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Statistical Sequence Recognition and Training: 
An Introduction to HMMs 
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March 7, 2005

Credit: many of the HMM slides have been borrowed and adapted, 
with permission, from Ellen Eide and Lalit Bahl at IBM, developed 
for the Speech Recognition Graduate Course at Columbia. 
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Overview

 Limitations of DTW (Dynamic Time Warping)
 The speech recognition problem
 Introduction to Hidden Markov Models (HMMs)
 Forward algorithm (a.k.a. alpha recursion) for Estimation of HMM

probabilities
 Viterbi algorithm for Decoding (if time)
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Recall DTW (Dynamic Time Warping) from Last
Time

 Main idea of DTW:
Find minimum distance between a

given word and template,
allowing for stretch and
compression in the alignment
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Beyond DTW

 Some limitations of DTW:

– Requires end-point detection, which is error-prone

– Is difficult to show the effect on global error

– Requires templates (examples); using canonicals is better

 We need a way to represent

– Dependencies of each sound/word on neighboring context

– Continuous speech is more than concatenation of elements

– Variability in the speech sample

 Statistical framework allows for the above, and

– Provides powerful tools for density estimation, training data alignment,
silence detection -- in general, for training and recognition
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Markov Models

 Brief history:
Introduced by Baum et al. in 60’s, 70’s

Applied to speech by Baker in the original CMU Dragon System (1974)

Developed by IBM (Baker, Jelinek, Bahl, Mercer,….) (1970-1993)

Took over ASR (automatic speech recog.) in 80’s

 Finite state automoton with stochastic transitions

......A generative model:  the statesA generative model:  the states
have outputs (a.k.a.have outputs (a.k.a.
observation feature vectors).observation feature vectors).
QQ’’s are states and Xs are states and X’’s are thes are the
observations.observations.
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The statistical approach to speech recognition
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 W is a sequence of words, w1, w2, …, wN
 W* is the best sequence.
 X is a sequence of acoustic features: x1, x2, …., xT
♣Θ is a set of model parameters.

Bayes’ rule reminder:
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)|(),|(
maxarg* ΘΘ= WPWXP
W

W

feature extraction

Automatic speech recognition – Architecture

acoustic model language model

search

audio words

language modelacoustic model

For the rest of lecture, focus on acoustic modeling component

Probability of “I no” vs “eye know” vs “I know”
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                                   Memory-less Model

      Add Memory                                                 Hide Something

   Markov Model                                   Mixture Model

      Hide Something                                          Add Memory

                                Hidden Markov Model
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Memory-less Model Example

 A coin has probability of “heads” = p  ,  probability of “tails” = 1-p

 Flip the coin 10 times. (Bernoulli trials, I.I.D. random sequence.)
There are 210 possible sequences.

 Sequence:     1    0  1   0     0      0    1   0     0    1
    Probability:     p(1-p)p(1-p)(1-p)(1-p) p(1-p)(1-p)p        =   p4(1-p)6

 Probability is the same for all sequences with 4 heads & 6 tails.
Order of heads & tails does not matter in assigning a probability to
the sequence, only the number of heads & number of tails

 Probability of 0 heads         (1-p)10

                                     1  head          p(1-p)9

                            …
                         10 heads         p10
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Memory-less Model Example, cont’d

If p is known, then it is easy to compute the probability of the sequence.   Now
suppose p is unknown.

We toss the coin N times, obtaining H heads and T tails, where H+T=N
We want to estimate p

A “reasonable” estimate is p=H/N.   Is this the “best” choice for p?

