), the average loss in using h to approximate t. Note
that if l is the discrete metric then this is simply the �-probability that h(x) 6= t(x), which is precisely the
measure of error used in the standard PAC learning de�nition.

There is a slight di�erence between the function learning framework we shall describe and the standard
learning framework for f0; 1g-valued functions as we have described it. We shall assume that a function
learning algorithm is not simply given a training sample of adequate length, but is also given as part of its
input the accuracy parameter �. This is not really so di�erent from the basic PAC learning framework: in the
original PAC model as introduced by Valiant, a learning algorithm was given the accuracy and con�dence
parameters and had access to an `oracle' generating random labeled examples. Subsequently, Haussler et
al. [56] showed that this model is equivalent to the `functional' model we described in earlier sections, in
which the learning algorithm is given only a training sample as input.

Suppose that a sample s = ((x1; y1); : : : ; (xm; ym)) of points from X �Y is given. The observed error (or
empirical loss) of h on this sample is

ers;l(h) =
1

m

mX
i=1

l(h(xi); yi):

The aim of learning in this context is to �nd, on the basis of a `large enough' sample s, and the parameter �,
some L(�; s) 2 H which has close to optimal error with respect to P . We arrive at the following de�nition.

De�nition 12.2 (Probably approximately optimal learning of functions) Suppose
that H is a set of functions from X to Y and that l is a loss function de�ned on Y � Y . A function

L : (0; 1)�
[
m�1

(X � Y)m ! H

is said to be a probably approximately optimal learning algorithm for H if for any 0 < �; � < 1, there is
mL(�; �) such that for m � mL(�; �), the following holds: For any probability distribution P on X � Y , if
s 2 (X � Y)m is randomly drawn then, with probability at least 1� �,

erP;l (L(�; s)) < optH(P) + �;

where optH (P) = infh2H erP;l(h).

(As earlier, there is an `agnostic learning' variant of this, in which the aim is to output a hypothesis from
a larger hypothesis space which approximates to the target almost as well as the best approximation in H
does; see [82].) As in the standard PAC model and the stochastic PAC model described earlier, this can be
guaranteed provided we have a `uniform convergence of errors' property. Extending the earlier de�nition,
we say that a hypothesis space H of functions from X to Y has the uniform convergence of errors (UCE)
property with respect to the loss function l if for 0 < �; � < 1, there is a positive integer m0(�; �) such that,
for any probability distribution P on X � Y ,

Pm (fs : for all h 2 H; jerP;l(h) � ers;l(h)j < �g) > 1� �

for all m � m0. If this is the case, then a learning algorithm which outputs a hypothesis with near-minimal
observed error will be a probably approximately optimal learning algorithm. More precisely, we have the
following result [55, 114].

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 33

Theorem 12.3 Suppose that H is a hypothesis space of functions from X to Y and that l is a loss function
de�ned on Y � Y . Let L̂ be any learning algorithm for H with the property that, given input consisting of �
and a sample s,

ers;l
�
L̂(�; s)

�
� inf

h2H
ers;l(h) + �=3:

If H has the UCE property with respect to l, then L̂ is a probably approximately optimal learning algorithm
for H. Furthermore, the sample complexity of L̂ satis�es

mL̂(�; �) � m0(�; �=3);

where m0 is the sample length function in the de�nition of the UCE property.

Proof This is analogous to the proof of Theorem 9.4. Suppose that H has the UCE property and let
m > m0(�; �=3) where m0(�; �) is the sample length function in the de�nition of the UCE property. Fix

s 2 (X � Y)m and let ĥ denote L̂(�; s). Then, for all h 2 H, we have

erP;l(ĥ) � ers;l(ĥ) + �=3 � ers;l(h) + 2�=3 � erP;l(h) + �;

so that
erP;l(ĥ) � inf

h2H
erP;l(h) + � = optH (P) + �:

The result follows. ut

Note that, in this case, there need not be any function in H minimizing the observed error, since the
errors can be real numbers and H may be in�nite. (In other words, one has an in�mum but not necessarily a
minimum.) For this reason, we demand observed error within � of the greatest lower bound of the observed
errors.

Extending results of Pollard and others, Haussler proves results on the rate of convergence of empirical
means of random variables to their expectations, uniformly over a class of (bounded) random variables. For
h 2 H, let the function lh : X � Y ! [0;M] be given by lh(x; y) = l(h(x); y). Then the error of h with
respect to distribution P on X � Y is simply the expectation EP (lh) of lh, and the observed error of h on
the sample s is the empirical mean of lh based on s,

ers;l(h) =
1

m

mX
i=1

lh((xi; yi)):

Haussler shows that if the loss space, lH = flh : h 2 Hg has �nite pseudo-dimension, then H has the UCE
property (for loss function l).

Theorem 12.4 Suppose that H is a set of functions from X to Y and that l : Y � Y ! [0;M] is a loss
function. Let lH = flh : h 2 Hg be the loss space of H with respect to l. Suppose that the space lH of
functions from X � Y to [0;M] has �nite pseudo-dimension pdim(lH). For 0 < �; � < 1, let

m0(�; �) =
64M2

�2

�
2 pdim(lH) ln

�
16eM

�

�
+ ln

�
8

�

��
:

Let P be any probability distribution on S = X �Y . If m � m0(�; �), then with Pm-probability at least 1� �,
s 2 Sm satis�es jers;l(h) � erP;l(h)j < �; for all h 2 H.

As in our earlier discussion, this result shows that if the loss space has �nite pseudo-dimension then H
has the UCE property with respect to l. It follows, by an argument similar to that given in Theorem 9.4, that
if L̂ is, as in Theorem 12.3, a learning algorithm which outputs a hypothesis having near-minimal observed
error, then L̂ is a probably approximately optimal learning algorithm. A bound on the sample complexity

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 34

of this algorithm follows from the theorem. If H maps into R, then the pseudo-dimension of lH can be
related to that of H itself if l has a certain `monotonicity' property (see [55]). In this case, one obtains
bounds on the sample length m0(�; �) for the UCE property, and the sample complexity of L̂, which depend
on pdim(H). Recently, Alon et al. [1] have determined a necessary and su�cient condition for H to have
the UCE property (for loss function l). This condition is in many cases weaker than �nite pseudo-dimension
of lH . Their result will be described later. For the moment, we present a result on the pseudo-dimension
of a particular loss space relevant in the study of neural networks. The following result is a special case of
one due to Maass [79]. It generalizes Theorem 7.11. (We state it only for the L1-loss function and for less
general types of activation function than those in the result of Maass.)

