
The Shunt: An FPGA-Based Accelerator
for Network Intrusion Prevention

Nicholas Weaver
International Computer

Science Institute
1947 Center Street #600

Berkeley, CA, 94704

nweaver@icsi.berkeley.edu

Vern Paxson
International Computer

Science Institute
1947 Center Street #600

Berkeley, CA, 94704

vern@icir.org

Jose M Gonzalez
International Computer

Science Institute
1947 Center Street #600

Berkeley, CA, 94704

chema@icsi.berkeley.edu

ABSTRACT
The sophistication and complexity of analysis performed byto-
day’s network intrusion prevention systems (IPSs) benefitsgreatly
from implementation using general-purpose CPUs. Yet the perfor-
mance of such CPUs increasingly lags behind that necessary to pro-
cess today’s high-rate traffic streams. A key observation, however,
is that much of the traffic comprising a high-volume stream can,
after some initial analysis, be qualified as “likely uninteresting.”

To this end, we have developed an in-line, FPGA-based IPS ac-
celerator, theShunt, using the NetFPGA2 platform. The Shunt
functions as the forwarding device used by the IPS; it alone pro-
cesses the bulk of the traffic, offloading the memory bus and leav-
ing the CPU free to inspect the subset of the traffic deemed germane
for security analysis. To do so, the Shunt maintains severallarge
state tables indexed by packet header fields, including IP/TCP flags,
source and destination IP addresses, and connection tuples. The ta-
bles yield decision values the element makes on a packet-by-packet
basis: forward the packet, drop it, or divert it through the IPS. By
manipulating table entries, the IPS can specify the traffic it wishes
to examine, directly block malicious traffic, and “cut through” traf-
fic streams once it has had an opportunity to “vet” them, all ona
fine-grained basis. We base our design on a novel series of caches,
with a “fail safe” miss policy, coupled to a host PC to handle both
cache management and higher level IPS analysis. The design re-
quires only 2 MB of SRAM for its extensive caches, and can sup-
port four Gbps Ethernets on a single Virtex 2 Pro 30.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local Networks:
Ethernet

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’07,February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 1-59593-292-5/07/0002 ...$5.00.

Keywords
FPGA, Intrusion Detection, Hardware Acceleration, NIC

1. INTRODUCTION
Stateful, in-depth, in-line traffic analysis for intrusiondetection

and prevention is growing increasingly more difficult as thedata
rates of modern networks rise. One point in the design space for
high-performance network analysis—pursued by a number of com-
mercial products—is the use of sophisticated custom hardware. For
very high-speed processing, such systems often cast the entire anal-
ysis process in ASICs.

In this work we pursue a different architectural approach,Shunt-
ing, which marries a conceptually quite simple hardware device
with an Intrusion Prevention System (IPS) running on commodity
PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to retainthe un-
paralleled flexibility that running the main IPS analysis ina full
general-computing environment provides.

The Shunting architecture uses a simple in-line hardware ele-
ment that maintains several large state tables indexed by packet
header fields, including IP/TCP flags, source and destination IP
addresses, and connection tuples. The tables yield decision val-
ues the element makes on a packet-by-packet basis: forward the
packet, drop it, or divert (“shunt”) itthroughthe IPS (the default).
By manipulating table entries, the IPS can, on a fine-grainedbasis:
(i) specify the traffic it wishes to examine,(ii) directly block mali-
cious traffic, and(iii) “cut through” traffic streams once it has had
an opportunity to “vet” them, or(iv) skip over large items within a
stream before proceeding to further analyze it.

The efficacy of this approach depends on the degree to which the
IPS can “shed load” by identifying large-volume subsets of traffic
that it can safely skip. Opportunities for these arise, for example,
due to encrypted SSH and SSL sessions, for which the IPS can only
usefully analyze the initial negotiation process, or HTTP sessions
that transfer large items such as images or movies. While such
flows make up only a small proportion of the connections seen on a
network link, in many environments they make up a large fraction
of the bytes, due to the widely documented “heavy-tailed” nature
of network traffic [11, 12, 6, 23, 22, 5].

Reference [7] presents the overall architecture and evaluates it in
detail. In this paper we focus on our subsequent efforts to design
and implement an FPGA-based realization of Shunting. The de-
vice can operate in-line on a network link, facilitate switch-based
LAN monitoring, or as a load balancer for a clusterized Intrusion
Detection System (IDS).

We implemented the Shunt on top of the NetFPGA2 [19] re-

search and education platform. This platform contains fourGbps
Ethernets, two 2 MB SRAMs, and a Virtex 2 Pro 30 FPGA, all lo-
cated on a single PCI card which fits inside a standard host. We
began by modifying an existing design, a 4-port Ethernet NICthat
used only one of the SRAMs as a buffer, to createRNET, a frame-
work for in-place packet manipulation and routing. The RNET
framework provides a shim between each receiving MAC and the
main controller. Each shim buffers one packet at a time, and can
manipulate the packet before routing it to any output MAC or to the
host.

We then built the Shunt using the RNET infrastructure. The de-
sign centers around two primary caches: a connection cache of
2
16 entries and an IP address cache of2

16 entries. The connec-
tion cache uses multi-location associativity, a variant ofa design
by Song et al [16], where two separate hash functions are usedto
provide two different possible locations for each entry, toallow the
host to move entries to free up space. The IP address cache is a
multilocationpermutationcache: rather than using a conventional
tag/index structure, we use a 32-bit block cypher to encryptthe IP
address to create the tag and index, which can result in a 50% sav-
ings in memory by allowing part of the tag to be implicitly stored.