First, define “best.”  Consider the probability of the observed sequence.
Prob(seq)=pH(1-p)T

The value of p for which Prob(seq) is maximized is the Maximum Likelihood
Estimate (MLE) of p. (Denote pmle )

Prob(seq)

p
  pmle
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Memory-less Model Example, cont’d

Theorem:   pmle =  H/N

Proof:       Prob(seq)=pH(1-p)T

                          Maximizing Prob is equivalent to maximizing log(Prob)

                          L=log(Prob(seq)) = H log p  +  T log (1-p)

                 δL/δp = H/p  –  T/(1-p)

                 L maximized when  δL/δp  = 0

                 H/pmle  - T/(1-pmle)  = 0

                  H – H pmle = T pmle

                  H = T pmle + H pmle  = pmle (T + H)   = pmle N

                  pmle = H/N
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Memory-less Model Example, cont’d

 We showed that in this case
         MLE = Relative Frequency = H/N

 We will use this idea many times.

 Often, parameter estimation reduces to
        counting and normalizing.
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Markov Models

 Flipping a coin was memory-less. The outcome of
each flip did not depend on the outcome of the
other flips.

 Adding memory to a memory-less model gives us a
Markov Model.  Useful for modeling sequences of
events.



14

EECS 225D Spring 2005
UC Berkeley/ICSI

Indications in green = Live content

Indications in white  = Edit  in master

Indications in blue    = Locked elements

Indications in black   = Optional elements

Markov Model Example

 Consider 2 coins.
       Coin 1:   pH = 0.9   ,  pT = 0.1
       Coin 2:   pH = 0.2   ,  pT = 0.8

 Experiment:
     Flip Coin 1.
     for J = 2 ; J<=4; J++
              if (previous flip == “H”)   flip Coin 1;
              else  flip Coin 2;

 Consider the following 2 sequences:
        H  H  T  T   prob = 0.9 x 0.9 x 0.1 x 0.8
        H  T  H  T   prob = 0.9 x 0.1 x 0.2 x 0.1

 Sequences with consecutive heads or tails are more likely.
 The sequence has memory.
 Order matters.
 Speech has memory. (The sequence of feature vectors  for

“rat” are different from the sequence of vectors for “tar.”)
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Markov Model Example, cont’d

 Consider 2 coins.
       Coin 1:   pH = 0.9   ,  pT = 0.1
       Coin 2:   pH = 0.2   ,  pT = 0.8

State-space representation:

1 2

H 0.9

T 0.1
T 0.8

H 0.2
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Markov Model Example, cont’d

 State sequence can be uniquely determined from
the outcome sequence, given the initial state.

 Output probability is easy to compute. It is the
product of the transition probs for state sequence.

 Example: O:      H         T         T       T
               S:  1(given)   1         2        2
                Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Mixture Model Example

 Recall the memory-less model. Flip 1 coin.
 Now, let’s build on that model, hiding something.

 Consider 3 coins.   Coin 0:  pH = 0.7
                                Coin 1:  pH = 0.9
                                Coin  2  pH = 0.2
Experiment:
    For J=1..4
           Flip coin 0. If  outcome == “H”
                                       Flip coin 1 and record.
                              else
                                       Flip coin 2 and record.

Note:  the outcome of coin 0 is not recorded -- it is
“hidden.”
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Mixture Model Example, cont’d
Coin 0: pH = 0.7    Coin 1: pH = 0.9   Coin 2: pH = 0.2

We cannot uniquely determine the output of the
   Coin 0 flips. This is hidden.

Consider the sequence H T T T.
What is the probability of the sequence?

Order doesn’t matter (memory-less)
  p(head)=p(head|coin0=H)p(coin0=H)+
                p(head|coin0=T)p(coin0=T)= 0.9x0.7 + 0.2x0.3 = 0.69
      p(tail)  =  0.1 x 0.7 + 0.8 x 0.3 = 0.31

P(HTTT) = .69 x .31 3
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Hidden Markov Model

 The state sequence is hidden.
 Unlike Markov Models, the state sequence cannot be

uniquely deduced from the output sequence.

 Experiment:
   Flipping the same two coins. This time, flip each coin

twice. The first flip gets recorded as the output sequence.
The second flip determines which coin gets flipped next.

