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It isn’t that they can’t see the solution. It’s that they can’t see the problem.
— G.K. Chesterton

We are now in a position to address ourselves more directly to the learning task introduced

in Chapter 1. Section 5.1 recapitulates the most relevant constraints encountered in the foregoing

chapters. These are distilled in Section 5.2 into a formal statement of a class of grammar learning

problems, along with a specific instance of this class. The focus then shifts to seeking an adequate

solution: Section 5.3 reviews some candidate approaches, and Section 5.4 lays out a framework that

adapts these to satisfy our problem constraints.

5.1 The child’s learning task: a review

The developmental and linguistic evidence reviewed thus far suggests the following informal syn-

opsis of the language learning task: Children are situated in rich experiential contexts, subject to

the flow of unfolding events. At all stages, they exploit a panoply of cognitive and social abilities

to make sense of these experiences. To make sense of linguistic events — sounds and gestures used

in their environments for communicative purposes — they also draw on mappings between these

111



perceived forms and conceptual knowledge. These mappings, or constructions, are typically in-

complete with respect to the utterances they encounter, but even an imperfect understanding of an

utterance provides direct clues to its intended meaning and thereby reduces the burden on prag-

matic inference and situational context. The goal of language learning, from this perspective, is to

acquire an increasingly useful set of constructions (or grammar) — that is, one that allows accurate

interpretations of utterances in context with minimal recourse to general inference procedures. In

the limit, the grammar should stabilize, while facilitating the comprehension of both familiar and

novel input.

This section summarizes the most relevant constraints on the problem. These fall into three

categories: structural constraints arising from the nature of the target of learning; usage-based con-

straints arising from the goal of facilitating language comprehension; and cognitive and develop-

mental constraints arising from the nature of the learner.

5.1.1 Representational requirements

The target of learning is a construction-based grammar in the general sense described in Sec-

tion 2.2.1, as instantiated by the Embodied Construction Grammar formalism.

• Constructions are cross-domain: they are mappings over the domains of form and meaning.

Units of form and meaning are schematic descriptions summarizing the linguistically relevant

aspects of more detailed embodied representations (such as acoustic or auditory representa-

tions for form, and motor, perceptual and other conceptual representations for meaning).

• Constructions may have constituents, i.e., subcomponents that are themselves constructions.

• Constructions are themselves complex categories, organized in a typed multiple inheritance hi-

erarchy. They may be subcases of other constructions, inheriting structures and constraints.

Their constituent constructions, as well as their form and meaning poles, may also be typed.1

• Constructions may include relational constraints, i.e. relations that must hold of form and/or

meaning elements (such as binding constraints and ordering constraints).

The focus here is on constructions licensing multiword expressions, which typically involve multi-

ple forms, meanings and constituents, along with relational constraints among these. The problem

thus demands an approach to learning that can accommodate the representational complexity im-

posed by structured cross-domain mappings.
1As noted in Section 3.1.4, the choice of an inheritance-based type hierarchy, while a reasonable simplification for current

purposes, does not capture the graded, radial nature of constructional organization.
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5.1.2 Comprehension-based constraints

The framework described in Chapter 4 distinguishes several processes involved in language com-

prehension:

• constructional analysis: identifying the set of constructions instantiated by a given utterance,

and its corresponding semantic specification (or semspec);

• contextual resolution: mapping objects and events in the semspec to items in the current com-

municative context, producing a resolution map and a resolved semspec; and

• simulative inference: invoking the dynamic embodied structures specified by the (resolved)

semspec to yield contextually appropriate inferences.

As discussed in Chapter 4, these processes must tolerate uncertainty, ambiguity and noise: there

may be multiple possible constructional analyses for a given utterance and multiple ways of re-

solving referents to the context; there may be errors in the perceived input utterance or communica-

tive context; and some inferences may be only probabilistically licensed. Comprehension processes

must also cope gracefully with input not covered by its current grammar: all constructional anal-

yses, including those that account for the entire input utterance and those that do not (i.e., partial

analyses), should produce (partial) semspecs that can be resolved and simulated.