For both these caches, we encode an action (shunt, sample, for-
ward, or drop) and a priority. Additional rules also encode ac-
tions and priorities based on fixed-header fields. The hardware
selects the highest priority match, or, if no match, defaults to shunt-
ing the packet to the host. Additionally, the rules for connections
can have an optional record that specifies an alternate destination
MAC, VLAN, and/or output port to which connections should be
forwarded, and an alternate rule that applies if the TCP sequence
number is within a specified range (to skip over items within TCP
streams).

The resulting design requires 21,200 4-LUTs for logic,
2,770 LUTS for routethrough (87% of the available resources), and
135 out of 136 available BlockRams. It requires only 41 cycles
to make a decision when unloaded (and no more than 101 cycles
when fully loaded), running at 62.5 MHz. Packets that pass directly
through the hardware path see only 5µs of additional network la-
tency.

We begin in Section 2 with a survey of related work and a dis-
cussion of the NetFPGA board. Section 3 discusses ourRNETad-
dition to the NetFPGA firmware, designed as a general platform for
network processing. Section 4 discusses our overall hardware ar-
chitecture and how this architecture realizes our desired tasks. We
then in Section 5 present multi-location associativity, which allows
us to more efficiently utilize our caches. Section 6 discusses per-
mutation caches, a space-saving technique we employ for theIP
address cache that doubles the available capacity when associating
small values with 32-bit keys.

Section 7 details the actual implementation used for the Shunt’s
caches and general operation. We evaluate the Shunt in Section 8,
with present conclusions in Section 9.

2. RELATED WORK
The NetFPGA version 2 [19] was developed by McKeown et

al as a platform for both research and network experimentation. It
consists of a single Virtex 2 Pro (V2Pro 30, speedgrade 5) FPGA,
two 2 MB (512Kx36) SRAMs, a quad-port Gbps Phy, on a PCI
card, with the PCI interface implemented in a Spartan II FPGA.

Additionally, the NetFPGA platform has three significant pieces
of code associated with it:UNET, CNET, and assorted software
tools. UNET is a generic design for student projects. It consists
of a single Ethernet MAC and associated control logic, including
memory interfaces. CNET implements a quad port Ethernet NIC,

complete with a host DMA interface and an Ethernet driver. The
NetFPGA tools include a configuration downloader which allows
the NetFPGA to be reconfigured, a driver for the NetFPGA board,
and an API to peek and poke both status registers and the two on-
board SRAMs.

There has been considerable hardware designed for intrusion de-
tection. Several projects have implemented partial or complete
regular-expression based rulesets [17, 18], or portions ofTCP
stream reassembly [?], while a large number of commercial in-
trusion detection and prevention systems claim to use hardware ac-
celeration. In particular, [17] also takes a preprocessor approach,
but it only implements the static ruleset (more details in [?]) to
filter out uninteresting communication, without the dynamic, per
connection control we provide. Likewise, a related project[?] of-
floads Snort processing by implementing a static set of rulesin the
FPGA.

The most closely related work to ours is SPANIDS [15].
SPANIDS is a front-end load balancer for parallel intrusionde-
tection applications, which uses a series of hash functionsto de-
termine which analyzer should receive a packet. The SPANIDS
load balancer receives packets on a single Gbps Ethernet, rewrites
the destination MAC address based on a series of hash functions,
and outputs the packet. SPANIDS uses four small hash tables of
4,096 entries to determine where to route the packet, with these ta-
bles implemented in on-chip SRAM. Unlike the Shunt, SPANIDS
can’t precisely route individual connections, only hash-based ag-
gregates of connections to balance flows and prevent hotspots.

3. RNET
Although the NetFPGA platform is designed for easy extensibil-

ity as part of class projects, the design framework for classprojects,
UNET, was not suitable for our purposes. The UNET design only
activates a single Ethernet and, more importantly, lacks a DMA in-
terface to the host. Instead, we began with the NetFPGACNET
design, which implements a 4 port Ethernet NIC, complete with
DMA packet transfer and a Linux driver, as the starting pointfor
our work.

We wished to create a general framework for packet processing,
not just an application-specific instance. We observed thatmany
network processing tasks have the following properties: Packets are
read in from an Ethernet, perhaps modified in-place (such as chang-
ing MAC addresses and IP TTLs, or decrypting payload data), and
then written out to an appropriate MAC or forwarded to the host
for further analysis. This analysis may also need some reasonably-
sized shared memory, and an easy interface to the host if the oper-
ations required for a packet are more complex than what the hard-
ware can support.

3.1 Shim Layer
To do so, we created a smallshimmodule that fits between each

receiving MAC and the memory arbiter that processes packetsdes-
tined for the host. The purpose of the shim is to read in a packet
from the MAC (on a 32-bit, 62.5 MHz bus) into a buffer, process
the packet with user-specified logic, and then forward the packet to
its appropriate destination(s). The shim must wait for the arbiter
to complete the transaction if the packet is forwarded to thehost,
but once the shim begins writing the packet to the output MACsit
begins reading the next packet. This can allow the shim to operate
near or at Gbps rates if the packets don’t need to be redirected to
the host.

