Spring,1999

University of California Berkeley

College of Engineering Department of Electrical Engineering and Computer Sciences

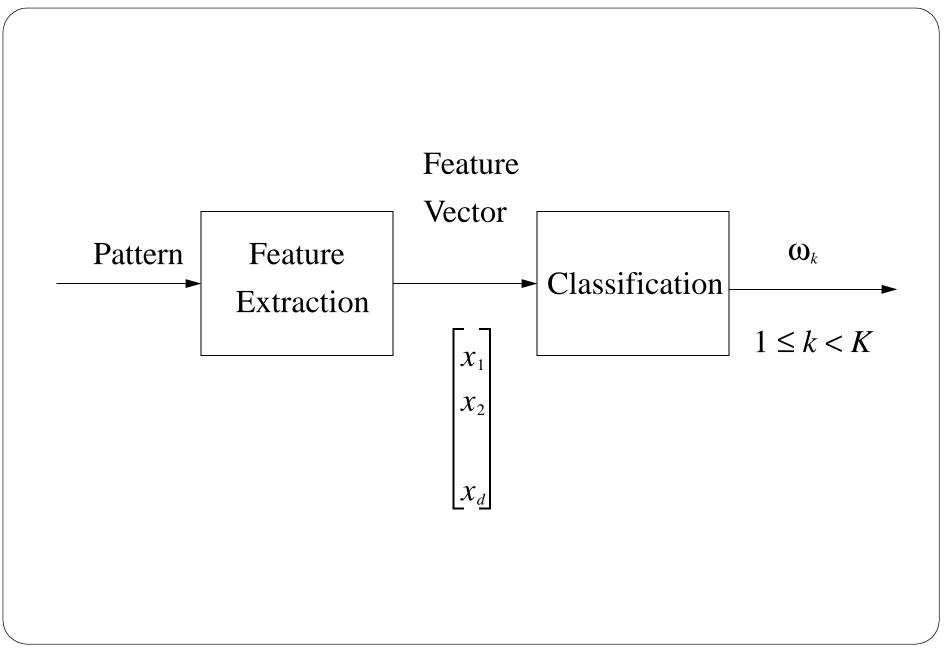
Professors : N.Morgan / B.Gold EE225D

Pattern Classification

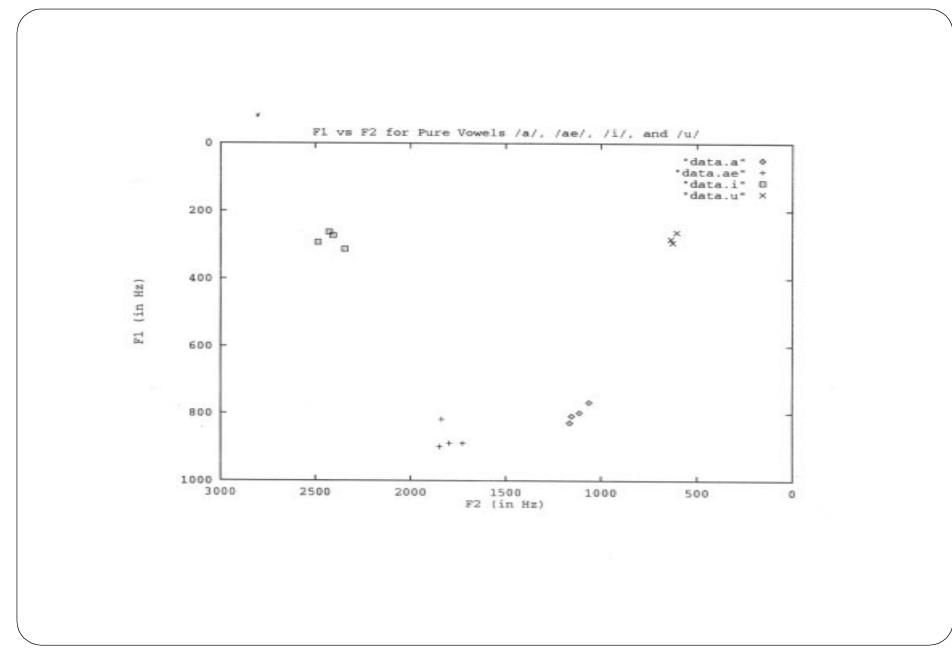
Lecture 8

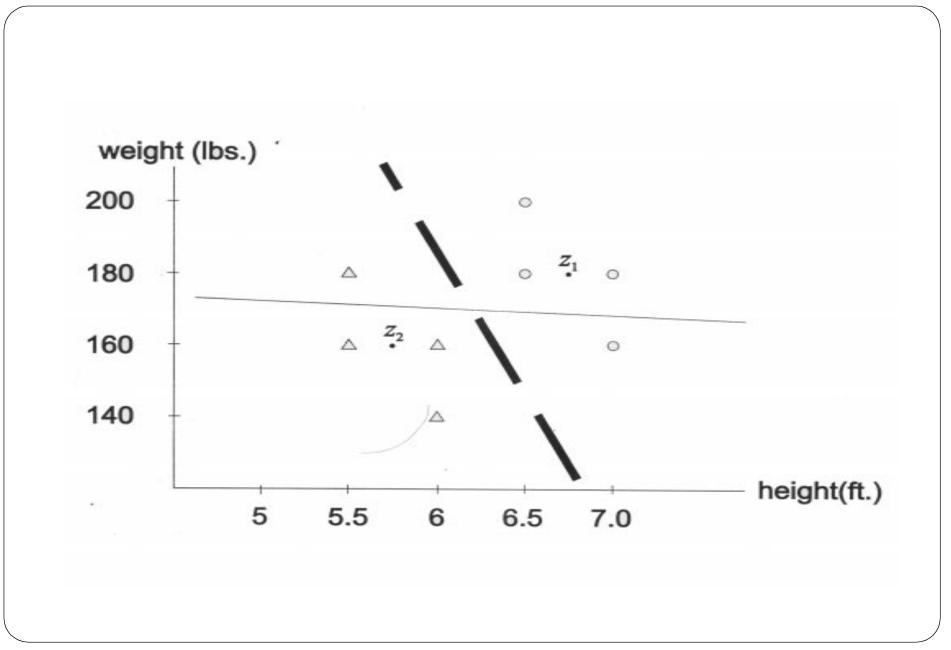
Speech Pattern Recognition

- •Soft pattern classification plus temporal sequence integration