These considerations suggest that comprehension is not a binary matter, but rather one of de-

gree: interpretations can be judged as relatively more or less complete, coherent and consistent

with the context. That is, the language comprehension processes above require some means of

evaluating candidate interpretations and choosing those that contribute to effective and efficient

comprehension (e.g., by maximizing utterance interpretability in context, or minimizing construc-

tional and contextual ambiguity). Since progress in learning can be judged only by improvement

in comprehension ability, the same facilitating factors and evaluation criteria should also serve to

guide and constrain the learning process.

5.1.3 Developmental desiderata

As reviewed in Section 2.1.3, children entering the multiword stage have amassed a battery of

sensorimotor, conceptual, pragmatic and communicative skills, including:

• familiarity with a variety of people, objects, locations, and actions, including both specific

known entities (e.g., mother, favorite stuffed toy, bed) and more general categories of objects

and actions (e.g., milk, blocks, grasping, being picked up);
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• ability to infer referential and communicative intent, including determining objects of (joint)

attention and speech act type;

• familiarity with intonational contours and their associated speech acts;

• relatively well-developed ability to segment utterances into words; and

• a growing inventory of lexical mappings, including labels for many familiar ontological cate-

gories, as well as social and relational words.

The timelines for these ongoing developmental and learning processes overlap with the acquisition

of multiword constructions, and they vary dramatically across individual children. But all of these

diverse kinds of information may, in principle, be available by the time children begin to learn their

first word combinations.

Several trends in the acquisition of multiword constructions have also been identified, as re-

viewed in Section 2.2.3. Typically, children:

• learn more specific constructions before more general constructions, more frequent construc-

tions before less frequent constructions, and smaller constructions before larger constructions;

• require a relatively modest amount of data to achieve a baseline level of performance;

• receive relatively little negative evidence in the form of error correction; and

• generalize constructions to arguments beyond those observed in the input, both appropri-

ately and inappropriately.

Again, these patterns are subject to variation, both across and within individuals. Some children

learn larger multiword chunks as a single unit before later reanalyzing them in terms of their con-

stituent pieces; some persist in producing one-word utterances despite being able to string several

of these together (separated prosodically) to express complex predications.

These developmental findings inform the kinds of behaviors that should be exhibited by a

successful model of construction learning. That is, the course of acquisition should be qualitatively

comparable to that of a child at a similar developmental stage, and the model should be flexible

enough to encompass multiple learning styles.2

2I elide the distinction between comprehension and production here; while the timeline of acquisition may differ between
these, I assume that many aspects of the course of acquisition are roughly comparable.
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5.2 Problem statement(s)

This section translates the constraints just reviewed into a formal statement of a class of grammar

learning problems. Section 5.2.1 identifies the main structures and processes involved (defined in

detail in Section 4.1) and uses them to define the general problem of comprehension-based lan-

guage learning; these are then elaborated with respect to the problem of learning relational con-

structions in Sections 5.2.2-5.2.5, culminating in a more specific problem statement in Section 5.2.6.

5.2.1 Construction learning defined

The primary representational structures involved in language learning are as follows:

• A grammar G is a pair (S, C), where S is a schema set, and C is a construction set defined

with respect to S. Both S and C are typed multiple inheritance hierarchies whose members

are represented using the ECG schema and construction formalisms, respectively.

• Schemas in S provide parameters to embodied structures in a separate ontology O of detailed

sensorimotor representations and other structures that are not specifically linguistic.3

• A corpus D is an ordered list of input tokens d. Each input token d is a pair (u, z), where u is

an utterance and z is a communicative context.

Language comprehension is divided into several interrelated processes:

• A construction analyzer provides the function analyze(d, G), which takes an input token

d = (u, z) and a grammar G and produces an analysis ad and an associated semspec

ssa = semspec(ad).

• A contextual resolver provides the function resolve(ss, z),which takes a semspec ss and a

context z and produces a resolution map r and a resolved semspec rss.