 Now, consider output sequence H  T  T  T.
 No way to know the results of the even numbered flips,

so no way to know which coin is flipped each time.
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 0.2 
 0.8 

 0.9 
 0.1 

Hidden Markov Model
 The state sequence is hidden. Unlike Markov Models, the state sequence cannot

be uniquely deduced from the output sequence.

 In speech, the underlying states can be, say the positions of the articulators.
These are hidden – they are not uniquely deduced from the output features. We
already mentioned that speech has memory.  A process which has memory and
hidden states implies HMM.

 0.9  0.1  0.8

 0.2

 0.9 
 0.1 

 0.2 
 0.8 

1 2
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Is a Markov Model Hidden or Not?

A necessary and sufficient condition for being state-observable
is that all transitions from each state produce different outputs 

a,b

c

d

a,b

b

d

State-observable Hidden
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Markov Models -- quick recap

 Markov model:
States correspond to an

observable (physical) event

In graph to right, each x can take
one value -- x’s are collapsed
into q’s

 HiddenHidden Markov model:
The observation is a probabilistic

function of the state q

Doubly stochastic process: both
the transition between states,
and the observation generation
are probabilistic

......

......
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Three problems of general interest for an HMM

3 problems need to be solved before we can use HMM’s:

       1. Evaluation: Given an observed output sequence X=x1x2..xT ,
compute Pθ(X) for a given model θ. (solution: Forward algorithm)

       2. Decoding:  Given X, find the most likely state sequence (solution:
Viterbi algorithm)

       3.  Training: Estimate the parameters of the model. (solution:  Baum-
Welch algorithm, a.k.a. Forward-Backward algorithm)

These problems are easy to solve for a state-observable Markov
model. More complicated for an HMM because we need to consider all
possible state sequences. Must develop a generalization….
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Problem 1-- the state observable case (easy)

1. Given an observed output sequence X=x1x2..xT ,
compute Pθ(X) for a given model θ

 Recall the state-observable case

 Example: O:      H         T         T       T
               S:  1(given)   1         2        2
                Prob:     0.9  x   0.1  x  0.8  x 0.8

1 2

H 0.9
T 0.1

T 0.8

H 0.2
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Problem 1 -- for a hidden Markov model (not easy)

1. Given an observed output sequence X=x1x2..xT ,
compute Pθ(X) for a given model θ

Sum over all possible state sequences:
              Pθ(X)=ΣS Pθ(X,S)

The obvious way of calculating Pθ(X) is to enumerate
all state sequences that produce X

Unfortunately, this calculation is exponential in the
length of the sequence
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Example for Problem 1 -- for HMM

Compute Pθ(X) for X=aabb, assuming we start in state 1

0.7
0.3

0.8
0.2

1 2 3

0.5

0.3

0.2

0.4

0.5

0.1

0.3
0.7

0.5
0.5
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Example for Problem 1,cont’d
Let’s enumerate all possible ways of producing x1=a,

assuming we start in state 1. 1
0.4

2
0.21

2 0.4 x 0.5

0.2

2

0.2

0.5 x 0.3

2
0.04

3
0.03

0.5 x 0.8

10.5 x 0.8 2
0.08

0.2

2 20.4 x 0.5

0.2

0.1
3

0.004

2

1 0.3 x 0.7
0.3 x 0.7

0.1
3

0.021

1 2 3
0.008

0.2 0.10.5 x 0.8
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Example for Problem 1, cont’d
 Now let’s think about ways of generating x1x2=aa, for all paths from

state 2 after the first observation

2
0.21

2 2
0.04

1
2

0.08

1

2

2 3

3

2

2 3

3

2

2 3

3
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Example for Problem 1,cont’d

We can save computations by combining paths.

This is a result of the Markov property, that the future doesn’t depend on
the past if we know the current state

1

2
0.33

2

2

30.5 x 0.3

0.4 x 0.51

2
0.4 x 0.5

3
0.1
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Side note:  Markov Property

 n-th order Markov chain:
Sequence of discrete random variables that depend only on preceding n variables

We focus on “first order” -- depend only on preceding state

 By definition of joint and conditional probability:

......

cut here for 1st order Markov chaincut here for 1st order Markov chain
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Problem 1: Trellis Diagram

 Expand the state-transition diagram in time.
 Create a 2-D lattice indexed by state and time.
 Each state transition sequence is represented exactly once.