- •Supervised pattern classification: class labels used in training
- •Unsupervised pattern classification: class labels not available or used



Training: learning parameters of classifier
Testing: classify independent test set, compare with labels and score

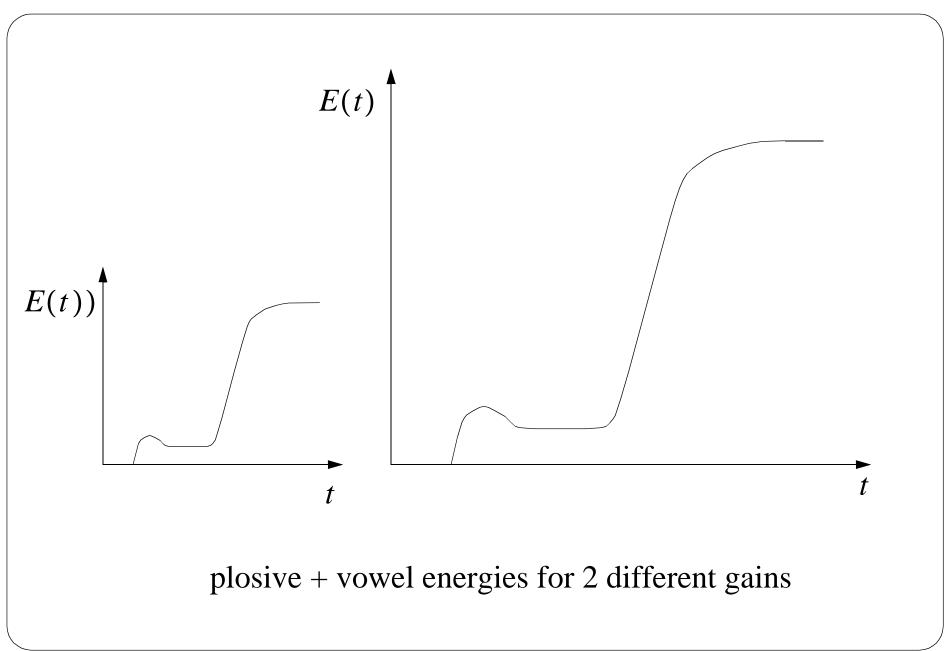




EE 225D

Feature Extraction Criteria

- •Class discrimination
- •Generalization
- •Parsimony (efficiency)