• A simulation engine provides the function simulate(ss, z), which takes a resolved semspec

rss as input parameters for a dynamic simulation with respect to the context z, using struc-

tures in the conceptual ontology O to produce a set inferences(rss) of simulation inferences.

These processes evaluate their output structures using the folllowing quantitative scoring criteria:4

3The sense of ‘ontology’ intended here is broader than that typically used to represent static taxonomic relations.
4Probabilistically minded readers may note a suggestive resemblance between the scoring functions listed here and the

Bayesian prior probability of a grammar, likelihood of observed data with respect to a grammar, and posterior probability
of a grammar given the data, respectively). This family resemblance is further elucidated in Chapter 7.
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• score(G) is the grammar score, which measures intrinsic properties of a grammar G. Gener-

ally, it is defined to reward simpler, more compact grammars.

• score(d|G) is the token score, which measures how well token d is comprehended using gram-

mar G. Generally, it is defined to reward simpler, more likely analyses that account for more

of the input forms and meanings and are more easily interpreted in context.

• score(D|G) is the corpus score, which aggregates token scores score(d|G) based on grammar

G over the entire corpus D.

• score(G|D) is the grammar performance score, which measures how well a grammar G ac-

counts for a corpus D. This term should incorporate aspects of both the (intrinsic) grammar

score and its associated corpus score.

The terms above allow us to characterize a general class of language learning problems consis-

tent with the goals and constraints established in the preceding chapters.

Comprehension-based language learning

hypothesis space The target of learning is a grammar G defined using the ECG formalism.

prior knowledge The learner has an initial grammar G0 = (S0, C0), a constructional analyzer
that performs the analyze and resolve functions, a simulation engine that performs the
simulate function, and a conceptual ontology O.

input data The learner encounters a sequence of input tokens from a training corpus D.

performance criteria The grammar performance score of successive grammars Gi should im-
prove and eventually stabilize as more data is encountered.

The language learning problem as defined here admits many instantiations, corresponding to dif-

ferent ways in which the structures and processes involved can be further delineated. A version

of the problem focusing on lexical learning, for example, may restrict the initial and target gram-

mars to lexical constructions; the precise form of the input data (raw sensory data, phonological or

phonemic sequences, orthographic strings) may be chosen to reflect differing assumptions about

the perceptual abilities of the learner or the starting point of learning; and the scoring functions

may vary in the aspects of the grammar and analysis they reward.

My focus in this work is on the comprehension-driven acquisition of relational constructions —

i.e., the emergence of constituent structure. I thus restrict each component of the broader language

learning problem with some simplifying assumptions, as described in the next several sections.
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5.2.2 Hypothesis space

The hypothesis space for language learning is defined as a grammar G = (S, C), since both S and

C are taken to be part of linguistic knowledge. Recall that the schema set S contains the basic units

of linguistic form and meaning, as discussed in Section 3.2. These are the two domains linked by

all linguistic constructions, which together encompass all linguistically relevant concepts, including

both lexicalizable and grammaticizable notions in the sense discussed in Section 2.2.2 (Talmy 2000;

Slobin 1997).

I distinguish such concepts from the set O of all ontologically available categories, concepts

and domain-based knowledge. O is taken to encompass the full range of human conceptual and

perceptual potential, from multimodal, biologically grounded structures used in action, perception,

emotion and other aspects of experience to the more abstract but often richly structured categories

and relations in less directly embodied domains. The schemas in S summarize (a subset of) the

structures of O, and they exhibit noticeable regularities across languages (as might be expected

based on their putative common embodied basis). In the current work, however, I assume that

the actual set of linguistically relevant features, as well as the constellations of features that are

regularly packaged for particular linguistic purposes, must be learned on a language-specific basis.

Different learning processes are associated with each of these structures:

• concept learning: the formation of ontological categories of O based on embodied experience;

• (linguistic) schema learning: the reification of ontological categories and features of O into

the linguistically relevant categories of S, i.e., a set of embodied schemas for the domains of form

and meaning;

• construction learning: the pairing of form and meaning schemas of S into the specifically

linguistic categories of C.

