Phonetic Modeling in ASR

Chuck Wooters 3/16/05 EECS 225d

Introduction

VARIATION

 The central issue in Automatic Speech Recognition

Many Types of Variation

 channel/microphone type
 @ environmental noise speaking style ø vocal anatomy ø gender @ accent health ø etc.

Focus Today "You say pot[ey]to, I say pot[a]to..."

How can we model variation in pronunciation?

Pronunciation Variation

A careful transcription of conversational speech by trained linguists has revealed...

80 Ways To Say "and"

N	phonetic transcription			Ν	Phonetic Transcription			Ν	Phonetic Transcription									
82	ae	n				2	ax	nx				1	ix	dcl	ď			
63	eh	n				2	q	ae	æ	n	d	1	ae	eh	n			
45	ix	n				2	q	ix	n			1	hh	n				
35	ax	n				2	ix	n	dcl	đ		1	ix	n	t			
34	en					2	ih					1	ae	ax	n	dci	đ	
30	n					2	eh	eh	n			1	iy	eh	n			
20	ae	n	dcl	đ		2	q	eh	nx			1	m					\square
17	ih	n				2	ix	đ	n			1	ae	ae	n	d		
17	q	ae	n			1	eh	m				1	mx					\square
11	ae	n	d			1	ax	n	dcl	đ		1	q	ae	ae	n		
7	q	eh	n			1	aw	n				1	q	ae	ae	n	del	đ
7	ae	nx				1	æ	q				1	q	ae	eh	n	del	đ
6	ae	ae	n			1	eh	dc1				1	q	ae	ih	n		
6	ah	n				1	ah	nx				1	aa	n				\square
5	eh	nx				1	æ	n	t			1	q	ae	n	d		\square
4	uh	n				1	eh	đ				1	?	пx				\square
4	ix	nx				1	ah	n	dcl	đ		1	q	ae	n	q		
4	q	ae	n	dcl	d	1	ey	ih	n	dc1	d	1	eh	n	m			
3	eh	n	đ			1	æ	ix	n			1	q	eh	en	dcl		\square
3	q	ae	nx			1	æ	nx	ax			1	eh	ng				
3	eh					1	ax	ng				1	q	eh	n	q		\square
2	ae	n	dcl			1	ay	n				1	em					\square
2	ae					1	iĥ	ah	n	đ		1	q	eh	ow	m		
2	ax	m				1	æ	hh				1	q	ih	n			
2	ax	n	đ			1	ih	ng				1	q	ix	en			
2	ae	eh	n	dcl	d	1	ix					1	er					
2	eh	n	dcl	đ		1	æ	n	đ	dc1								

From "SPEAKING IN SHORTHAND - A SYLLABLE-CENTRIC PERSPECTIVE FOR UNDERSTANDING PRONUNCIATION VARIATION" by Steve Greenberg

Outline

Phonetic Modeling Sub-Word models Phones (mono-, bi-, di- and triphones) Syllables Data-driven units
 Cross-word modeling Whole-word models Lexicons (Dictionaries) for ASR

Phonetic Modeling

Phonetic Modeling

How do we select the basic units for recognition?

Units should be <u>accurate</u>
Units should be <u>trainable</u>
Units should be <u>generalizable</u>
We often have to balance these against each other.

Sub-Word Models

Sub-Word Models

Phones Context Independent
 Context Dependent Syllables Data-driven units
 Cross-word modeling

Phones

Phones

Note: "phones" != "phonemes" (see G&M pg. 310)

.g.:	Phoneme	Phone			
	Ascii-65	AAAAA			

ØE.

