Phonetic Modeling in ASR

Chuck Wooters

$$
3 / 16 / 05
$$

EECS 225d

Introduction

VARIATION

- The central issue in

Automatic Speech Recognition

Many Types of Variation

- channel/microphone type
- environmental noise
- speaking style
- vocal anatomy
- gender
- accent
- health
- etc.

Focus Today

"You say pot[ey]to, I say pot[a]to..."

- How can we model variation in pronunciation?

Pronunciation Variation

- A careful transcription of conversational speech by trained linguists has revealed...

80 Ways To Say "and"

From "SPEAKING IN SHORTHAND - A SYLLABLE-CENTRIC PERSPECTIVE FOR UNDERSTANDING PRONUNCIATION VARIATION" by Steve Greenberg

Outline

- Phonetic Modeling
- Sub-Word models
- Phones (mono-, bi-, di- and triphones)
- Syllables
- Data-driven units
- Cross-word modeling
- Whole-word models
- Lexicons (Dictionaries) for ASR

Phonetic Modeling

Phonetic Modeling

- How do we select the basic units for recognition?
- Units should be accurate
- Units should be trainable
- Units should be generalizable
- We often have to balance these against each other.

Sub-Word Models

Sub-Word Models

- Phones
- Context Independent
- Context Dependent
© Syllables
- Data-driven units
- Cross-word modeling

Phones

Phones

- Note: "phones" != "phonemes" (see G\&M pg. 310)
- E.g.:

Phoneme	Phone
Ascii-65	AAAAA

"Flavors" of Phones

- Context Independent:
- Monophones

- Context Dependent:
- Biphones
- Diphones
- Triphones

Context Independent Phones

Context Independent "Monophones" "cat" $=\left[\begin{array}{lll}k & a e ~ t\end{array}\right]$

- Easy to train:
- only about 40 monophones for English
- The basis of other sub-word units
- Easy to add new pronunciations to lexicon

Typical English Phone Set

Phone	Example	Phone	Example	Phone	Example
iy	FEEL	ih	FILL	ae	GAS
aa	FATHER	ah	BUD	ao	CAUGHT
ay	BITE	$a x$	COMPLY	ey	DAY
eh	TEN	er	TURN	OW	TONE
aw	How	oy	COIN	uh	BOOK
uw	TOOL	b	BIG	p	PIG
d	DIG	\dagger	SAI	g	GUT
k	CUT	f	FORK	V	VAT
S	SIT	Z	ZAP	th	THIN
dh	THEN	sh	SHE	zh	GENRE
1	LID	r	RED	Y	$\underline{Y} A C H T$
W	WITH	hh	HELP	m	MAT
n	NO	ng	SING	ch	CHIN
jh	EDGE				

Adapted from "Spoken Language Processing" by Xuedong Huang, et. al.

Monophones

Major Drawback

- Not very powerful for modeling variation:
- Example: "key" vs "coo"

Context Dependent Phones

Biphones

- Taking into account the context (what sounds are to the right or left) in which the phone occurs.
- Left biphone of [ae] in "cat": K_ae
- Right biphone of [ae] in "cat": ae_t

$$
\begin{aligned}
& \text { "key" = k_iy iy_\# } \\
& \text { "coo" }=\text { k_uw uw_\# }
\end{aligned}
$$

Biphones

- More difficult to train than monophones:
- Roughly $\left(40^{\wedge} 2+40^{\wedge} 2\right)$ biphones for English
- If not enough training for a biphone model, can "backoff" to monophone

Triphones

- Consider the sounds to the left AND right - Good modeling of variation
- Most widely used in ASR systems

$$
\begin{aligned}
& \text { "key" }=\text { \#_k_iy k_iy_\# } \\
& \text { "coo" }=\text { \#_-_uw k_uw_\# }
\end{aligned}
$$

Triphones

- Can be difficult to train:
- there are LOTS of possible triphones (roughly 40^3)
- Not all occur
- If not enough data to train a triphone, typically back-off to left or right biphone

Triphones

- Don't always capture variation: "tha rock" vs. "thea rical"

$a e_{-} \quad r$
- Sometimes helps to cluster similar triphones

Diphones

- Modeling the transitions between phones
- Extend from middle of one phone to the middle of the next

$$
\begin{aligned}
& \text { "key" }=\text { \#_k k_iy iy_\# } \\
& \text { "coo" }=\text { \#_k k_uw uw_\# }
\end{aligned}
$$

Syllables

Syllables

"Strengths"

Syllables

- Good modeling of variation
- Somewhere between triphones and wholeword models
- Can be difficult to train (like triphones)
- Practical experiments have not shown improvements over triphone-based systems.

Data-driven Sub-Word Units

Data-driven Sub-Word

Units

- Basic Idea:
- More accurate modeling of acoustic variation
- Cluster data into homogeneous "groups" - sounds with similar acoustics should group together
- Use these automatically-derived units instead of linguistically-based sub-word units

Data-driven Sub-Word Units

- Difficulties:
- Can have problems with training, depending on number of units
- Real problem: generalizability
- How do we add words to the system when we don't know what the units "mean"
- Create a mapping from phones?

Cross-word Modeling

Cross-word Modeling

- Co-articulation spans word boundaries:
- "Did you eat yet?" -> jeatyet
- "could you" -> couldja
- "I don't know" -> idunno
- We can achieve better modeling by looking across word boundaries
- More difficult to implement- what would dictionary look like?
- Usually use lattices when doing cross-word modeling

Whole-word Models

Whole-word Models

- In some sense, the most "natural" unit
- Good modeling of coarticulation within the word
- If context dependent, good modeling across words
- Good when vocabulary is small e.g. digits:
- 10 words
- Context dependent: $10 \times 10 \times 10=1000$ models
- Not a huge problem for training

Whole-word Models

- Problems:
- difficult to train: needs lots of examples of *every* word
- not generalizable: adding new words requires more data collection

Lexicons

Lexicons for ASR

- Contains:
- words
- pronunciations
- optionally:
cat: k ae t key: k ey coo: k uw the: 0.6 dh iy 0.4 dh ax
- alternate pronunciations - pronunciation probabilities
- No definitions

Lexicon Generation

- Where do lexical entries come from?
- Hand labeling
- Rule generated
- Not too bad for English, but can be a big expense when building a recognizer for a new language
- For a small task, may want to consider whole-word models to bypass lexicon gen