These processes occur in parallel through development and into adulthood, and the relationships

among them are complex. There is a natural dependency of schema learning on concept learning

(a schema being a specific kind of concept), and of construction learning on schema learning (a

construction being a pairing of form and meaning schemas). But structures arising in each kind of

learning may also exert a mutually reinforcing influence on those arising in the others. A strong

Whorfian position, for example, might assert a determinative effect of S on O; a weaker stance

might posit a more balanced relationship between them. Likewise, it may be precisely the regularity

of certain form-meaning pairs in C that elevates their associated concepts into the schemas of S.
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The current work does not attempt to model all of these concurrent interactions; rather, these

processes are idealized as independent but interleaved. Specifically, I assume that construction

learning can be usefully modeled as taking place with respect to a fixed schema set and conceptual

ontology. The space of possible grammars G thus reduces to the space of possible construction sets

C defined with respect to S, with particular emphasis on the acquisition of structured mappings.

Note that this formulation nonetheless presumes significant indirect interactions based on the

inherent structural connections among concepts, schemas and constructions: constructions refer

directly to form and meaning schemas, and indirectly (via schemas) to embodied structures and

general ontological categories. Any changes to these structures (due to interleaved concept and

schema learning) could potentially affect the course of construction learning, where shorter inter-

leaving intervals reflect a tighter connection. In the limit, this interleaving could theoretically be on

a per-token basis. Potential extensions to the model to permit more direct interactions among these

processes are addressed in Chapter 9.

5.2.3 Prior knowledge

The learner is assumed to have access to both a grammar (with schemas and constructions) and

a language understanding model (performing constructional analysis and contextual resolution);

these correspond to naive theories of language structure and use appropriate for supporting lan-

guage behaviors observed during the single-word stage. No claims are made here about whether

or to what extent these structures and processes are innate, or simply acquired before and during

single-word learning.

Schemas and constructions

Schemas and constructions are represented using the ECG formalism, as described in Chapter 3

and Section 4.1.1. Assumptions about the contents of the initial grammar depend on the particular

phenomena or learning stage of interest; the specifications below reflect the current focus on the

earliest relational constructions in English:

• Word forms are represented as orthographic strings. Intonational information is represented

using an intonation role filled by one of a limited set of familiar contours (falling, rising and

neutral). Potential form relations are limited to the ordering relations before and meets.

• Meaning schemas reflect a typical child’s ontological knowledge of concrete entities, actions,

scenes and relations (such as those shown in Figure 3.8).
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• The initial construction set consists of simple mappings linking word forms to embodied

schemas. These include concrete referring expressions (for people, objects and places), action

words and spatial relations (like the ones defined in Figure 4.3). No other function words (e.g.,

determiners), relational constructions or other explicitly grammatical categories are present

at the outset of learning.

• The initial construction set has a relatively flat organization. For example, no type distinction

is initially made between common nouns and proper nouns, though this distinction could

emerge through learning.

The inclusion of (some) simple lexical mappings in the initial grammar is not intended to sug-

gest that all lexical learning precedes relational learning; in fact, the model assumes that both kinds

of constructions can be learned based on the same general operations (see Section 6.2). But our

current focus is on the particular challenges of learning early relational constructions; by this stage

many lexical constructions will have been acquired by any of various learning strategies that have

been proposed. This claim may be more reasonable for some conceptual domains (e.g., object labels

and names) than others (e.g., verbs and spatial relations terms); but even inherently relational terms

must be learned in part by association strategies; see Chapter 9 for further discussion of how and

whether these assumptions can be relaxed.

Processes of language comprehension

The inclusion of language comprehension as part of the learner’s prerequisite abilities follows

naturally from the usage-based assumptions of our broader scientific framework. The simulation-

based framework set forth in Chapter 3 proposes that language understanding is driven by active,

context-sensitive mental simulations. A fully integrated model of (adult) language comprehen-

sion, including analysis, resolution and simulation, remains the subject of ongoing research. For

the language learning stage under investigation, the simplified model of language understanding

described in Chapter 4 is sufficient:

• The constructional analyzer takes input tokens (as described in Section 5.2.4) and an ECG

grammar and produces constructional analyses and their corresponding semspecs. Analyses

are ranked according to the scoring criteria that evaluate each of the constructional, form and

meaning domains.