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       aa                     aab                aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7
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Problem 1: Trellis Diagram, cont’d

 Now let’s accumulate the scores. Note that the inputs to a
node are from the left and top, so if we work to the right and
down all necessary input scores will be available.

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       aa                     aab                aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1

0+.2=.2

0+.02=.02

0.4

21+.04+.08=.33

.033+.03=.063

.16

.084+.066+.32=.182

.0495+.0182=.0677
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Problem 1: Trellis Diagram, cont’d

Boundary condition:
Score of (state 1, φ) = 1.

Basic recursion:
Score of node i = 0

For the set of predecessor nodes j:
      Score of node i += score of predecessor node j  x

              the transition probability from j to i  x
                         observation probability along            

                 that transition if the transition is not null.
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Mealy vs. Moore HMMs

Mealy:  “transition emitter” (the slides in this talk)
Moore: “state emitter” (the textbook, and most formulations in

ASR)
Mealy and Moore formulations are equivalent!
Moore models require more (pun intended) states to

represent the same model.

0.7
0.3

0.8
0.2

1 2

0.7

0.3

1

0.5
0.5

0.7
0.3

0.8
0.2

1 2 3

0.7

0.3 1

0.5
0.5

1
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Forward Algorithm -- Mealy (emission on transition)
vs. Moore (emission in state)

αt(i): probability of being in state i at time t and having produced output x1
t=x1..xt

aij: transition probability from state i to state j
bij(xt):  emission probability of x at time t from state i to j (reduces to bj(xt) for Moore)

Step 1 -- Initialization (“general” form)

Mealy (there is no emission by starting in the initial state -- only on transition):

Moore:

€ 

α1(i) = p(qi
1 )

€ 

α1(i) = p(qi
1 )p(x1 |qi)

€ 

α1(i) = π ibij (X1)
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Forward Algorithm -- Mealy (emission on transition)
vs. Moore (emission in state)

αt(i): probability of being in state i at time t and having produced output x1
t=x1..xt

aij: transition probability from state i to state j
bij(xt):  emission probability of x at time t from state i to j (reduces to bj(xt) for Moore)

Step 2 -- Induction  (“general” form:)

Mealy:

Moore (there is no i in bij for Moore, as emissions not on transition from i to j, but in state j)

€ 

α t+1( j) = α t (i) p(q j |qi)
i=1

S

∑ p(xt+1 |qi → q j )

€ 

α t+1( j) = α t (i)aijbij (xt+1)
i=1

S

∑

€ 

α t+1( j) = α t (i) p(q j |qi)
i=1

S

∑
 

 
 

 

 
 p(xt+1 |q j )
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Forward Algorithm -- Mealy (emission on transition)
vs. Moore (emission in state)

αt(i): probability of being in state i at time t and having produced output x1
t=x1..xt

aij: transition probability from state i to state j
bij(xt):  emission probability of x at time t from state i to j (reduces to bj(xt) for Moore)

 Step 3 -- Termination:

Important:  The computational complexity of the forward algorithm is linear in time (or in the
length of the observation sequence)

€ 

P(X |M) = αN (i)
i=1

S

∑
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Problem 2

Given the observations X, find the most likely state sequence

This is solved using the Viterbi algorithm

Preview:
      The computation is similar to the forward algorithm, except we use

max( ) instead of +

   Also, we need to remember which partial path led to the max
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Problem 2: Viterbi algorithm
   Returning to our example, let’s find the most likely path for producing

aabb.  At each node, remember the max of predecessor score x
transition probability. Also store the best predecessor for each node.