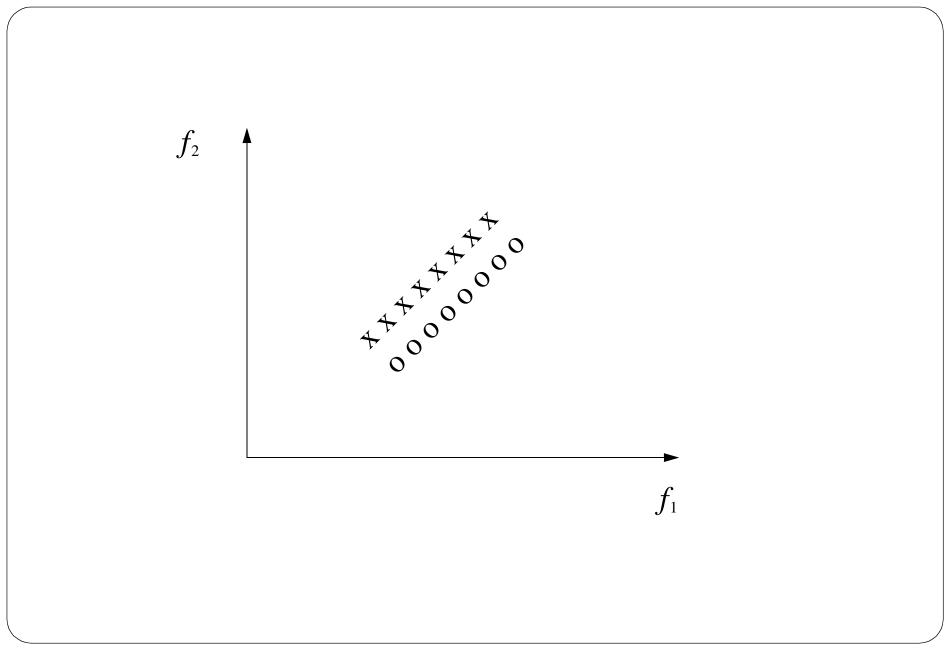
$$\frac{\partial}{\partial t} \log CE(t) = \frac{\partial}{\partial t} (\log C + \log E(t))$$
$$= \frac{\partial}{\partial t} \log E(t)$$