• The contextual resolver finds the best resolution map between a semspec and a given input
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context. No context history across utterances is assumed, and no explicit creation of refer-

ents (e.g., based on indefinite referring expressions) is currently allowed. Resolution maps

are ranked according to scoring criteria that rewards maps that have the greatest alignment

between the semspec and context.

These language understanding processes satisfy the key requirements of the learning model:

they must perform robustly with incomplete grammars; they must provide partial analyses and

resolution maps that motivate the formation of new constructions; and they must provide a means

of ranking and evaluating analyses.

5.2.4 Input data

The input to learning is characterized as a corpus of input tokens, each consisting of an utterance

paired with its communicative context (as described in Section 4.1.2). The contents of both utter-

ance and context are intended to reflect the sensorimotor, conceptual and inferential abilities of a

human learner at the relevant stage, as reviewed in Chapter 2. The most relevant assumptions are

as follows:

• The learner can pragmatically filter the glut of continuous percepts in the environment to

extract those objects, relations and intentions most relevant to the attended scene and chunk

them into discrete participants and events (i.e., perform scene parsing).

• Context items instantiate schemas in the schema set S. The choice of S (as opposed to the

ontology O) as the basis for contextual representation is consistent with the current focus

on construction learning, as opposed to (linguistic) schema learning. The assumption is that

linguistically relevant features may be more salient than others for the purposes of under-

standing and learning language.5

• The learner can reliably associate utterances with the appropriate scenes or referents, irrespec-

tive of their precise temporal alignment (i.e., whether the utterance occurred before, during

or after the event). In some cases, as in the imperative speech act of the example situation, the

associated event may be inferred from context, whether or not the desired event ultimately

takes place.

• The learner receives only positive examples, in the sense that tokens are not identified as

non-occurring.
5This claim might be considered a comprehension-based analogue to Slobin’s (1991) “thinking for speaking” hypothesis.
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• No extended contextual history is represented in the model. A limited notion of shared sit-

uational context is available: each input token is associated with an episode, which has a per-

sistent set of (shared) episode participants. In general, however, input tokens are treated by

the analysis, resolution and learning processes as standalone units with direct access to any

relevant contextual information.

Figure 5.1 shows an example input token similar to the earlier one in Figure 4.4. The same

utterance “throw the ball” (with falling intonation) is paired with a context that explicitly represents

the (desired) throwing schema requested of the child (Naomi) by the mother. The inclusion of a

Throw context item reflects the assumptions above: namely, that the child can infer the mother’s

communicative intention from pragmatic cues (e.g., gaze, gesture).

 Utterance
text : “throw the ball”
intonation : falling

 ,



Context
participants : Mother, Naomi, Ball

scene :

 Throw
thrower : Naomi
throwee : Ball



discourse :



DiscourseSpace
speaker : Mother
addressee : Naomi
speech act : imperative
joint attention : Ball
activity : play
temporality : ongoing







Figure 5.1. A typical input token for learning: the utterance “throw the ball” paired with a commu-
nicative context in which the Mother tells the child to throw the ball.

The specific training corpus used in learning experiments is a subset of the Sachs corpus of

the CHILDES database of parent-child transcripts (Sachs 1983; MacWhinney 1991), annotated by

developmental psychologists as part of a study of motion utterances (May et al. 1996). These anno-

tations indicate semantic and pragmatic features available in the scene; they are described in more

detail in Section 8.1.1.