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       aa                     aab                aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

1 0.4

max(.03 .021) Max(.0084 .0315) 

max(.08 .21 .04)

.16 .016

.0294

max(.084 .042 .032)

.0016

.00336

.00588

.0168
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Problem 2: Viterbi algorithm, cont’d

Starting at the end, find the node with the highest score.
Trace back the path to the beginning, following best arc

leading into each node along the best path.

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       aa                     aab                aabb

S
tate:  1                 2                3

.5x.8 .5x.8 .5x.2 .5x.2

.2 .2 .2 .2 .2

.1 .1 .1 .1 .1

.3x.7
.3x.7

.3x.3
.3x.3

.4x.5 .4x.5 .4x.5 .4x.5

.5x.3
.5x.3

.5x.7
.5x.7

.03  .0315

 .21

.16 .016

.0294

.0016

.00336.0168
0.2

0.02

1 0.4

.084 

.00588
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Problem 3

Estimate the parameters of the model. (training)

 Given a model topology and an output sequence, find the transition
and output probabilities such that the probability of the output
sequence is maximized.

 Recall in the state-observable case, we simply followed the unique
path, giving a count to each transition.
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Problem 3 – State Observable Example

 Assume the output sequence X=abbab, and we start in state 1.

 Observed counts along transitions:

a

b b

a

a

b

1

2 1

0

1

0
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Problem 3 – State Observable Example

Observed counts along transitions:

Estimated transition probabilities. (this is of course too little data to estimate these well.)

1

2 1

0

1

0

0.33

0.67 1

0

1

0
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Generalization to Hidden MM case

State-observable
 Unique path
 Give a count of 1 to each
    transition along the path

Hidden states
 Many paths
 Assign a fractional count to each

path
 For each transition on a given

path, give the fractional count for
that path

 Sum of the fractional counts =1
 How to assign the fractional

counts??
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How to assign the fractional counts to the paths

 Guess some values for the parameters
 Compute the probability for each path using

these parameter values
 Assign path counts in proportion to these

probabilities
 Re-estimate parameter values
 Iterate until parameters converge
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Problem 3: Enumerative Example

 For the following model, estimate the transition probabilities and the
output probabilities for the sequence X=abaa

a1

a2

a3

a4

a5
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Problem 3: Enumerative Example

 Initial guess: equiprobable

1/3

1/3

1/3

1/2

1/2

_
_ _

_

_
_

_
_
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Problem 3: Enumerative
Example cont’d

 7 paths:

 1.                        pr(X,path1)=1/3x1/2x1/3x1/2x1/3x1/2x1/3x1/2x1/2=.000385

 2.                        pr(X,path2)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2x1/2=.000578

 3.                        pr(X,path3)=1/3x1/2x1/3x1/2x1/3x1/2x1/2x1/2=.001157

 4.                        pr(X,path4)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2x1/2=.000868

1/3

1/3

1/3

1/2

1/2

_
_ _

_

_
_

_
_



49

EECS 225D Spring 2005
UC Berkeley/ICSI

Indications in green = Live content

Indications in white  = Edit  in master

Indications in blue    = Locked elements

Indications in black   = Optional elements

Problem 3: Enumerative
Example cont’d

 7 paths:

 5.                        pr(X,path5)=1/3x1/2x1/3x1/2x1/2x1/2x1/2x1/2=.001736

 6.                        pr(X,path6)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.001302

 7.                        pr(X,path7)=1/3x1/2x1/2x1/2x1/2x1/2x1/2x1/2=.002604

 Pr(X) = Σi pr(X,pathi) = .008632

1/3

1/3

1/3

1/2

1/2

_
_ _

_

_
_

_
_
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Problem 3: Enumerative
Example cont’d

 Let Ci be the a posteriori probability of path i
 Ci = pr(X,pathi)/pr(X)

 C1 = .045    C2 = .067   C3 = .134    C4=.100   C5 =.201   C6=.150  C7=.301

 Count(a1)= 3C1+2C2+2C3+C4+C5  = .838
 Count(a2)=C3+C5+C7 = .637
 Count(a3)=C1+C2+C4+C6 = .363