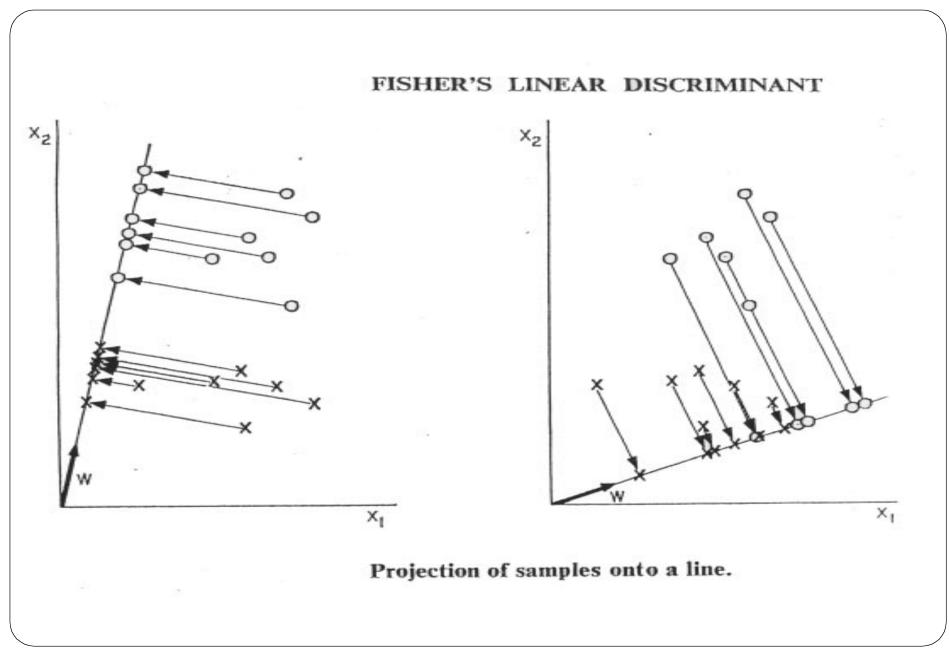
Feature Vector Size

- •Best representations for discrimination on training set are large (highly dimensioned)
- •Best representations for generalization to test set are (typically) succinct)

Dimensionality Reduction

- •Principal components (i.e., SVD, KL transform, eigenanalysis ...)
- •Linear Discriminant Analysis (LDA)
- •Application-specific knowledge
- •Feature Selection via PR Evaluation





EE 225D

PR Methods

- •Minimum Distance
- •Discriminant Functions
- •Linear Discriminant
- •Nonlinear Discriminant
 - (e.g, quadratic, neural networks)
- •Statistical Discriminant Functions

Minimum Distance

- •Vector or matrix representing element
- •Define a distance function
- •Choose the class of stored element closest to new input
- •Choice of distance equivalent to implicit statistical assumptions
- •For speech, temporal variability complicates this

$$z_{i} = \text{template vector (prototype)}$$

$$x = \text{input vector}$$
Choose *i* to minimize distance
$$\arg_{i}\min\sqrt{(x-z_{i})^{T}(x-z_{i})} = \arg_{i}\min(x-z_{i})^{T}(x-z_{i}) = \arg_{i}\min(x^{T}x+z_{i}^{T}z_{i}-2x^{T}z_{i})$$

$$\arg_{i}\max\left(\frac{z_{i}^{T}z_{i}-2x^{T}z_{i}}{-2}\right) = \arg_{i}\max\left(x^{T}z_{i}-\frac{1}{2}z_{i}^{T}z_{i}\right)$$
If $z_{i}^{T}z_{i} = 1$ for all $i \Rightarrow \arg_{i}\max(x^{T}z_{i})$

Problems with Min Distance

- •Proper scaling of dimensions (size, discrimination)
- •For high dim, sparsely sampled space

Decision Rule for Min Distance

- •Nearest Neighbor (NN) in the limit of infinite samples, at most twice the error of optimum classifier
- •k-Nearest Neighbor (kNN)
- •Lots of storage for large problems; potentially large searches

Some Opinions

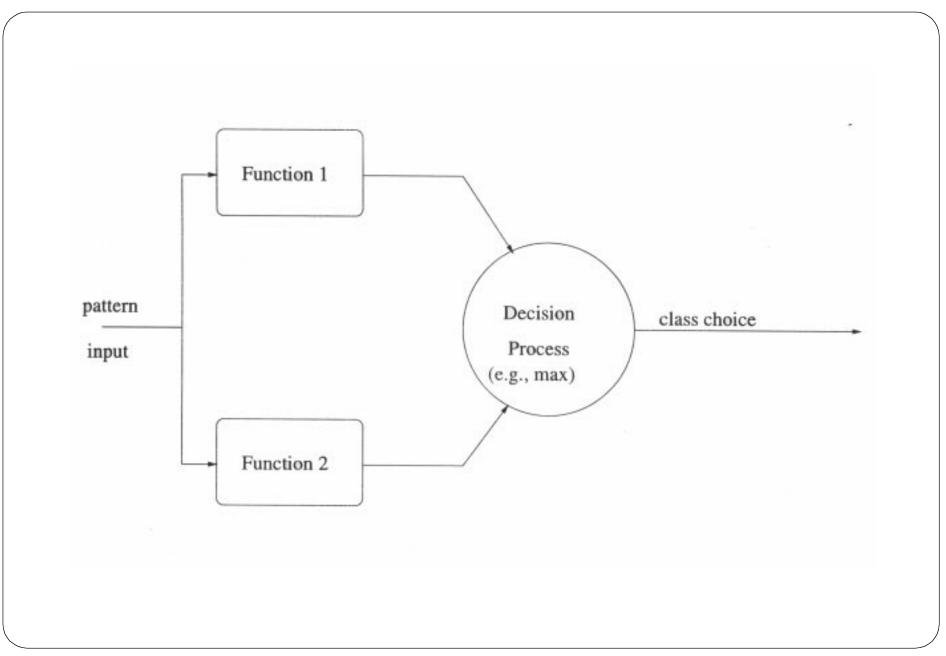
- •Better to throw away bad data than to reduce its weight
- •Dimensionality-reduction based on variance often a
 - bad choice for supervised pattern recognition