In addition to the shim, we needed to modify other portions of
the design. In order to prevent contention, we gave each MAC
send path 4 additional FIFOs, for a total of five. These FIFOs are

PCI Interface

PHY

PHY

PHY

PHY

Virtex 2 Pro FPGA

2 MB SRAM

(Host FIFO)

2 MB SRAM

(Shunt Tables)

FIFOMAC

FIFO

FIFO

FIFO

FIFO

FIFO

MAC Group 0

Buffer

Header�

Extract

Shim 0 Arbiter

MemCtl

Decision

Packet�

Router

MAC1..3

Shim 1..3

ToHost

FromHost

Figure 1: The RNET structure. Items in gray are carried over from the CNET infrastructure unchanged.

served in a round-robin fashion. As a result, the RNET framework
implements a full 5x5 crossbar, with the 5x4 crossbar to the output
MACs having independent buffers for each path.

Finally, the memory controller for the second SRAM was mod-
ified to provide 5 read and write ports. Each shim is given a sin-
gle pipelined read and write port to this shared 256Kx36 SRAM.
Again, these requests are also serviced in a round-robin fashion,
and the memory controller is pipelined for greater throughput.

The resulting framework (Figure 1) can then be used to imple-
ment a large class of packet processors. As the packet is readfrom
the MAC, at 2 Gbps, the headers are extracted and the packet writ-
ten into a BlockRAM buffer. Once the packet is fully read in, any
user logic can modify the packet in place and decide where the
packet should be routed. The biggest limitation on RNET-based
designs is that effectively all BlockRAMs are used in the Virtex 2
Pro 30, mostly because of the 20 BlockRAMs required simply
for the output buffers for the MAC output crossbar and the other
4 BlockRAMs for the packet buffer in the shim, which are on top
of the already significant buffering used in the base CNET design.

3.2 Click Interface
One other addition was an interface to allow the Click [9] router

framework to access NetFPGA resources. Click is a C++ frame-
work for writing software routers and software packet processing
elements that run on Linux.

For packets being passed to and from the host, using the CNET
driver, Click treats the NetFPGA like any other Ethernet, with each
port having a unique Ethernet name. Click can read and write ap-
proximately 20K packets/sec through this interface.

To access control information, including both NetFPGA status
registers and the shared SRAM memory, a simple interface is pro-
vided that allows Click elements to write and read state of the off-
chip SRAMs. In particular, the 2 MB shared SRAM can be both
read and written by programs written in Click to facilitate commu-
nication with the shims, without needing to modify or add status
registers contained in the CNET infrastructure.

4. THE SHUNT’S ARCHITECTURE
The Shunt is designed to accelerate three separate-but-related in-

trusion detection tasks: in-line operation (necessary forintrusion
prevention), LAN operation, and IDS load balancing. We havede-
signed the Shunt to perform in all these environments using asingle
common hardware design.

The key to the Shunt’s operation is its ability to act as a pro-
grammable, priority-based filter. For each packet received, the
Shunt examines the layer 3 and layer 4 headers, including the
source IP address, the destination IP address, and the connection 5-
tuple (source IP, destination IP, IP protocol, source port,and desti-
nation port), to find the appropriate 2-bit action (forward the packet
onward; drop the packet; forward the packet and also sample with
a specified probability; or divert the packet to the host for further
examination). Each matching rule also has a 3-bit priority (values
0 to 7), with the highest matching rule being selected, and a 3-bit
sample schedule if the selected action is sample.

The header examination uses a set of static rules. Non-IP
packets will always be shunted (diverted) to the host. Likewise,
packets which are IP fragments (which can be used for evasive
purposes), contain IP options, or are TCP connection delimiters
(SYNs, SYN/ACKs, FINs, or RSTs) are shunted to the host with
medium priority.

In contrast, both the connection rules and IP rules are pro-
grammable. The Shunt looks up the source IP address, the destina-
tion IP address, and the connection 5-tuple. The IP addresslookup
just involves finding a matching action and priority. Connection
lookup, however, can also involve an optional record storedin a
separate table. This optional record can specify a different desti-
nation for the packet, both in terms of MAC address and VLAN
tag and can also specify an alternate action if the packet’s TCP se-
quence number is within a specified range.

The goal of the alternate record’s sequence skipping is to enable
the IPS to skip over a predefined “less interesting” range of traffic.
For example, in an HTTP stream, a large embedded image is of
little interest to most IPSs. By using the header to determine the
length of the image, the sequence-skipping can be used to have the
Shunt directly forward the image, while ensuring that the subse-
quent traffic will still be directed to the host for detailed examina-
tion.

4.1 In-line Border Operation
One mode of operation for the Shunt is to deploy it (and an asso-

ciated IPS) in-line at a site’s border, to protect the site from external
threats by filtering all traffic on the wide area network (WAN)link
or links. In this mode, we operate the Shunt with two network
ports, one for the LAN side and another for the WAN side. As a
single NetFPGA board can process two Gbps Ethernet ports, our
implementation can support such operation for IPS operation on a

Gbps Internet access link.
For such a deployment, the Shunt’s role is to act as a front end

filter for an IPS running on the Shunt’s host. When the IPS deter-
mines that a particular connection doesn’t significantly benefit from
deeper inspection, it will place aforward rule for this connection.
Any subsequent traffic will be directly routed from the inputEther-
net to the output, without loading the host PC that performs the IPS
analysis. Likewise, if the IPS detects that an external hostis behav-
ing offensive in some way (attacking internal hosts, or attempting
to disrupt the IPS itself with stressful traffic), it can institute a high-
priority drop rule for traffic coming from this IP address.