5.2.5 Performance criteria

Under the assumption that communicative competence is a goal (if not necessarily the only goal) of

language learning, the evaluation criteria used for measuring comprehension can also be exploited

to gauge the overall progress of the learner. By testing the learning model at regular intervals during

training, we can assess how new constructions incrementally improve its ability to comprehend

new input tokens.
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In general, any measure associated with a more broadly encompassing theory of language use

could be incorporated into the grammar performance score, rewarding communicative success in

both comprehension and production, or perhaps integrating an explicit notion of agent utility or

goal achievement. For example, given a model of comprehension with access to a simulation en-

gine, the learner’s performance score could include a measure of the (contextually appropriate)

inferences resulting from simulation. Likewise, a model capable of language production could in-

clude a measure of how well a produced utterance expresses a given communicative intention, or

whether it succeeds in achieving a particular agent goal.

The performance criteria used for the current model are based on those defined in Section 4.3

for the analysis and resolution processes. Recall that those measures allow the analyzer and resolver

to rank candidate analyses and resolution maps. When taken in aggregate (or averaged) across the

input tokens of a test corpus, however, they also provide a measure that can be compared across

grammars. The most relevant criteria are the following:

• Token score: The token score (i.e., the resolved analysis score) serves as an overall indication of

comprehension, since it aggregates constructional, form and meaning components resulting

from both analysis and resolution.

• Form-meaning coverage: The form-meaning score, along with the domain-specific precision and

recall scores on which it is based, provides a measure of how completely a grammar accounts

for input utterances and contexts.

• Analysis size: The absolute size of analyses (i.e., the number of form units and relations |af |

and the number of meaning schemas and bindings |am| = |ss| accounted for) may increase as

the grammars improve. Better grammars should also produce more complete analyses (i.e.,

with a single spanning root construct) and a lower average number of roots.

The measures above provide a quantitative basis for evaluating grammar performance. As dis-

cussed further in Chapter 8, it is also useful to make qualitative assessments of the kinds of con-

structions learned and errors produced by the model, relative to observed patterns of child lan-

guage acquisition.

5.2.6 Summary: relational construction learning

The specific problem faced by the learner in acquiring relational constructions can be summarized

as follows:
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Comprehension-based learning of relational constructions

hypothesis space The target of learning is a grammar G = (S, C) defined using the ECG
formalism, where S is a fixed schema set.

prior knowledge The learner has an initial grammar G0 = (S0, C0), with C0 consisting of lexical
constructions (for concrete objects, actions and relations) and a language understanding
model that performs constructional analysis and contextual resolution.

input data The learner encounters a sequence of input tokens from a training corpus D, each
represented as a pair of discrete feature structures describing the utterance form and its
communicative context.

performance criteria The grammar performance of successive grammars Gi on a test cor-
pus is measured by improvement in comprehension, using the criteria from the language
understanding model including form-meaning coverage, analysis size, completeness and
ambiguity.

This view of the core computational problem departs significantly from traditional framings

of grammatical induction. Each aspect of the problem fundamentally incorporates meaning and

use, and the choice of a construction-based grammar as the target of learning introduces structural

complexity in each of the constructional, form and meaning domains. But the challenges of adopt-

ing such rich representations are more than offset by the advantages of including similarly rich

structures corresponding to the learner’s prior conceptual, linguistic and pragmatic knowledge.

Moreover, the learner has access to comprehension processes with which to make sense of input

utterances in context.

The remainder of this chapter explores solutions that exploit both of these factors — the richer

representations available to the learner, and the language comprehension process itself — to over-

come the greater inherent representational complexity of learning relational constructions.

5.3 Approaches to learning

The problem as set forth above presents a combination of challenges not directly addressed by

previous approaches:

• The target of learning is an inventory of constructions on a continuum of abstraction and size,

including both lexically specific and more general patterns, and both simple and structured

mappings across the form and meaning domains.

• The space of possibilities is not pre-specified in terms of a fixed set of parameters.

• The goal of learning is to move toward grammars that allow progressively better comprehen-

sion of new input.
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• The learning strategy must be incremental and sensitive to statistical regularities in the data.