"Flavors" of Phones

Context Independent:
 Monophones

Context Dependent:
 Biphones
 Diphones
 Triphones

Context Independent Phones

Context Independent "Monophones" "cat" = [k ae t]

Easy to train:
only about 40 monophones for English
The basis of other sub-word units
Easy to add new pronunciations to lexicon

Typical English Phone Set

Phone	Example	Phone	Example	Phone	Example
iy	F <u>EE</u> L	ih	F <u>I</u> LL	ae	G <u>A</u> S
٥۵	F <u>A</u> THER	ah	BUD	٥٥	C <u>AU</u> GHT
ay	B <u>I</u> TE	۵X	C <u>o</u> mply	ey	D <u>AY</u>
eh	T <u>E</u> N	er	T <u>UR</u> N	ow	T <u>o</u> ne
aw	H <u>OW</u>	оу	C <u>OI</u> N	uh	в <u>оо</u> к
uw	T <u>OO</u> L	b	BIG	р	<u>P</u> IG
d	DIG	+	SA <u>T</u>	g	<u>с</u> ит
k	<u>с</u> ит	f	<u>F</u> ORK	۷	<u>v</u> at
S	<u>s</u> it	Z	ZAP	th	<u>th</u> in
dh	<u>th</u> en	sh	<u>SH</u> E	zh	<u>g</u> enre
1	LID	r	RED	У	<u> Y</u> ACHT
w	<u>w</u> ітн	hh	<u>H</u> ELP	m	<u>M</u> AT
n	<u>N</u> O	ng	SI <u>NG</u>	ch	<u>CH</u> IN
jh	ED <u>G</u> E				

Adapted from "Spoken Language Processing" by Xuedong Huang, et. al.

Monophones

Major Drawback

Not very powerful for modeling variation:
Example: "key" vs "coo"

Context Dependent Phones

Biphones

Taking into account the context (what sounds are to the right or left) in which the phone occurs.

Left biphone of [ae] in "cat": k_ae
Right biphone of [ae] in "cat": ae_t

"key" = k_iy iy_# "coo" = k_uw uw_#

Biphones

 More difficult to train than monophones:
 Roughly (40² + 40²) biphones for English

If not enough training for a biphone model, can "backoff" to monophone

Triphones

Consider the sounds to the left AND right
Good modeling of variation
Most widely used in ASR systems

Triphones

Can be difficult to train:

There are LOTS of possible triphones (roughly 40^3)

Not all occur

If not enough data to train a triphone, typically back-off to left or right biphone

Triphones

Sometimes helps to cluster similar triphones

Diphones

Modeling the transitions between phones
Extend from middle of one phone to the middle of the next

"key" = #_k k_iy iy_# "coo" = #_k k_uw uw_#

Syllables

"Strengths"

Syllables

Good modeling of variation

Somewhere between triphones and wholeword models

 Can be difficult to train (like triphones)
 Practical experiments have not shown improvements over triphone-based systems.

Data-driven Sub-Word Units

Data-driven Sub-Word Units

👁 Basic Idea:

More accurate modeling of acoustic variation

 Cluster data into homogeneous "groups"
 sounds with similar acoustics should group together

Subset Weight Use these automatically-derived units instead of linguistically-based sub-word units

Data-driven Sub-Word Units

Ø Difficulties:

Can have problems with training, depending on number of units

Real problem: generalizability

How do we add words to the system when we don't know what the units "mean"

Oreate a mapping from phones?

Cross-word Modeling

Cross-word Modeling

Co-articulation spans word boundaries:
 Did you eat yet?" -> jeatyet
 "could you" -> couldja
 "I don't know" -> idunno

We can achieve better modeling by looking across word boundaries

More difficult to implement- what would dictionary look like?

Usually use lattices when doing cross-word modeling

Whole-word Models

Whole-word Models

In some sense, the most "natural" unit

- Good modeling of coarticulation within the word
- If context dependent, good modeling across words
- Good when vocabulary is small e.g. digits:
 - @ 10 words
 - Context dependent: 10x10x10 = 1000 models

Not a huge problem for training

Whole-word Models

Problems:

ø difficult to train: needs lots of examples of *every* word

not generalizable: adding new words requires more data collection

Lexicons

Lexicons for ASR

Contains:
 words
 pronunciations
 optionally:
 alternate pronunciations
 pronunciation probabilities
 No definitions

cat: k ae t key: k ey coo: k uw the: 0.6 dh iy 0.4 dh ax

Lexicon Generation

Where do lexical entries come from?
 Hand labeling
 Rule generated

Not too bad for English, but can be a big expense when building a recognizer for a new language

For a small task, may want to consider whole-word models to bypass lexicon gen