Theorem 12.5 Let fNW g be a family of feedforward neural networks with real outputs, W variable pa-
rameters, and piecewise polynomial functions of bounded degree and bounded number of pieces as activation
functions on the hidden units. (The bounds on the number of pieces and degrees do not depend on W .) Let
HW be the set of functions computable by NW and let lW be the loss space of NW relative to the L1 loss
function. Then pdim(lW) = O(W 2) as W !1.

This theorem is proved by generalizing the techniques in [48]. The lower bound results of Theorem 7.8
and Theorem 7.9 show that a lower bound
(W logW) holds in general. The upper bound of the above
theorem is O(W 2) and we know that for linear threshold networks the pseudo-dimension (which equals the
VC-dimension) is O(W logW). It is unknown whether the power of analog neural networks can be of larger
order than W logW . This is an interesting open problem.

13 Capacity of a Function Space

13.1 Capacity and learning

We have seen that one way in which to ensure that a space of functions has the UCE property is to show
that the pseudo-dimension of the corresponding loss space is �nite. Another way, described in [55], is to
use the notion of the capacity of a function space. For simplicity, we shall focus here only on the cases in
which Y is a bounded subset of some Rk, Y � [0;M]k, and we shall use the L1-loss function, which for the
remainder of this section will be denoted simply by l. Other loss functions may be treated similarly. Observe
that the loss function maps into [0;M] in this case. Suppose that H is any set of functions mapping X into
[0;M]k and that � is a probability distribution on X. Extending the ideas developed earlier in the study of
distribution-speci�c learning by Benedek and Itai, one can de�ne a pseudo-metric @� on H by

@�(f; g) = E� (l(f(x); g(x))) :

The �-capacity of H is de�ned to be
CH(�) = sup

�
N (�;H; @�);

where the supremum is taken over all probability distributions � on X. If there is no �nite �-cover for some
�, or if the supremum does not exist, we say that the �-capacity is in�nite.12 Results of Haussler [55] and
Pollard [95] provide the following uniform bound on the rate of convergence of observed errors to actual
errors.

Theorem 13.1 With the notation of this section, if P is any probability distribution on S = X � Y , then

Pm (fs 2 Sm : there is h 2 H with jerP;l(h) � ers;l(h)j > �g) < 4 CH (�=16) e��
2m=64M2

for all 0 < � < 1. Here, l denotes the L1-loss function.

12The de�nition just given is not quite the same as the de�nition given by Haussler; here, we take a slightly more direct
approach because we are not aiming for the full generality of Haussler's analysis.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 35

When k = 1 and H maps into [0;M], the capacity can be related to the pseudo-dimension of H. Haus-
sler [55] (see also Pollard [95]) showed that if H has �nite pseudo-dimension then

CH(�) < 2

�
2eM

�
ln

2eM

�

�pdim(H)

:

This, combined with the above result, shows that, in this case, H has the UCE property and that a su�cient
sample length m0(�; �) is

m0(�; �) =
64M2

�2

�
2 pdim(H) log

�
16eM

�

�
+ log

�
8

�

��
:

(Note that, using the capacity approach, we deal directly with pdim(H) rather than with pdim(lH).) Thus,
if H is a space of real functions and pdim(H) is �nite, then a learning algorithm L̂ (as in Theorem 12.3)
which outputs the hypothesis with near-minimal observed error is a probably approximately optimal learning
algorithm (with respect to the L1 loss function), having sample complexity mL̂(�; �) bounded by m0(�; �=3).

13.2 Applications to sigmoid neural networks

We see from the above discussion that, for neural networks having one real output, the capacity approach
yields a bound on the sample complexity of the probably approximately optimal learning algorithm L̂.
Furthermore, in such cases, the bound depends on the pseudo-dimension of the set of functions computed
by the network, rather than on the pseudo-dimension of the associated loss space.

Macintyre and Sontag [84] proved the �niteness of the pseudo-dimension of feedforward neural networks
having as activation the standard sigmoid function. However, no explicit bounds were given. Bartlett and
Williamson [24] obtained the following result, relevant for discrete inputs.

Theorem 13.2 Let N be a depth-two feedforward network having the standard sigmoid activation function
on the hidden units and an output unit with linear activation function (so that it outputs the weighted sum
of its inputs, without thresholding.) For a positive integer D, let XD = f�D;�D+1; : : : ; D� 1; Dgn, where
n is the number of inputs to N . Let HD be the set of functions from XD to R computable by the network
on example set XD . Then pdim(HD) < 8W log(11WD).

We now describe an approach taken by Haussler, bounding directly the capacity of more general types of
sigmoid network. In his paper, Haussler [55] shows how the general framework and results can, in addition,
be applied to radial basis function networks and networks composed of product units. Suppose that each
activation function fi is a `smooth' bounded monotone function, which need not be the standard sigmoid.
In particular, suppose that fi takes values in a bounded interval [�; �] and that it is di�erentiable on R
with bounded derivative, jf 0i(x)j � B for all x. By proving some `composition' results on the capacity of
function spaces and by making use of the pseudo-dimension and its relationship to capacity for real-valued
function spaces, Haussler obtained bounds on the capacity of feedforward arti�cial neural networks with
general sigmoid activation functions. We state the following special case of a result from [55].

Theorem 13.3 Suppose that N is a feedforward sigmoid network of depth d, with any number of output
nodes and W variable parameters (weights and thresholds). Let � be the maximum in-degree of a computation
node. Suppose that each activation function maps into the interval [�; �]. Let H be the set of functions
computable by the network on inputs from [�; �]n when the variable parameters are constrained to be at most
V in absolute value. Then for 0 < � � � � �,

CH(�) �
�
2e(� � �)d(�VB)d�1

�

�2W

;

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 36

where B is a bound on the absolute values of the derivatives of the activation functions. Further, for �xed V ,
there is a constant K such that for any probability distribution P on X �Rk, the following holds: provided

m � K

�2

�
W log

�
Bd

�

�
+ log

�
1

�

��
;

then with Pm-probability at least 1� �, a sample s from (X �Rk)m satis�es

jers;l(h)� erP;l(h)j < �

for all h 2 H. Here, l denotes the L1-loss function.