4.2 In-Line LAN Operation
For LAN operation, the Shunt’s role is to isolate and control

traffic passing between a large group of hosts, either for IPSop-
eration [20, 21] or to implement LAN-based policy control [3]. As
such,all traffic on the local network must pass through the Shunt
before proceeding to the destination.

There are two options for LAN traffic management: direct rout-
ing and VLAN rewriting. In direct routing, every host or group of
hosts is on a separate Shunt port. In this context, the connection
table’s optional record for each destination will specify to which
output port a connection should be routed.

For VLAN rewriting, every host is on its own unique VLAN, us-
ing untagged switch ports, with the Shunt on one or more VLAN
trunks that can read and write every 802.1(q) VLAN on the switch
with tagged packets. For VLAN rewriting, the optional record
specifies the destination VLAN. Any packet which is forwarded
will have its VLAN tag rewritten and then be reinjected back into
the same port, where the switch will route the packet to its destina-
tion. This, naturally, requires switches which both support VLANs
and maintain per-VLAN MAC caches.

One limitation for these LAN operations is that forward opera-
tions can only be encoded in the connection table’s option field, not
in the IP address table. As such, the IP address table is effectively
limited to simply blocking offensive sites, not whitelisting traffic
from trusted hosts.

4.3 Passive IDS Load Balancer
A final deployment we are pursuing is as a load balancer for a

cluster-based IDS deployment. In this role, we feed four 1 Gbps
tap ports into a switch, with each data feed on a unique VLAN.
The Shunt receives traffic from four ports on the switch, witheach
port configured with a VLAN trunk. Each port provides access
to one of the tap feeds, and can also transmit to different VLANs
corresponding to the different nodes of the IDS cluster.

In this mode, the Shunt’s PC host acts as a load balancer and
manager, putting in appropriateforward rules for all active connec-
tions. Doing so requires the PC to install rules on a per-connection
basis, but allows significantly greater flexibility than static rules:
the load balancer can, on request, also drop connections, react to
node failures, or redirect connections to different analyzers on de-
mand. Since the present configuration does not include the IDS
nodes reinjecting traffic, the Shunt does not operate in-line, and
thus does not support intrusion prevention; however, the approach
could be readily extended to do so.

5. MULTILOCATION ASSOCIATIVITY
Traditionally, higher associativity caches will have multiple lo-

cations at the same index. Thus, if the cache is 2-way associative,
andD0, D1, andD2 all hash to the same index, only two entries
can actually be stored. In a multilocation associativity cache, mul-
tiple hash functions are used rather than one, and the value may be

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 100% 200% 300% 400%

Desired Percentage Occupancy

Direct Mapped

2-way assoc

2-loc assoc

2-loc assoc + search

Figure 2: The fraction of the cache actually filled as a function
of the number of inserts attempted for four different strategies:
Direct mapped, 2-way associative, 2-location associative, and 2-
location associative with a small search to move entries. These
results are for 100 runs each with a 64K entry cache.

at the index specified by any hash function. This design, because
it is a cache rather than a complete hash table (and thereforeno
chained buckets) is a simplification of the Fast Hash Table proposed
by Song et al [16], which was itself based on Bloom filters [2].It
is also similar to the skewed-associativity cache [?], except that it
uses multiple hash functions within a single block rather than a dif-
ferent hash function for each different block in the cache.

In a multilocation cache, we use the multiple hash functionsto
specify multiple locations where an element might reside. For a
2-way multilocation cache, we use two different hash functions,
and the data could be at either location. Unlike with a Bloom fil-
ter, however, we check the hashed locations to see whether the data
is actually present at the location. If not, it is a cache miss. This
multilocation design allows the cache to be significantly more fully
populated: ifD0, D1 andD2 map to the same location with one
hash function, it is highly unlikely that they map to the sameloca-
tion for the second hash function.

Additionally, when the cache evictions are rare (often the case
when reads are much more common than insertions), and the cache
is managed by a sophisticated processor, entries can be moved. By
conducting a partial or complete depth-first-search, the cache man-
ager can help ensure that the cache is completely full, a similar but
simpler process to the pointer balancing in Song et al’s FastHash
Table design.

Figure 2 shows how location associativity can help better utilize
the cache. As can be clearly seen, when the cache is only lightly
occupied, the choice of associativity has little effect. But as the
number of entries exceeds the size of the cache, the multilocation
associativity helps considerably. Adding the search operation im-
proves things even more.

We modeled this cache architecture using a small simulator,con-
ducting 100 runs for each parameter selected. For Figure 2, we
used a 64K-entry cache. In particular, when 64K elements are
hashed and inserted into the direct mapped cache (desired occu-
pation equals 100% of cache size), on average only 41,000 ele-
ments can actually reside in the cache. Changing to a two-way
associative design allows 47,600 elements to be actually cached. A
two-location associative cache, however, allows 49,800 elements.
If a small, depth-5 search is used to find an appropriate entrywhen
there is a conflict, now 54,800 elements can be stored, using the

exact same amount of memory. Thus going with multiway associa-
tivity and a small search to find valid configurations can result in a
15% increase in cache utilization.

There are three disadvantages to this style of cache compared
with a conventional cache. The first is that it requires multiple hash
functions instead of a single function. This is simply because N-
way location associativity requires N hash functions (or N different
keys to the same keyed hash function). In general, this cost is usu-
ally low.