 New estimates (after normalization to add up to 1):
 a1 =.46       a2 = .34       a3=.20

 Count(a1,’a’) = 2C1+C2+C3+C4+C5  = .592   Count(a1,’b’)=C1+C2+C3=.246

 New estimates:
 p(a1,’a’)= .71         p(a1,’b’)= .29

a1

a2

a3

a4

a5
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Problem 3: Enumerative
Example cont’d

 Count(a2,’a’) = C3+C7  = .436   Count(a2,’b’)=C5 =.201

 New estimates:
 p(a2,’a’)= .68        p(a2,’b’)= .32

 Count(a4)=C2+2C4+C5+3C6+2C7 = 1.52
 Count(a5)=C1+C2+C3+C4+C5+C6+C7  = 1.00

 New estimates:  a4=.60     a5=.40
 Count(a4,’a’) = C2+C4+C5+2C6+C7 = .972   Count(a4,’b’)=C4+C6+C7=.553

 New estimates:
 p(a4,’a’)= .64         p(a4,’b’)= .36

 Count(a5,’a’) = C1+C2+C3+C4+C5+2C6+C7 = 1.0  Count(a5,’b’)=0
 New estimates:
 p(a5,’a’)= 1.0        p(a5,’b’)= 0


a1

a2

a3

a4

a5
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Problem 3: Enumerative Example cont’d

 New parameters

 Recompute Pr(X) = .02438  > .008632
 Keep on repeating…..

.46

.34

.20

.60

.40

.71

.29 .68
.32

.64

.36

1
0
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Problem 3: Enumerative Example cont’d

  Step                                        Pr(X)
  1                                        0.008632
  2                                        0.02438
  3                                        0.02508
 100                                     0.03125004
 600                                     0.037037037  converged

0

1

0

2/3

1/3

1
0

1/2
1/2

1
0
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Problem 3: Enumerative Example cont’d

 Let’s try a different initial parameter set

1/3

1/3

1/3

1/2

1/2

.6

.4 _
_

_
_

_
_

Only
change
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Problem 3: Enumerative Example cont’d

  Step                                        Pr(X)
  1                                        0.00914
  2                                        0.02437
  3                                        0.02507
 10                                       0.04341
 16                                       0.0625  converged

1/2

1/2

0

1/2

1/2

0
1

1
0

1
0

1
0
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Performance

 The above re-estimation algorithm converges to a
local maximum.

 The final solution depends on the starting point.

 The speed of convergence depends on the starting
point.
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Problem 3: Forward-Backward Algorithm, a.k.a.
Baum Welch

 The forward-backward algorithm improves on the
enumerative algorithm by using the trellis

 Instead of computing counts for each path, we
compute counts for each transition at each time in
the trellis.

 This results in the reduction from exponential
computation to linear computation.
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Problem 3: Forward-Backward Algorithm

Consider transition from state i to j, trij

Let pt(trij,X) be the probability that xt is produced by trij, and the
complete output is X.

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

Si

Sj

αt-1(i) βt(j)

xt
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Problem 3: F-B algorithm cont’d

pt(trij,X) = αt-1(i) aij bij(xt)  βt(j)

where:

αt-1(i) = Pr(state=i, x1…xt-1) = probability of being in state i and having
produced  x1…xt-1

aij = transition probability from state i to j

βt(j) = Pr(xt+1…xT|state= j) = probability of producing xt+1…xT
given you are in state j

bij(xt) = probability of output symbol xt  along transition ij
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Problem 3: F-B algorithm cont’d

 Transition count ct(trij|X) = pt(trij,X) / Pr(X)

 The β’s are computed recursively in a backward
    pass (analogous to the forward pass for the α’s)

βt(j) = Σk βt+1(k)  ajk bjk(xt+1)  (for all output producing arcs)
  + Σk βt(k)  ajk   (for all null arcs)