This result shows that the space of functions computed by a certain type of sigmoid network has the UCE
property. It provides an upper bound on the length of sample which should be used in order to be con�dent
that the observed error is close to the actual error. It follows that any learning algorithm with the property
described in Theorem 12.3, resulting in a state of the network with near-minimal observed error, is probably
approximately optimal. The bound of the theorem provides a bound on the sample complexity of such an
algorithm. The presence of the bound B on the absolute values of the derivatives of the activation functions
means that this theorem does not apply to linear threshold networks, where the activation functions are
not di�erentiable. Nonetheless, the sample length bounds are similar to those obtained for linear threshold
networks. Although in this theorem there is assumed to be some uniform upper bound V on the maximum
magnitude of the weights, the result of Macintyre and Sontag [84] mentioned earlier shows that if every
activation function is the standard sigmoid function and if there is one output node, then such a bound is
not necessary. They show that the set of functions computed by a standard sigmoid network with unrestricted
weights (and on unrestricted real inputs) has �nite pseudo-dimension.

14 Scale-Sensitive Dimensions

14.1 Learnability of p-concepts

An interesting variant of the PAC model which has received attention recently is that of `p-concept learning',
introduced by Kearns and Schapire [70]. Much attention has been on `learning a good model of probability'
of a p-concept and it is this problem we shall discuss here.

A p-concept (or probabilistic concept) is a function t from X to the interval [0; 1]. The value t(x) is meant
to represent a probability. A motivating example given by Kearns and Schapire is that in which the example
space x encodes a set of meteorological measurements and t(x) is the probability, given measurements x,
that rain will follow. In such a `learning' scenario, one of only two possible outcomes are observed; either
it rains or it does not rain. The aim of a weather forecaster is, based on such observations, to determine
a good approximation to the probability t(x) that it will rain under the conditions encoded by x. Suppose
that H is a class of p-concepts, and that t 2 H. A training sample s for t in this context consists of a
sequence of examples, each labeled with 0 or 1. The example x is labeled 1 with probability t(x) and 0
with probability 1� t(x). We shall call such a training sample a p-concept training sample to distinguish it
from the usual notion of a training sample. A p-concept learning algorithm receives as input the accuracy
parameter � (as for function learning), the `scale' parameter �, and a p-concept training sample s. The aim
of the learning algorithm is to produce a function L(�; �; s) 2 H such that with high probability L(�; �; s) is
`close to' t. Given � and � between 0 and 1 and a probability distribution � on X, we say that a p-concept
h is a (�; �)-good model of probability for the p-concept t if

�(fx : jh(x)� t(x)j � �g) < �:

The formal de�nition of p-concept learning with a good model of probability (henceforth, for brevity,
simply `learning') can now be given.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 37

De�nition 14.1 The class H of p-concepts is learnable by a p-concept learning algorithm L if for all
�; �; � 2 (0; 1), there is a sample size mL(�; �; �) such that for any t 2 H and any probability distribution � on
X, if m � mL(�; �; �) then, given the scale parameter �, the accuracy parameter �, and a p-concept training
sample s for t of length m, the algorithm outputs a hypothesis L(�; �; s) which, with probability at least 1� �,
is a (�; �)-good model of probability of t.

Note that any p-concept on X and any probability distribution � on X can be realized by a probability
distribution P on X � f0; 1g. (For X countable, for instance, P is given by P ((x; 1)) = �(x)t(x) and
P ((x; 0)) = �(x)(1 � t(x)).) Thus it is possible to give a more general de�nition of p-concept learning, in
which the aim is not to �nd a good model of probability but to �nd a hypothesis which almost minimizes
the linear or quadratic loss with respect to a target distribution P on X � f0; 1g; see [1], for instance.

In their paper, Kearns and Schapire gave examples of e�cient algorithms for learning particular classes
of p-concepts. One example they gave is the class ND of all non-decreasing functions from [0; 1] to [0; 1].
They show that if H has �nite pseudo-dimension then H is learnable (by an algorithm which near-minimizes
observed quadratic loss, as in Theorem 12.3). This result follows from the uniform convergence result,
Theorem 12.4, and from the fact that the pseudo-dimension of the (appropriate restriction of the) loss space
equals the pseudo-dimension of H. The fact that ND is learnable yet of in�nite pseudo-dimension shows
that �nite pseudo-dimension is not necessary for p-concept learning. Kearns and Schapire also obtain a
lower bound on the sample complexity of a p-concept learning algorithm, involving a `scale-sensitive' version
of the pseudo-dimension (to be described below). Alon et al. [1] proved a very general result which shows
that the parameter involved in the lower bound of Kearns and Schapire is the crucial one for the analysis of
p-concept learnability. This parameter, the
-dimension, is formally de�ned as follows.

De�nition 14.2 For
 > 0, we say that a sample (x1; : : : ; xd) is
-shattered by H if the following holds:
there are r1; r2; : : : ; rd in [0; 1] such that for each b 2 f0; 1gd there is hb 2 H with

hb(xi) > ri +
 if bi = 1; hb(xi) < ri �
 if bi = 0:

The
-dimension of H, denoted dim
(H) is (in�nite, or) the maximal length of
-shattered sample.

In other words, x is
-shattered if it is shattered in the sense of pseudo-dimension, but with a `width of
shattering' of at least
. This dimension is an example of a `scale-sensitive dimension'. As an example, it is
fairly easy to see that dim
(ND) = b1=2
c. Note that the pseudo-dimension is the limit of the
-dimension:
pdim(H) = lim
!0 dim
 (H). It is possible, as in the case of ND, for dim
(H) to be �nite for all
 but for
pdim(H) to be in�nite. This scale-sensitive dimension has been bounded for classes of neural networks by
Gurvits and Koiran [54] and Bartlett [23].

Alon et al. [1] proved the following result. (The necessity was proved earlier by Kearns and Schapire [70].)

Theorem 14.3 Let H be a class of p-concepts. Then H is learnable (in the p-concept model) if and only if
dim
(H) is �nite for all
 > 0.

The algorithm used to prove su�ciency in the above theorem is, like that of Theorem 12.3, one which
outputs a hypothesis which has near-minimal observed error, with respect to the quadratic loss. (As indicated
above, they use a slightly more general model of p-concept learning in which it is not assumed that the target
p-concept belongs to H.) Given the results in their paper, it follows that the sample complexity,mL(�; �; �),
of this algorithm is of order

1

�2�4

d

�
ln

�
d

��2

��2

+ ln

�
1

�

�!
;

where d = dim��2=96(H). (The bound given in their paper is for the problem of �nding a hypothesis with
near-minimal quadratic error. The bound given here follows by an argument analogous to that given in the
proof of Theorem 14.7 below.)