The second disadvantage is that if a search is employed, it can
be costly as the cache fills up. Instead of simply checkingN loca-
tions to determine where to insert, a small search of depthK will
require checkingK ∗ N locations. Thus, some tradeoff will need
to be determined where to halt the search and just evict an oldentry
instead.

The biggest concern is that anN location cache requires access-
ing N differentmemory locations. If the cache is stored in SRAM,
and the entry size is equal to or greater than the word size, this
is not an issue. However, for DRAM-based caches, or any mem-
ory system which fetches large groups of words at a time, location
associative caches may not be effective.

6. PERMUTATION CACHES
One of the keys to the Shunt’s design is efficient caches. With

only a 2 MB working memory, we needed to develop efficient
caches to maximize the hit rate while minimizing the working
memory. In particular, for the IP address cache, we used a vari-
ant on the permutation cache we first described in our AC-TRW
paper [10], which allows us to double the capacity of this cache.

A permutation cache is particularly well suited to associating a
small amount of data (such as an 8-bit source action and an 8-bit
destination action) to 32-bit keys. Rather than splitting the key into
an index and tag, a permutation cache first encrypts the key using
a block cypher where the block size is the same as the cache’s key
size. Since a block cypher is really a permutation, this guarantees
that each key will map to a unique value. Additionally, by using
a cypher with a random cryptographic key, the permutation isran-
domized and therefore can’t be predicted by an attacker, avoiding
the attack by Crosby and Wallach [4].

The resulting 32-bit value is then split into an index and tag, with
the index used to find the proper location and the tag verified when
fetching the associated value, just like a conventional cache. As a
result, an encryption cache for 32-bit keys with2

16 locations only
needs 16 bits of tag per entry, rather than the 32 bits required if a
hash was used instead of a permutation.

We extended the permutation cache to support multilocationas-
sociativity by using different cryptographic keys. Instead of just
storing the tag, an additional ID number is used to specify which
cryptographic key was used for this entry. With 2 cryptographic
keys, this then becomes a 2-way multilocation associative encryp-
tion cache. If two values encrypt to the same location with one en-
cryption key, they will, with very high probability, map to different
locations when the other encryption key is used, giving a freedom
for cache layout, as we discussed in Section 5.

6.1 Keyed Permutation
Due to the usage model in a permutation cache, we don’t need

a cryptographically strong block cypher, just an efficient block
cypher-like keyed permutation, one that requires only a small
amount of FPGA resources and can be computed in one or two
clock cycles. Additionally, we need a 32-bit block cypher, while

Keyed Permutation Function

Input: Din[31:0], K[63:0]

Output: Dout[31:0]

 B0 <= (SBoxA(Din[7 : 0])>>>2) + K[7: 0]

 B1 <= (SBoxA(Din[15: 8])>>>3) + K[15: 8]

 B2 <= (SBoxA(Din[23:16])>>>4) + K[23:16]

 B3 <= (SBoxA(Din[31:24])>>>5) + K[31:24]

 C0 <= B0 ^ (B1>>>1) ^ (B2>>>2) ^ K[39:32]

 C1 <= B1 ^ (B2>>>4) ^ (B3>>>5) ^ K[47:40]

 C2 <= B2 ^ (B3>>>7) ^ (C0>>>1) ^ K[55:48]

 C3 <= B3 ^ (C0>>>3) ^ (C1>>>4) ^ K[63:56]

 D0 <= SBoxC(C0)

 D1 <= SBoxC(C1)

 D2 <= SBoxC(C2)

 D3 <= SboxC(C3)

 E0 <= D0 ^ (D1>>>1) ^ (D2>>>5) ^ (D3>>>2)

 E1 <= D1 ^ (D2>>>2) ^ (D3>>>6) ^ (E0>>>3)

 E2 <= D2 ^ (D3>>>3) ^ (E0>>>7) ^ (E1>>>4)

 E3 <= D3 ^ (E0>>>4) ^ (E1>>>1) ^ (E2>>>5)

 Dout[31:0] <= {E3, E2, E1, E0}

SBoxA-> Apply Serpent SBox0 to upper 4 bits�

 Serpent SBox1 to lower 4 bits

SBoxC-> Apply Serpent SBox2 to upper 4 bits�

 Serpent SBox3 to lower 4 bits

Figure 3: The pseudo-code for our keyed permutation (a sim-
plified block cypher).

most block cyphers operate on 64- or 128-bit blocks.1 We also
desire a 64-bit cryptographic key, which allows a large amount of
entropy to be injected into the permutation.

To this end, we committed a classic cryptographic sin and devel-
oped our own 32-bit keyed permutation specifically for use in32-
bit permutation caches. Our goal was to have a single round with
a reasonable amount of mixing that can be efficiently implemented
on a 4-LUT based fabric as an S/P (Substitution/Permutation) net-
work. Accordingly, the primitives we used are 4-bit S-boxes(from
the Serpent [1] block cypher), byte addition, fixed rotation, and 4-
input XOR.

The input first passes through the initial S-boxes. The resulting
output bytes are rotated and bytewise added to the first 32 bits of the
key. The resulting word is then is passed through bytewise rotation
and 4-input XORs, with each XOR combining 3 bytes of data with
1 byte of key. Finally, the data passes through one more roundof
S-boxes, and then a series of 4-input XORs and rotations. Figure 3
shows the complete pseudocode.