Discriminant Analysis

- •Discriminant functions max for correct class, min for others
- •Decision surface between classes
- •Linear decision surface for 2-dim is line, for 3 is

plane; generally called hyperplane

- •For 2 classes, surface at $\omega^T x + \omega_0 = 0$
- •2-class quadratic case, surface at $x^TWx + \omega^Tx + \omega_0 = 0$

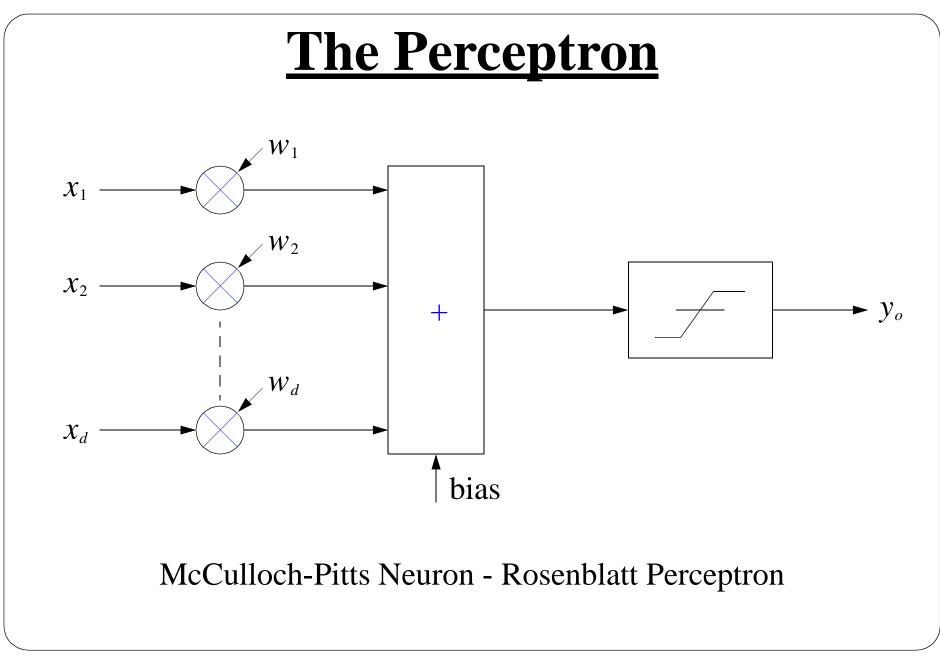


Training Discriminant Functions