Note that the condition in this theorem|�nite
-dimension for all
|is a weaker condition than that
of having �nite pseudo-dimension. In related work, Simon [109] has obtained general lower bounds on the
sample complexity of p-concept learning algorithms in terms of a di�erent scale-sensitive dimension.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 38

14.2 Learnability of functions

In this subsection, we return to the model of learning real functions on X, emphasising the importance of
scale-sensitive dimension, and brie
y discussing learning in the presence of noise. Suppose we have a �xed
loss function l. In the context of function learning with respect to a probability distribution P on X � R,
a training sample, as in earlier sections, is an element of (X � R)m for some m. Recall that a learning
algorithm L is probably approximately optimal if for all 0 < �; � < 1, there is mL(�; �) such that for m � mL,
and for any probability distribution P on X �R, with probability at least 1� �, a sample s 2 (X �R)m is
such that

erP;l (L(�; s)) < inf
h2H

erP;l(h) + �:

Here, erP;l(h) is the expectation EP (l(h(x); y)).
Alon et al. [1] prove some very general results. A corollary of their main result is the following charac-

terisation of spaces having the UCE property with respect to a loss function l.

Theorem 14.4 Let H be a set of functions from X to R. Then H has the UCE property (with respect to
loss function l) if and only if dim
(lH) is �nite for all
 > 0.

We have the following corollary.

Corollary 14.5 Let H be a set of functions from X to [0;M], for some M , and let l be a loss function. Sup-
pose that the loss space lH has �nite
-dimension for all
. Then the learning algorithm L̂ of Theorem 12.3,
which outputs a hypothesis having near-minimal observed error, is a probably approximately optimal learning
algorithm.

Now suppose that we have a concept space C of real functions and that C � H. Let us suppose also
that the functions in H are uniformly bounded: without loss of generality, H maps into some interval of the
form [0;M]. Suppose t 2 C and that � is a probability distribution on X. Such a pair (t; �) can, as usual,
be represented by a probability distribution P on X �R. We now restrict attention to those distributions
P on X �R that correspond to an underlying distribution � on X and a target function t 2 C in this way,
and we take as loss function either the quadratic loss or the linear loss. In this situation, optH (P) = 0 and
thus a probably approximately optimal algorithm (restricted to such P) is a probably approximately correct
(C;H)-learning algorithm. We have an alternative characterisation of such PAC algorithms, as follows.

De�nition 14.6 Let C and H be sets of functions from X to [0;M] with C � H. For a positive integer m
and t 2 C, let S(m; t) denote the set of all training samples of length m for t. A function

A : R+ � (0; 1)�
[

t2C;m�1

S(m; t) ! H

is said to learn C with a good model by H if for every 0 < �; �; � < 1 there is mA(�; �; �) such that if
m � mA, the following holds: if � is any distribution on X, and t 2 C then, with probability at least 1 � �,
the function hA = A(�; �; s) satis�es

�m (fx 2 X : jhA(s)(x) � t(x)j � �g) < �:

Theorem 14.7 Let C and H be sets of functions from X to [0;M] with C � H. Then there is a PAC
(C;H)-learning algorithm (with respect to either the quadratic or linear loss function) if and only if there is
an algorithm A which learns C with a good model (by H).

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 39

Proof We prove equivalence for the quadratic loss. Suppose that L is a PAC algorithm with respect to the
quadratic loss. Algorithm A acts as follows: given as input �; � 2 (0; 1) and s 2 S(m; t), A simulates L,
giving output L(��2; s). Let mL(�; �) be the sample complexity function of L. We claim that A learns with
a good model and has sample complexity satisfying

mA(�; �; �) � mL(�; ��
2):

To see this, simply observe that if a sample s has length at least mL(�; ��
2), then with probability at least

1� �, hL = L(��2; s) satis�es
erP;l(hL) = E�

�
(hL(x)� t(x))2

�
< ��2;

where P is the probability distribution on X �R arising from � on X and t 2 C. But it then follows that

� (fx 2 X : jhL(x)� t(x)j � �g) < �;

by Markov's inequality. Thus such an algorithm A exists. Conversely, suppose that A learns with a good
model. Then there is a PAC algorithm: this algorithm simulates A, and has sample complexitymL satisfying
mL(�; �) � mA(

p
�=2; �; �=2M2): This follows from the observation that if � (fx : jh(x)� t(x)j � p

�=2g) <
�=2; then

E�
�
(h(x) � t(x))2

�
< (

p
�=2)2 + (�=2M2)M2 < �;

where we have used the fact that functions in H map into [0;M]. The result follows. ut

De�nition 14.6 is very similar to the de�nition of p-concept learning. If H is a set of functions from X
to [0; 1], it is clear that the p-concept learning of H (by H) is more di�cult than the learning of H (by
H) with a good model: in learning with a good model, if x is an example in the training sample, then the
learning algorithm receives the value t(x), whereas, in a p-concept training sample, x carries a binary label
stochastically determined by t(x). It follows that we cannot infer from Theorem 14.3 that �nite
-dimension
for all
 is necessary for function learning with a good model. (Indeed, it is not.) However, any upper bound
on the sample complexity of p-concept learning a class H provides an upper bound for learning H with a
good model.

In [9, 20, 18], the following result is given. This shows that if the hypothesis space has �nite pseudo-
dimension and a learning algorithm interpolates well enough on the training sample then it is a probably
approximately correct algorithm. Further, it shows that if there is some noise in the classi�cation of the
training sample, then learning `up to the level of the noise' is possible in some cases. (See [91, 26] for other
results on function learning in the presence of noise.)