Although we never actually need to decrypt data for our appli-
cation, the decryption process is effectively the oppositeof the en-
cryption process, with inverted operations in reverse order. Decryp-
tion requires exactly the same resources as encryption, andwould
be necessary for any application that needs to examine the entire
contents of a permutation cache, rather than just looking upa spe-
cific entry.

Finally, our design is optimized for hashing IP addresses. In this
case, it is acceptable if the lower bits of the output are not as high
quality as the upper bits, as it is the upper bits that we use asthe
index for looking up entries. As a result, for both the computation

1The RC5 [13] and RC6 [14] cyphers can be parameterized down
to a 32-bit block, but they are not efficient in this application due
to their multiround structure, choice of primitives including 16-bit
variable rotations, and complex key schedule.

Start End Purpose
Address Address

0x00000 0x0FFFF Status Registers, Keys, Misc I/O
0x10000 0x1FFFF IP Address Cache,216 entries
0x20000 0x3FFFF Optional Records,215 entries
0x40000 0x7FFFF Connection Cache,216 entries

Table 1: The memory allocation used in the NetFPGA Shunt

of the C and E words, the feedback loop causes the upper bytes to
be more affected by all input data and key bits.

6.2 FPGA Implementation
This design is very efficient when targeting an FPGA. All steps

require only 32 LUTs each. Thus with two S-box steps (64 LUTs),
the initial key addition (32 LUTs), the key-dependent mixing
(32 LUTs), and the key independent mixing (32 LUTs), the total
cypher only requires 160 LUTs. Given a registered input and only
a single pipeline register on the output, this cypher runs atthe target
62.5 MHz clock cycle on our Virtex 2 Pro FPGA, without needing
placement directives.

7. SHUNT CACHES
For the actual implementation of the Shunt, we need to fit all

the caches into the single 512Kx36 (2 MB) second SRAM on the
NetFPGA board. Table 1 summarizes our memory allocation. We
reserved the locations 0x0000 to 0x0FFFF (the first2

16 addresses)
for miscellaneous I/O, including status registers, debugging infor-
mation, and the two permutation keys that are written by the host.

The IP address cache uses2
16 addresses from 0x10000 to

0 0x1FFFF. We implemented the address cache as a 2-location as-
sociative permutation cache. With216 addresses and 2 keys, the
first 16 bits are used to store the tag, one bit for the key ID, 8 bits
for the SRC IP address record, 8 bits for the DST IP record, and
3 bits of the entry are unused. Looking up a packet in the IP address
cache requires checking four locations, two for the SRC record and
two for the DST record.

The connection cache uses218 addresses, from 0x40000 to
0 0x7FFFF. This cache is 2-location associative, using our keyed
permutation as the basis for the hash function and the same two
keys as used for the address cache. Each record in the connection
cache is 4 words, so the cache contains2

16 entries. The entry con-
tains both of the IP addresses (64 bits), both port numbers (32 bits),
the IP protocol number (8 bits), and an 8-bit action field. Addition-
ally, we include two 16-bit pointers, for an optional recordfield for
each direction of the connection.

Finally, the optional records use217 addresses, from 0x20000 to
0x3FFFF. These records contain a 48-bit optional MAC address
to overwrite the destination MAC, a 16-bit optional VLAN tag,
and a 2-bit alternate destination port designation. All these fields
also have an associated bit that specifies if the alternate destination
(MAC, VLAN, and/or Ethernet port) should be used. Finally, the
optional record contains a 32-bit TCP sequence number and anas-
sociated 8-bit action. If the packet is a TCP packet, and the packet’s
sequence number is less than the recorded sequence number, the al-
ternate action field is used instead of the connection cache’s action
field. This allows us to implement the functionality of skipping
over part of a TCP byte stream.

We pipeline the memory access when a packet is received in or-
der to improve memory access time. We first access the 4 words

used to specify the two 64-bit encryption keys used for both the per-
mutation cache for IP address lookup and the hash function for con-
nection lookup. Then the two possible connection entry locations
(4 words each) are fetched. Then the 4 words for the IP address
cache. At this point, the state machine may pause to ensure that the
connection entries are properly loaded, before fetching the 4 words
pointed to by the optional record. Thus, processing a packetre-
quires fetching 20 words from 8 contiguous locations in memory.

7.1 The Packet Processing Procedure
When a packet is received, the entire packet is first read into

the Shim’s BlockRAM buffer. As the packet is received, the ap-
propriate fields (including IP header, TCP header, and Ethernet
header) are captured and stored in registers. Once the packet is
completely read in, the IP address cache, connection cache,and
alternate record are looked up. For each cache that matches,the
appropriate action field is used, or, if there is no match, thedefault
action ofshuntis selected.

Additionally, the fixed rules are examined. Non-IP packets are
always shunted to the host. IP packets with IP options set are
shunted with priority 4, as are TCP SYNs, FINs, and RSTs. Only
the highest matching action is selected, with the resultingpacket
either being shunted to the host, dropped, forwarded to the des-
tination, or sampled with a copy going both to the host and the
destination.

Finally, if the connection cache entry has an alternate record, and
the alternate record specifies that the MAC or VLAN tag should
be overwritten, we do so in place before the packet is forwarded.
Because this overwriting uses the same memory interface used to
write the packet to the BlockRAM, we need to wait for the packet
to be completely received before this can occur.