- •Minimum distance
- •Fisher linear discriminant
- •Gradient learning

Generalized Discriminators - ANNs

- •McCulloch Pitts neural model
- •Rosenblatt Perceptron
- •Multilayer Systems



Perceptron Convergence

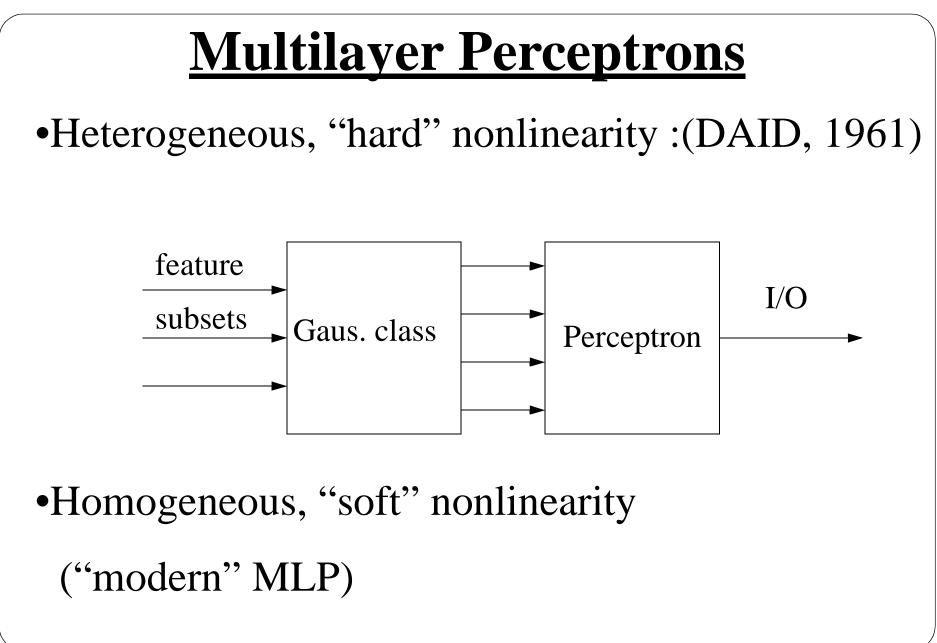
If classes are linearly separable the following rule will converge in a finite number of steps :

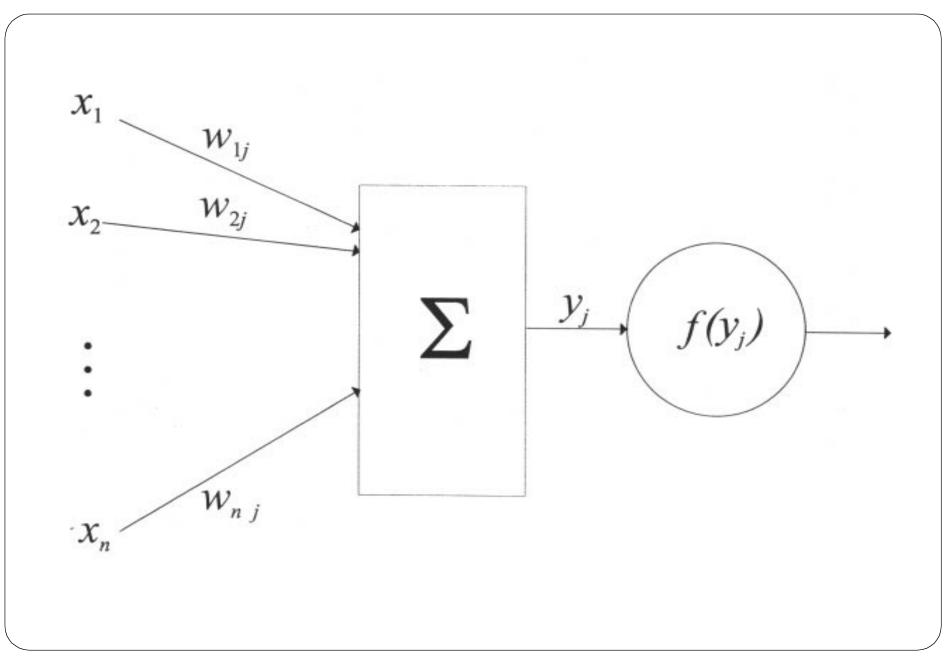
For each pattern *x* at time step *k*;