Theorem 14.8 Let H be a set of functions from X to [0;M], for some M . Suppose H has �nite pseudo-
dimension and that C � H. Let 0 < � < 1 and suppose that L is a (C;H)-learning algorithm which receives
as input parameters �; � and samples s. Suppose also that, for t 2 C, for

s = ((x1; t(x1)); (x2; t(x2)); : : : ; (xm; t(xm))) 2 S(m; t);

the hypothesis hL = L(�; �; s) has the property that jhL(xi)� t(xi)j < � for 1 � i � m. Then, for 0 < � < 1,
there is mL(�; �; �), of order

1

�

�
pdim(H) ln

�
1

�

�
+ ln

�
1

�

��
;

such that if m � mL, the following holds: for any probability distribution � on X and any t 2 C, with
probability at least 1� �, � (fx 2 X : jhL(x)� t(x)j � �g) < �:

The result presented in [9] is more general than this. In that paper, it is shown that to obtain accurate
bounds on the sample complexity function mL (and, indeed, bounds depending on �), it is more appropriate
to use a scale-sensitive dimension termed the band-dimension, also used in [91]. In [9], it is also shown that
�nite pseudo-dimension of H is a necessary condition for the conclusion of Theorem 14.8 to hold. Thus the
condition described in this theorem is stronger than learnability. However, Anthony and Bartlett [7] have
shown that �nite
-dimension for all
 is su�cient for a weaker conclusion, as the following theorem shows.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 40

Theorem 14.9 Let H be a set of functions fromX to [0;M], for someM . Suppose H has �nite
-dimension
for all
 and that C � H. Let 0 < � < 1 and suppose that L is a (C;H)-learning algorithm which receives
as input parameters �; � and samples s. Suppose also that, for t 2 C, for

s = ((x1; t(x1)); (x2; t(x2)); : : : ; (xm; t(xm))) 2 S(m; t);

the hypothesis hL = L(�; �; s) has the property that jhL(xi) � t(xi)j < � for 1 � i � m. Then, for any
0 < �; � < 1, there is mL(�; �; �; �), of order

1

�

�
ln

�
1

�

�
+ dim�=8(H) ln2

�
dim�=8(H)

��

��
:

such that if m � mL, the following holds: for any probability distribution � on X and any t 2 C, with
probability at least 1� �, � (fx 2 X : jhL(x)� t(x)j � � + �g) < �:

Bartlett, Long and Williamson [26] have recently shown that even if there is some reasonable level of noise
in the labeling of the training sample, then, provided dim
(H) is �nite for all
, learning with a good model is
possible. It is not possible to obtain non-trivial general lower bounds on the sample complexity of (noiseless)
function learning in terms of dim
(H). A simple `coding' argument shows this. (See [26].) However, Bartlett
et al. have obtained lower bounds on the sample complexity in the presence of noise. Their results show that
if we demand learnability which is robust in the presence of noise, the �niteness of the
-dimension of H for
all
 is a necessary and su�cient condition for learnability. Using a di�erent scale-sensitive dimension|which
may be thought of as a scale-sensitive version of the Natarajan dimension|Simon [110] has obtained general
lower bounds on the sample complexity of noiseless learning. He has shown that, to within a logarithmic
factor, this bound is optimal for a number of spaces H. Anthony and Bartlett [7] have shown that �nite

-dimension for all
 is necessary as well as su�cient for the conclusion of Theorem 14.9 to hold.

15 Conclusions and further reading

There are many aspects of learning theory not discussed in this work. We have barely touched on the
computational complexity of PAC learning and its variants. Further discussion of this may be found, for
example, in [82, 21, 10, 73, 93, 69, 70, 101, 63, 79]. There are also many more variants of the PAC model
which we have not mentioned here. Throughout the discussion here, it has been assumed that there is some
�xed hypothesis space. This is natural in the context of neural networks where one has in mind a �xed
architecture. However, there is a variant of the PAC model known as the prediction model, in which there is
no �xed hypothesis space; in a sense, the output of a prediction algorithm is some program which classi�es
further examples. We refer the reader to [94, 57] for details. Another very important variant is that in which
the learning algorithm can ask questions concerning, for example, the classi�cation of a chosen example; see,
for example [2, 28, 53]. Such `query learning' is an active area of research, and the paper by Angluin [3]
provides a good survey. In a similar vein, one may ask how much easier learning becomes when there is
a `helpful teacher' providing cleverly-chosen examples as training sample. (This is very di�erent from the
PAC model in that the training examples are no longer randomly chosen.) Such models of teaching have
been studied in the case where the goal is to learn the target exactly [49, 13, 65, 108, 14] and in which
the goal is to learn an approximation to the target in a probabilistic sense [97, 96]. Other useful variants
not discussed here are those in which the distribution and target are permitted to change a little between
observations, as in [25, 58, 59], models of weak learning in which the learner only has to do slightly better
than random guessing [51, 100, 60], and variants in which the learning algorithm has access to the predictions
of `experts' [38]. Something which has not been discussed in any detail here is the use of real-output neural
networks for classi�cation. Recent work [106, 23] has shown that, here, the scale-sensitive
-dimension is
very useful.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 41

Acknowledgements

I thank Peter Bartlett, Nicol�o Cesa-Bianchi and Mark Jerrum for comments and suggestions on an earlier
version of this article. I am grateful to three anonymous referees for their detailed and helpful comments on
the journal version.

References

[1] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform conver-
gence, and learnability. In Proceedings of the Symposium on Foundations of Computer Science. IEEE
Press, 1993. To appear, Journal of the ACM.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319{342, Apr. 1988.

[3] D. Angluin. Computational learning theory: survey and selected bibliography. In Proc. 24th Annu.
ACM Sympos. Theory Comput., pages 351{369. ACM Press, New York, NY, 1992.

[4] D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343{370, 1988.

[5] M. Anthony. Uniform Convergence and Learnability. PhD thesis, University of London (London
School of Economics and Political Science), Feb. 1991. A revised version appears as London School of
Economics Mathematics Preprint LSE-MPS-11, May 1991.

[6] M. Anthony. Classi�cation by polynomial surfaces. Mathematics Preprint Series LSE-MPS-39, London
School of Economics, Oct. 1992. Revised version appears Discrete Applied Mathematics, 61 (1995):
91{103.

[7] M. Anthony and P. Bartlett. Function learning from interpolation. Extended abstract in Proceedings
EuroCOLT'95, Springer-Verlag, 1995: 211{221. Full version submitted.

[8] M. Anthony and P. Bartlett. Theory of Learning in Neural Networks (working title). In preparation.
To be published by Cambridge University Press.

[9] M. Anthony, P. Bartlett, Y. Ishai, and J. Shawe-Taylor. Valid generalisation from approximate inter-
polation. Combinatorics, Probability and Computing, Volume 5 191{214 (1996).

[10] M. Anthony and N. Biggs. Computational Learning Theory: An Introduction. Cambridge Tracts in
Theoretical Computer Science (30). Cambridge University Press, Cambridge, UK, 1992. (Reprinted,
in paperback, with corrections, 1997.)