7.2 Priority Inversion and Cache Manage-
ment

The caches are always managed by the host, never the Shunt
hardware. The Shunt hardware only reads the caches, to determine
the appropriate action. It is up to the host to manage the cache,
including both setting entries (when the policy requires them) or
evicting entries when space is required.

An important feature is that an evicted cache entry is safe. If
there is no entry, the packet is alwaysshuntedto the host. Thus if
only one rule applies, it is always sound for the host to evictthat
entry if space is needed in the cache.

However, if a high priority entry and a low priority entry ex-
ist for the same connection (such as a low prioritydrop associated
with an offensive IP address but a high priorityforward for an al-
lowed connection), and the high priority entry is evicted, the Shunt
will compute the wrong action. To address this, we impose on the
host the responsibility to not create conditions where sucha pri-
ority inversion can occur. If an evicted entry would lead to such a
situation, the host must identify this possibility and either also evict
the low-priority rule (to remove the inversion) or select a different
entry to evict.

8. EVALUATION
We evaluated the Shunt’s hardware in several contexts, including

the hardware utilization, latency required to process packets both
through a hardware-only and a hardware/software path, bandwidth
testing, and the cycles required to make a decision.

The complete Shunt implementation currently requires
21,200 LUTs, or 77% utilization of the Virtex 2 Pro 30
FPGA’s available resources. Another 2,770 LUTs are used
for routethrough, with a total LUT utilization of 87%. 95% ofthe

Action Entry Format:

Action (2b) Sample Rate (3b) Priority (3b)

Packet Src IP Dst IP Proto Flags SPort DPort

IP Cache
Src

Actn

Tag &

KeyID

.
.
.

Dst

Actn

Connection Cache
Low�

IP

.
.
.

High

IP

Proto Low�

Port

High�

Port

Low�

Optn

High�

Optn

Fixed Rules

P
rio

rity
�

S
elect

Selected �

Action:�

(Forward, �

 Shunt,�

 Sample, �

 or Drop)17b 32b 32b 8b8b 8b 16b 16b16b 16b

Low�

Actn

High�

Actn

8b 8b

Option Table
New�

MAC

.
.
.

New�

VLAN

New�

Out

Seq

#

Seq�

Actn

49b 17b 3b 32b 8b

Figure 4: The packet processing operation used by the Shunt

slices are occupied. The Shunt also uses 135 out of 136 available
BlockRAMs. We believe that we can save≈ 3,000 LUTs by
removing several redundant keyed permutation instantiations in
each shim and instead multiplexing a single implementation. The
Shunt meets the target clock rate of 62.5 MHz.

To measure the overall latency incurred by the Shunt, we con-
nected two systems, each to their own Gbps switch, and then
bridged the switches either with a cable, with the Shunt set to
forward all packets (hardware-only path), or with the Shuntfor-
warding all packets to the Click test harness, which reinjects
the packets (hardware-plus-software-interface path). Using Linux
“ping -f -c 10000”, the direct connection averaged an RTT
of 176µsec. The hardware-only path took 187µsec, and the hard-
ware+software path 344µsec. Thus, packets forwarded by the
Shunt incur an additional 5–6µsec of latency,2 which is essentially
negligible.

We tested the Shunt’s ability to process large data rates using ip-
perf [8] in the DETER testbed [?]. Using a single sending host and
a receiving host on the other side, each Shunt port proved capable
of receiving and processing data at 480 Mbps. This figure is below
a full Gbps because of a bug we discovered in the input FIFO that
causes a lockup condition when attempting higher data rates. Ad-
ditionally, one other bug we found prevents the reading of correct
VLAN-tagged packets by the device, but works fine for untagged
packets.

The Shim itself is capable of processing packets at full Gbpsline
rate, but only for reasonably sized packets (> 400 bytes in the worst
case under maximum load) which are not directed to the host PC.
It requires 41 cycles from when a packet is completely received in
the BlockRAM buffer to when it can be read out, when the board
is lightly loaded. During heavy load, memory contention could
increase this by, at most, 60 clock cycles, resulting in a maximum
decision time of 101 clock cycles.

2This figure is half of the observed increase in RTT, since the RTT
reflects the Shunt forwarding both the original ping packet and its
reply.

If the packet is destined for the host, the Shim will have to wait
until the arbiter reads the packet into the host packet buffer before
receiving the next packet. Additionally, since the host interface is
only 32b, 33 MHz, it is obviously insufficient to support fullGbps
line rates. But if the packet is destined solely for another Ethernet,
it can begin reading the next packet. Since the interface from the
MAC is 2 Gbps, and the interframe gap is 20 bytes, the Shunt can
maintain full line rate for forwarded packets if the averagepacket
size is over 80 bytes. Since the minimum Ethernet packet sizeis
64 bytes, the Shunt can’t quite keep up with a full rate streamof
minimum sized packets, but can process a stream of slightly over
minimum size at full rate. In practice the Shunt’s throughput will
be limited by the fraction of packets which are shunted or sampled,
not by its ability to forward packets which don’t involve thehost.

9. CONCLUSIONS
We have developed the Shunt, an FPGA-based accelerator for

intrusion prevention systems based on the NetFPGA architecture.
The Shunt’s design is based on the RNET design we developed, a
modified version of the NetFPGA CNET design which is optimized
for developing network processing applications.