αt(i) = Σm   αt-1(m)  ami bmi (Xt)

    + Σm  αt(m) ami

Note:  the F-B algorithm is the same for Moore and Mealy forms,
because of the way Β’s are defined -- they include the emission
probabilty of t+1st transition (Mealy) / t+1st state (Moore).
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Problem 3: F-B algorithm cont’d

 Let’s return to our previous example, and work out the trellis calculations

1/3

1/3

1/3

1/2

1/2

_
_ _

_

_
_

_
_
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       ab                     aba                abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2
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Problem 3: F-B algorithm, cont’d

.083

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       ab                     aba                abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1

.33

0

.167

.306

.027

.076

Compute α’s. since forced to end at state 3, αT=.008632=Pr(X)

.113

.0046

.035

.028

.00077

.0097

.008632
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Problem 3: F-B algorithm, cont’d

0

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       ab                     aba                abaa

S
tate:  1                 2                3

1/3x1/2 1/3x1/2 1/3x1/2 1/3x1/2

1/3 1/3 1/3 1/3 1/3

1/3x1/2

1/3x1/2

1/3x1/2

1/3x1/2

1/2x1/2 1/2x1/2 1/2x1/2 1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

1/2x1/2

.0086

.0039

0

.028

.016

.076

0

Compute β’s. 

.0625

.083

.25

0

0

0

1

Compute counts. (a posteriori probability of each transition)
ct(trij|X) = αt-1(i) aij bij(xt)  βt(j)/ Pr(X)

.167x.333x.5x .0625 /.008632
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Problem 3: F-B algorithm, cont’d

Time:  0                       1                        2                       3                    4
     Obs:    φ                         a                       ab                     aba                abaa

S
tate:  1                 2                3

.547 .246 .045 0

.151 .101 .067 .045 0
.302

.201
.134

0

.151 .553 .821 0

00 0 1

Compute counts. (a posteriori probability of each transition)
ct(trij|X) = αt-1(i) aij bij(xt)  βt(j)/ Pr(X)

.167x.0625x.333x.5/.008632
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Problem 3: F-B algorithm cont’d

 C(a1)=.547+.246+.045
 C(a2)=.302+.201+.134
 C(a3)=.151+.101+.067+.045
 C(a4)=.151+.553+.821
 C(a5)=1

 C(a1,’a’)=.547+.045,  C(a1,’b’)=.246
 C(a2,’a’)=.302+.134,  C(a2,’b’)=.201
 C(a4,’a’)=.151+.821,  C(a4,’b’)=.553
 C(a5,’a’)=1,                C(a5,’b’)=0

a1

a2

a3

a4

a5
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Problem 3: F-B algorithm cont’d

Normalize counts to get new parameter values.

Result is the same as from the enumerative algorithm!!

.46

.34

.20

.60

.40

.71

.29 .68
.32

.64

.36

1
0
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Continuous Hidden Markov models – Parameterization

Continuous Hidden Markov models (HMMs) have 3 sets of parameters.

1. A prior distribution over the states π = P(s0 = j); j= 1…N

2. Transition probabilities between the states,
aij = P(st = j | st-1 = i); i, j = 1…N

3. A set of state-conditioned observation probabilities, P(xt | st = j); j = 1…N
The mixture of n-dimensional Gaussians is common:
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Summary of Markov Modeling Basics

 Key idea 1: States for modeling sequences
   Markov introduced the idea of state to capture the dependence on the past. A state

embodies all the relevant information about the past. Each state represents an
equivalence class of pasts that influence the future in the same manner.

 Key idea 2: Marginal probabilities
    To compute Pr(X), sum up over all of the state sequences than can produce X
                               Pr(X) = Σs Pr(X,S)
    For a given S, it is easy to compute Pr(X,S)

 Key idea 3: Trellis
    The trellis representation is a clever way to enumerate all sequences. It uses the Markov

property to reduce exponential-time enumeration algorithms to linear-time trellis
algorithms.