[11] M. Anthony and N. Biggs. Computational learning theory for arti�cial neural networks. In J. Taylor,
editor,Mathematical Approaches to Neural Networks, North Holland Mathematical Library (51), pages
25{62. Elsevier Science Publishers B. V., Amsterdam, 1993.

[12] M. Anthony, N. Biggs, and J. Shawe-Taylor. The learnability of formal concepts. In Proc. 3rd Annu.
Workshop on Comput. Learning Theory, pages 246{257. Morgan Kaufmann, San Mateo, CA, 1990.

[13] M. Anthony, G. Brightwell, D. Cohen, and J. Shawe-Taylor. On exact speci�cation by examples. In
Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 311{318. ACM Press, New York, NY,
1992.

[14] M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying Boolean functions by labelled examples.
Discrete Applied Mathematics, 61 (1995): 1{25.

[15] M. Anthony and S. B. Holden. Quantifying generalisation in linearly weighted neural networks. Com-
plex Systems 8, (1994), 91{114.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 42

[16] M. Anthony and S. B. Holden. On the power of polynomial discriminators and radial basis function
networks. In Proc. 6th Annu. Workshop on Comput. Learning Theory, pages 158{164. ACM Press,
New York, NY, 1993.

[17] M. Anthony and J. Shawe-Taylor. A su�cient condition for polynomial distribution-dependent learn-
ability. To appear, Discrete Applied Mathematics..

[18] M. Anthony and J. Shawe-Taylor. Generalising from approximate interpolation. Mathematics Preprint
Series LSE-MPS-47, London School of Economics, May 1993.

[19] M. Anthony and J. Shawe-Taylor. A result of Vapnik with applications. Discrete Applied Mathematics,
47:207{217, 1994. Also, technical report CSD-TR-628, Royal Holloway and Bedford New College,
University of London, 1990.

[20] M. Anthony and J. Shawe-Taylor. Valid generalisation of functions from close approximations on a
sample. In Computational Learning Theory: Euro-COLT'93, (ed. J. Shawe-Taylor and M. Anthony),
Oxford University Press, 1994.

[21] P. Auer, P. Long, W. Maass, and G. Woeginger. On the complexity of function learning. In Proc. 6th
Annu. Workshop on Comput. Learning Theory, pages 392{401. ACM Press, New York, NY, 1993.

[22] P. Bartlett. Vapnik-Chervonenkis dimension bounds for two- and three-layer networks. Neural Com-
putation 5 (3): 371{373, 1993.

[23] P. Bartlett. The sample complexity of pattern classi�cation with neural networks: the size of the
weights is more important than the size of the network. Technical report, Department of Systems
Engineering, Australian National University, May 1996.

[24] P. Bartlett and R. C. Williamson. The Vapnik-Chervonenkis dimension and pseudodimension of two-
layer neural networks with discrete inputs. Neural Computation 8: 653{656, 1996.

[25] P. L. Bartlett. Learning with a slowly changing distribution. In Proc. 5th Annu. Workshop on Comput.
Learning Theory, pages 243{252. ACM Press, New York, NY, 1992.

[26] P. L. Bartlett, P. M. Long, and R. C. Williamson. Fat-shattering and the learnability of real-valued
functions. Journal of Computer and System Sciences, 52(3): 434{452, 1996. Extended abstract in
Proceedings of COLT'94.

[27] E. Baum and D. Haussler. What size net gives valid generalization? Neural Computation, 1(1):151{160,
1989.

[28] E. B. Baum. Polynomial time algorithms for learning neural nets. In Proc. 3rd Annu. Workshop on
Comput. Learning Theory, pages 258{272. Morgan Kaufmann, San Mateo, CA, 1990.

[29] S. Ben-David, G. M. Benedek, and Y. Mansour. A parametrization scheme for classifying models
of learnability. In Proc. 2nd Annu. Workshop on Comput. Learning Theory, pages 285{302. Morgan
Kaufmann, San Mateo, CA, 1989. Journal version appears as A parameterization scheme for classifying
models of PAC learnability, Information and Computation 120 (1): 11{21, 1995.

[30] S. Ben-David, N. Cesa-Bianchi, D. Haussler, and P. M. Long. Characterizations of learnability for
classes of f0; : : : ; ng-valued functions. J. of Comp. and Sys. Sci. 50(1): 74{86, 1995.

[31] S. Ben-David, N. Cesa-Bianchi, and P. M. Long. Characterizations of learnability for classes of
f0; :::; ng-valued functions. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 333{340.
ACM Press, New York, NY, 1992.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 43

[32] G. Benedek and A. Itai. Learnability with respect to �xed distributions. Theoret. Comput. Sci.,
86(2):377{389, 1991.

[33] G. M. Benedek and A. Itai. Learnability by �xed distributions. In Proc. 1st Annu. Workshop on
Comput. Learning Theory, pages 80{90. Morgan Kaufmann, San Mateo, CA, 1988.

[34] G. M. Benedek and A. Itai. Dominating distributions and learnability. In Proc. 5th Annu. Workshop
on Comput. Learning Theory, pages 253{264. ACM Press, New York, NY, 1992.

[35] A. Bertoni, P. Campadelli, A. Morpurgo, and S. Panizza. Polynomial uniform convergence and
polynomial-sample learnability. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages
265{271. ACM Press, New York, NY, 1992.

[36] A. Blum and R. L. Rivest. Training a 3-node neural net is NP-Complete. In D. S. Touretzky, editor,
Advances in Neural Information Processing Systems I, pages 494{501. Morgan Kaufmann, 1989.

[37] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. J. ACM, 36(4):929{965, 1989.

[38] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. E. Schapire, and M. K. Warmuth. How
to use expert advice. In Proc. 25th Annu. ACM Sympos. Theory Comput., pages 382{391. ACM Press,
New York, NY, 1993.

[39] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
MA., 1990.

[40] L. Devroye, L. Gyor� and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag,
New York, 1996.

[41] R. Dudley, S. Kulkarni, T. Richardson, and O. Zeitouni. A metric entropy bound is not su�cient for
learnability. IEEE Transactions on Information Theory 40(3): 883{885, 1994.

[42] R. M. Dudley. Central limit theorems for empirical measures. Annals of Probability, 6(6):899{929,
1978.

[43] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of
examples needed for learning. Information and Computation, 82:247{261, 1989.

[44] U. Faigle and W. Kern. On learnability of monotone DNF functions under uniform distribution.
Manuscript, Department of Mathematics, University of Twente, Netherlands, 1990.