The Shunt uses a novel cache structure to track addresses and
connections of interest. It uses a 2-location associative cache for
connections, and a 2-location associative permutation cache for
tracking addresses. The permutation cache allows twice as many
IP address entries to be stored in the same memory. We also devel-
oped a new block cypher specifically for FPGA-based permutation
caches, which can be realized in 160 LUTs, while the multiloca-
tion associativity allows the cache to be more effectively utilized by
the software host. Additionally, the caches are “safe”, with cache
misses resulting in packets being shunted to the host.

As a result, the Shunt can utilize a very small amount of memory,
a single 2 MB (512Kx32) SRAM to maintain its caches, and is im-
plemented on a relatively small (Virtex 2 Pro 30) FPGA. The shunt
is also fast, requiring 41 cycles to make a decision when lightly
loaded (and a maximum of 101 cycles when fully utilized). For

packets handled entirely in hardware, additional latency is only 5–
6 µs, nearly unmeasurable for network traffic.

10. ACKNOWLEDGMENTS
This work was sponsored by the US Department of Energy, Of-

fice of Science; the National Science Foundation under grants STI-
0334088 and NRT-0335290; and by donations from Xilinx, for
which we are grateful.

The evolution of the shunting architecture benefited greatly from
discussions with Scott Campbell, Eli Dart, Stephen Lau, andRobin
Sommer. Our thanks to Weidong Cui and Christian Kreibich for
volunteering to have their daily network traffic “live behind” our
prototype shunting software for testing purposes. Finally, we wish
to acknowledge valuable assistance from the NetFPGA team at
Stanford University, lead by Nick McKeown and Greg Watson.
The NetFPGA program is sponsored by NSF grant EIA-0305729
as well as contributions from Xilinx.

11. REFERENCES
[1] R. Anderson, E. Biham, and L. Knudsen. Serpent: A

proposal for the advanced encryption standard.
[2] Burton Bloom. Space/time trade-offs in hash coding with

allowable errors.CACM, July 1970.
[3] Martin Casado, Tal Garfinkel, Aditya Akella, Michale

Freedman, Dan Boneh, and Nick McKeown. SANE: A
protection architecture for enterprise networks. InUsenix
Security, 2006.

[4] Scott Crosby and Dan Wallach. Denial of Service via
Algorithmic Complexity Attacks. InProceedings of the 12th
USENIX Security Symposium. USENIX, August 2003.

[5] M. Crovella. Performance evaluation with heavy tailed
distributions. InJSSPP ’01: Revised Papers from the 7th
International Workshop on Job Scheduling Strategies for
Parallel Processing, pages 1–10, London, UK, 2001.
Springer-Verlag.

[6] M. Crovella and A. Bestavros. Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes. InProceedings
of SIGMETRICS’96: The ACM International Conference on
Measurement and Modeling of Computer Systems.,
Philadelphia, Pennsylvania, May 1996. Also, in Performance
evaluation review, May 1996, 24(1):160-169.

[7] J.M. Gonzalez.Efficient Filtering Support for High-Speed
Network Intrusion Detection. PhD thesis, University of
California, Berkeley, 2005.

[8] National laboroatory for applied network research,
distributed applications support team, iperf, the tcp/udp
bandwidth measurement tool.
http://dast.nlanr.net/projects/iperf/.

[9] R. Morris, E. Kohler, J. Jannotti, and M. Frans Kaashoek.
The click modular router. InSymposium on Operating
Systems Principles, pages 217–231, 1999.

[10] Nicholas Weaver and Stuart Staniford and Vern Paxson. Very
fast containment of scanning worms. In13th USENIX
Security Symposium. USENIX, August 2004.

[11] V. Paxson. Empirically derived analytic models of wide-area
TCP connections.IEEE/ACM Transactions on Networking,
2(4):316–336, 1994.

[12] V. Paxson and S. Floyd. Wide area traffic: The failure of
poisson modeling.IEEE/ACM Transactions on Networking,
3(3):226–244, 1995.

[13] Ronald L. Rivest. The RC5 encryption algorithm, from dr.
dobb’s journal, january, 1995, 1996.

[14] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L.
Yin. The RC6 block cipher.

[15] Lambert Schaelicke, Kyle Wheeler, and Curt Freeland.
SPANIDS: A scalable network intrusion detection
loadbalancer, 2005.

[16] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and
John Lockwood. Fast hash table lookup using extended
bloom filter: An aid to network processings. InSIGCOMM,
2005.

[17] Haoyu Song, Todd Sproull, Mike Attig, and John Lockwood.
Snort offloader: A reconfigurable hardware nids filter.

[18] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast,
large-scale string match for a 10 gbps fpga-based network
intrusion detection system.

[19] Greg Watson, Nick McKeown, and Martin Casado. Netfpga:
A tool for network research and education. In2nd workshop
on Architectural Research using FPGA Platforms (WARFP),
2006.

[20] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern
Paxson. Worms verses perimiters: The case for hard lans, in
submission.

[21] Nicholas Weaver, Vern Paxson, and Robin Sommer. Work in
progress: Bro-LAN pervasive network inspection and contr
ol for lan traffic, 2006.

[22] W. Wilinger, V. Paxson, and M. Taqqu. Self-similarity and
heavy tails: Structural modeling of network traffic. In
R. Adler, R. Feldman, and M. Taqqu, editors,A Practical
Guide To Heavy Tails: Statistical Techniques and
Techniques. Birkhauser, 1998.

[23] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson.
Self-similarity through high-variability: Statistical analysis
of Ethernet LAN traffic at the source level.IEEE/ACM
Transactions on Networking, 5:71–86, 1997.