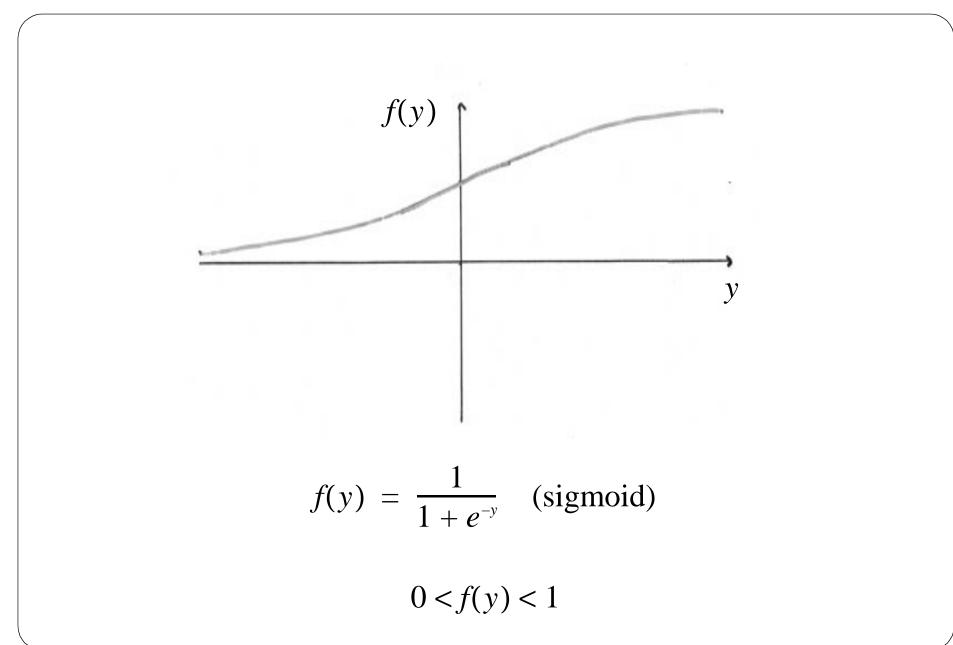
if

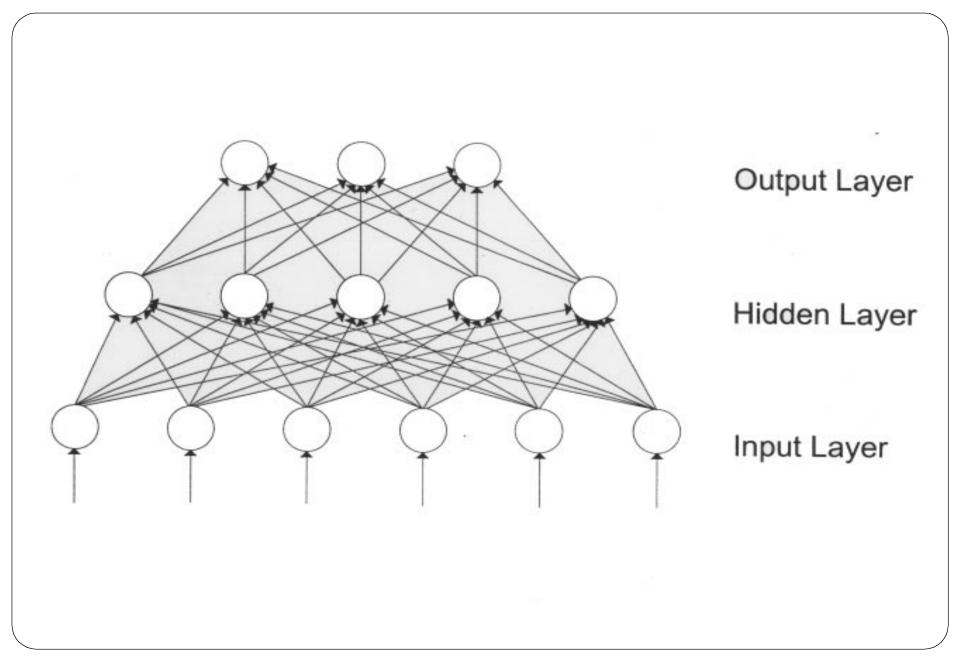
$$\begin{aligned}
x(k) \in \text{class } 1, \ \omega^{T}(k)x(k) \leq 0 \\
\Rightarrow \omega(k+1) = \omega(k) + cx(k) \\
x(k) \in \text{class } 2, \ \omega^{T}(k)x(k) \geq 0 \\
\Rightarrow \omega(k+1) = \omega(k) - cx(k)
\end{aligned}$$
else

$$\begin{aligned}
else \left(\omega(k+1) = ""\omega(k) \right)
\end{aligned}$$









EE 225D

Some PR Issues

- •Testing on the training set
- •Training on the test set
- •No. parameters vs no. training examples: overfitting

and overtraining