[45] M. Flammini, A. Marchetti-Spaccamela, and L. K. Cera. Learning DNF formulae under classes of
probability distributions. In Proc. 5th Annu. Workshop on Comput. Learning Theory, pages 85{92.
ACM Press, New York, NY, 1992.

[46] M. L. Furst, J. C. Jackson, and S. W. Smith. Improved learning of AC0 functions. In Proc. 4th Annu.
Workshop on Comput. Learning Theory, pages 317{325. Morgan Kaufmann, San Mateo, CA, 1991.

[47] M. Garey and D. Johnson. Computers and Intractibility: A Guide to the Theory of NP-Completeness.
Freemans, San Francisco, 1979.

[48] P. Goldberg and M. Jerrum. Bounding the Vapnik-Chervonenkis dimension of concept classes param-
eterized by real numbers. Machine Learning, 18(2-3): 131{148, 1995. (Extended abstract appeared in
Proceedings of 6th Annual ACM Conference on Computational Learning Theory, pages 361{369. ACM
Press, 1993.)

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 44

[49] S. A. Goldman and M. J. Kearns. On the complexity of teaching. In Proc. 4th Annu. Workshop on
Comput. Learning Theory, pages 303{314. Morgan Kaufmann, San Mateo, CA, 1991.

[50] S. A. Goldman, M. J. Kearns, and R. E. Schapire. Exact identi�cation of circuits using �xed points
of ampli�cation functions. In Proc. of the 31st Symposium on the Foundations of Comp. Sci., pages
193{202. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[51] S. A. Goldman, M. J. Kearns, and R. E. Schapire. On the sample complexity of weak learning. In Proc.
3rd Annu. Workshop on Comput. Learning Theory, pages 217{231. Morgan Kaufmann, San Mateo,
CA, 1990.

[52] M. Golea, M. Marchand and T. Hancock. On learning �-perceptron networks on the uniform distri-
bution. Neural Networks 9: 67{82, 1996.

[53] T. Hancock, M. Golea, and M. Marchand. Learning nonoverlapping perceptron networks from examples
and membership queries. Machine Learning 16(3): 161{183, 1994.

[54] L. Gurvits, L. and P. Koiran. Approximation and learning of convex superpositions. In Proceedings of
Eurocolt'95, Springer-Verlag Lecture Notes in Arti�cial Intelligence, pages 222{236.

[55] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Inform. Comput., 100(1):78{150, Sept. 1992.

[56] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for polynomial
learnability. Inform. Comput., 95(2):129{161, December 1991.

[57] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting f0,1g functions on randomly drawn
points. Information and Computation 108(2): 212{261, 1994. (Extended abstract in Proceedings of the
29th Annual IEEE Symposium on Foundations of Computer Science, pages 100{109. IEEE Computer
Society Press, 1988.)

[58] D. P. Helmbold and P. M. Long. Tracking drifting concepts by minimizing disagreements. Machine
Learning 14 (1): 27{45, 1994.

[59] D. P. Helmbold and P. M. Long. Tracking drifting concepts using random examples. In Proc. 4th Annu.
Workshop on Comput. Learning Theory, pages 13{23. Morgan Kaufmann, San Mateo, CA, 1991.

[60] D. P. Helmbold and M. K. Warmuth. Some weak learning results. In Proc. 5th Annu. Workshop on
Comput. Learning Theory, pages 399{412. ACM Press, New York, NY, 1992.

[61] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley,
Redwood City, 1991.

[62] W. Hoe�ding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13{30, Mar. 1963.

[63] K. H�o�gen and H. Simon. Robust trainability of single neurons. In Proc. 5th Annu. Workshop on
Comput. Learning Theory, pages 428{439. ACM Press, New York, NY, 1992.

[64] S. B. Holden. On the theory of generalization and self-structuring in linearly weighted connectionist
networks. PhD thesis, University of Cambridge, Sept. 1993. Also appears as Cambridge University
Engineering Department technical report CUED/F-INFENG/TR.161, January 1994.

[65] J. Jackson and A. Tomkins. A computational model of teaching. In Proc. 5th Annu. Workshop on
Comput. Learning Theory, pages 319{326. ACM Press, New York, NY, 1992.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 45

[66] S. Judd. Learning in neural networks. In Proc. 1st Annu. Workshop on Comput. Learning Theory,
pages 2{8. Morgan Kaufmann, San Mateo, CA, 1988.

[67] M. Karpinski and A. Macintyre. Polynomial bounds for VC Dimension of Sigmoidal Neural Networks.
In Proceedings of the 27th annual ACM Symposium on the Theory of Computing, 200{208, 1995.

[68] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of Boolean formulae. In Proc. 19th
Annu. ACM Sympos. Theory Comput., pages 285{294. ACM Press, New York, NY, 1987.

[69] M. J. Kearns. The Computational Complexity of Machine Learning. ACM Distinguished Dissertation
Series. The MIT Press, Cambridge, MA., 1989.

[70] M. J. Kearns and R. E. Schapire. E�cient distribution-free learning of probabilistic concepts. Journal of
Computer and System Sciences 48: 464{497, 1994. (Extended abstract in Proc. of the 31st Symposium
on the Foundations of Comp. Sci., pages 382{391. IEEE Computer Society Press, Los Alamitos, CA,
1990.)

[71] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward e�cient agnostic learning. In Proc. 5th Annu.
Workshop on Comput. Learning Theory, pages 341{352. ACM Press, New York, NY, 1992.

[72] M.J. Kearns and L.G. Valiant. Cryptographic limitations on learning Boolean formulae and �nite
automata. Journal of the ACM 41(1): 67{95, 1994.

[73] M.J. Kearns and U. Vazirani (1995). Introduction to Computational Learning Theory, MIT Press 1995.

[74] M. Kharitonov. Cryptographic hardness of distribution-speci�c learning. In Proc. 25th Annu. ACM
Sympos. Theory Comput., pages 372{381. ACM Press, New York, NY, 1993.

[75] P. Koiran and E.D. Sontag, Neural Networks with Quadratic VC Dimension. Journal of Computer and
System Sciences 54(1): 190{198, 1997

[76] W. S. Lee, P. L. Bartlett, and R. C. Williamson. Lower bounds on the VC-dimension of smoothly
parametrized function classes. Neural Computation 7: 990{1002, 1995.

[77] M. Li and P. M. B. Vitanyi. Learning simple concepts under simple distributions. SIAM J. Computing
20(5): 911{935, 1991.

