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Speech Pattern Recognition

~

«Soft pattern classification plus temporal sequence

Integration

eSupervised pattern classification: class labels use

In training

eUnsupervised pattern classification: class labels nc

available or used
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*Training: learning parameters of classifier

*Testing: classify independent test set, compare

labels and score
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Feature Extraction Criteria
eClass discrimination
Generalization
*Parsimony (efficiency)
Y,
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Feature Vector Size

*Best representations for discrimination on training
set are large (highly dimensioned)

*Best representations for generalization to test set a

(typically) succinct)
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Dimensionality Reduction

*Principal components (i.e., SVD, KL transform,
eigenanalysis ...)

Linear Discriminant Analysis (LDA)

*Application-specific knowledge

e[eature Selection via PR Evaluation
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FISHER'S LINEAR DISCRIMINANT

Xz

N

L

Projection of samples onto a line.
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PR Methods

Minimum Distance

eDiscriminant Functions

e[ inear Discriminant

Nonlinear

Discriminant

(e.g, quac

ratic, neural networks)

eStatistical Discriminant Functions
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Minimum Distance
*\/ector or matrix representing element

eDefine a distance function

~

Choose the class of stored element closest tor

Input

*Choice of distance equivalent to implicit statisti

assumptions

*For speech, temporal variability complicates thi
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z, = template vector (prototype)

X = input vector

Choosda to minimize distance

argmin./(x—2z)"(x—z) = argmin(x—2z)"(x—2z) = argmin(X’x+ z'z —2x'2)

(22 —2X'Z[] _ N
B

rm><§<T o
argmaxs— = argmax'z —5z'z

If z'z =1 foralli U argmax(x'z)
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Problems with Min Distance

*Proper scaling of dimensions (size, discrimination)

For high dim, sparsely sampled space
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4 ™
Decision Rule for Min Distance

*Nearest Neighbor (NN) - In the limit of infinite
samples, at most twice the error of optimum
classifier

*k-Nearest Neighbor (kNN)

Lots of storage for large problems; potentially Iz

searches

N
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Better to throw away bad data than to reduce its

weight

Some Opinions

~

Dimensionality-reduction based on variance often

bad choice for supervised pattern recognition
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Discriminant Analysis

eDiscriminant functions max for correct class, min

for others

eDecision surface between classes

Linear decision surface for 2-dim is line, for 3
plane; generally called hyperplane

*For 2 classes, surfaceuadk +w, = 0

»2-class quadratic case, surface™ak+ w'x+w, = 0
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Training Discriminant Functions

Minimum distance
eFIisher linear discriminant

*Gradient learning
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Generalized Discriminators - ANNs

McCulloch Pitts neural model
*Rosenblatt Perceptron

Multilayer Systems
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The Perceptron
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McCulloch-Pitts Neuron - Rosenblatt Perceptron
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Perceptron Convergence

If classes are linearly separable the following rule will converge in a
finite number of steps :

For each patterr at time stefk;

X(K) Uclass 1w'(K)x(k) <0

[ w(k+1) =w(k) +cx(K)
X(K) U class 2w'(K)x(k) =0

[ w(k+1) =w(k)—cx(K

N

[]
[]

else D wo(k+1) = "w(K)

9 - y
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Multilayer Perceptrons
Heterogeneous, “hard” nonlinearity :(DAID, 1961)

feature

L

subsets | Gaus. class

>

/0

Perceptron

Homogeneous, “soft”
(“modern” MLP)

N

nonlinearity
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f(y)

1 . .
f(y) = Tt o (sigmoid)

0<i(y)<1
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sSome PR Issues
*Testing on the training set

*Training on the test set

*NO0. parameters vs no. training examples: overfitting

and overtraining
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