[78] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability.
In Proc. of the 31st Symposium on the Foundations of Comp. Sci., pages 574{579. IEEE Computer
Society Press, 1989.

[79] W. Maass. Agnostic PAC-learning of functions on analog neural nets (extended abstract) In Ad-
vances in Neural Information Processing Systems, 6. Morgan Kaufmann, 1993. Full version: Neural
Computation 7(5): 1054{1078, 1995.

[80] W. Maass. Bounds on the computational power and learning complexity of analog neural nets (extended
abstract). In Proceedings of 25th Annual ACM Symposium on the Theory of Computing, pages 335{344.
ACM Press, 1993.

[81] W. Maass. Neural nets with superlinear VC-dimension. Neural Computation, 6(5): 877{884, 1994.

[82] W. Maass. On the complexity of learning on feedforward neural nets. Manuscript, Institute for
Theoretical Computer Science, Technische Universitaet Graz., 1993.

[83] W. Maass. Vapnik-Chervonenkis dimension of neural nets. In The Handbook of Brain Theory and
Neural Networks (ed. M.A. Arbib), Bradford Books/MIT Press, 1995, pp. 1000{1003.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 46

[84] A. Macintyre and E. D. Sontag. Finiteness results for sigmoidal \neural" networks. In Proceedings of
25th Annual ACM Symposium on the Theory of Computing, pages 325{334. ACM Press, 1993.

[85] C. McDiarmid. On the method of bounded di�erences. In J. Siemons, editor, Surveys in Combina-
torics, 1989, London Mathematical Society Lecture Note Series (141). Cambridge University Press,
Cambridge, UK, 1989.

[86] M. Marchand and S. Hadjifaradji. Strong unimodality and exact learning of constant depth �-
perceptron networks. in D.S. Touretzky, M.C. Moxer and M.E. Hasselmo, eds., Advances in Neural
Information Processing Systems 8, 288{294, MIT Press, Cambridge MA, 1996.

[87] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive de�nite
functions. Constructive Approximation, 2:11{22, 1986.

[88] B. Natarajan. Probably approximate learning over classes of distributions. SIAM J. Computing,
21(3):438{449, 1992.

[89] B. K. Natarajan. On learning sets and functions. Machine Learning, 4(1), 1989.

[90] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, San Mateo, Cali-
fornia, 1991.

[91] B. K. Natarajan. Occam's razor for functions. In Proc. 6th Annu. Workshop on Comput. Learning
Theory, pages 370{376. ACM Press, New York, NY, 1993.

[92] G. Pagallo and D. Haussler. A greedy method for learning �-DNF functions under the uniforn distri-
bution. Technical report, University of California at Santa Cruz, UCSC-CRL-89-12, 1989.

[93] L. Pitt and L. Valiant. Computational limitations on learning from examples. J. ACM, 35:965{984,
1988.

[94] L. Pitt and M. K. Warmuth. Prediction preserving reducibility. J. of Comput. Syst. Sci., 41(3):430{
467, December 1990. Special issue on the Third Annual Conference of Structure in Complexity Theory
(Washington, DC., June 88).

[95] D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[96] K. Romanik. Testing as a dual to learning. Technical Report UMIACS-TR-91.93, CS-TR-2704, Dept.
of Computer Science, University of Maryland, June 1991.

[97] K. Romanik. Approximate testing and learnability. In Proc. 5th Annu. Workshop on Comput. Learning
Theory, pages 327{332. ACM Press, New York, NY, 1992.

[98] A. Sakurai. Tighter bounds of the VC-dimension of three-layer networks. In Proceedings of World
Congress on Neural Networks, pages 540{543, 1993.

[99] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13:145{147, 1972.

[100] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{227, 1990.

[101] R. E. Schapire. The Design and Analysis of E�cient Learning Algorithms. ACM Distinguished
Dissertation Awards Series. The MIT Press, Cambridge, MA., 1991.

[102] J. Shawe-Taylor. Building symmetries into feedforward network architectures. In Proceedings of First
IEE Conference on Arti�cial Neural Networks, pages 158{162, 1989.

[103] J. Shawe-Taylor. Sample sizes for threshold networks with equivalences. Information and Computation,
118(1): 65{72, 1995.

Neural Computing Surveys 1, 1-47, 1997, http://www.icsi.berkeley.edu/~jagota/NCS 47

[104] J. Shawe-Taylor and M. Anthony. Sample sizes for multiple output threshold networks. Network:
Computation in Neural Systems, 2:107{117, 1991.

[105] J. Shawe-Taylor, M. Anthony, and N. Biggs. Bounding sample-size with the Vapnik-Chervonenkis
dimension. Discrete Applied Mathematics, 42:65{73, 1993.

[106] J. Shawe-Taylor, P. Bartlett, R. Williamson, M. Anthony. Structural risk minimisation over data-
dependent hierarchies. submitted.

[107] S. Shelah. A combinatorial problem: Stability and order for models and theories in in�nitary languages.
Paci�c Journal of Mathematics, 41:247{261, 1972.

[108] A. Shinohara and S. Miyano. Teachability in computational learning. New Generation Computing,
8:337{347, 1991.

[109] H. U. Simon. General bounds on the number of examples needed for learning probabilistic concepts. In
Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory, pages 402{411.
ACM Press, New York, NY, 1993. Full version: J. of Comp. and Sys. Sci. 52(2): 239{254, 1996.

[110] H. U. Simon. Bounds on the number of examples needed for learning functions. In Computational
Learning Theory: Eurocolt'93. Oxford University Press, 1994.

[111] E. Sontag. Feedforward nets for interpolation and classi�cation. J. Comp. Syst. Sci, 45:20{48, 1992.

[112] L.G. Valiant. Deductive learning. Phil. Trans. Roy. Soc. Lond. A, 312:441{446, 1984.

[113] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134{1142, Nov. 1984.

[114] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York, 1982.

[115] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[116] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probab. and its Applications, 16(2):264{280, 1971.

[117] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In Proc. 3rd
Annu. Workshop on Comput. Learning Theory, pages 314{326. Morgan Kaufmann, San Mateo, CA,
1990.

[118] D. Wolpert (editor). The Mathematics of Generalization: the Proceedings of the SFI/CNLS Workshop
on Formal Approaches to Supervised Learning, Santa Fe, 1992. Addison-Wesley, Reading, MA, 1995.

[119] K. Yamanishi. A learning criterion for stochastic rules. Machine Learning 9: 165{203, 1992.