Together these constraints preclude an exhaustive search through all possible grammars for a

uniquely specified “correct” grammar. Rather, the topology of the space of grammars must be dis-

covered (or constructed) on the basis of experience. But a purely bottom-up, instance-based ap-

proach will also not suffice, since some ability to generalize beyond seen data is required. We thus

seek a learning algorithm that strategically converges on simpler (and more general) grammars

without unduly sacrificing closeness of fit to observed data.

As suggested in Section 2.3.4, machine learning techniques in the closely related Bayesian and

information-theoretic traditions provide the most natural candidates for capturing this tradeoff.

The approach taken here can be seen as adapting previous work along these lines to accommodate

the structural complexity of the target ECG representation and exploit the tight integration between

language learning and understanding. After reviewing the basic Bayesian approach to model se-

lection (Section 5.3.1), this section describes key features of the most relevant previous model of

language learning, Bayesian model merging (Section 5.3.2) and then identifies the challenges in-

volved in adapting these to the current task (Section 5.3.3).

5.3.1 Bayesian inference

Bayesian methods are by this point well-established both within the AI community and in ap-

plications that range across a swath of scientific realms. They are amply documented in both the

literature (Russell & Norvig 1994; Jurafsky & Martin 2000); here I briefly review the probabilistic

basis for Bayesian inference. In general, probability theory can be applied to assess the probability

of a given event, and by extension the relative probabilities of various events; the event in question

may also be a candidate hypothesis about some phenomenon.

In particular, the probabilistic event may be a hypothesis about model structure, where model

refers in a general sense to any account for some observed data. That is, the goal is to select the

most likely model M given the data D, i.e., the one with the highest conditional probability P (M |D).

Though it is in principle possible to estimate P (M |D) directly, it is sometimes more convenient to

exploit the relation between the joint and conditional probability, expressed in (5.3.1), to produce

the alternate expression for P (M |D) in (5.3.2):

P (M ∩D) = P (M) · P (D|M) = P (D) · P (M |D) (5.3.1)

P (M |D) =
P (M) · P (D|M)

P (D)
(5.3.2)
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The Bayesian insight is that this rearrangement of the terms allows one to estimate P (M |D) (which

in this formulation is called the posterior probability) in terms of other quantities that are often

more convenient to obtain, namely: the prior expectation P (M) over what the model should be; the

likelihood P (D|M) that a given model M would give rise to the actual data D encountered; and a

prior expectation P (D) over the data itself.

The prior P (M) is typically defined to encode biases dependent on the model space, often

favoring simpler models over more complex models, and P (D|M) is typically directly provided

by the model. In choosing the best model M̂ among all models M , one need not compute the

denominator, P (D), since it is the same for all candidate models:

M̂ = argmax
M

P (M |D) (5.3.3)

= argmax
M

P (M) · P (D|M)
P (D)

(5.3.4)

= argmax
M

P (M) · P (D|M) , (5.3.5)

where the argmax
M

operator selects the model M that maximizes the term that follows.

This maximum a posteriori (or MAP) estimate has found wide applicability in all domains of

probabilistic reasoning; the model space M might range over a class of mathematical functions, a

set of variables describing a world state, the hidden cause of a medical condition — indeed, any set

of competing accounts of some observed data. The current discussion is motivated by the search

for linguistic knowledge, where the model space is the space of grammars that can explain a body

of linguistic experience.

5.3.2 Bayesian model merging

The closest antecedent to the current enterprise is Bayesian model merging. The basic idea behind

model merging (Omohundro 1992) is to treat every encountered instance as an exemplar to be

incorporated in its entirety into an (initially) unstructured overall model (in the general sense of

model noted above). These initial submodels are thus maximally specific, so the model will perform

very well on data previously observed (or similar to that previously observed), but poorly on data

ranging further afield from its experience. But as more instances are incorporated, the algorithm

incrementally modifies the model — in particular, by merging submodels — to reflect regularities in

the data, as captured by similarities in the submodels. Every merge operation yields a more general

model that accounts for a wider range of data.

As with other specific-to-general learning algorithms, the challenge is knowing when to stop:
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stopping too early runs the risk of essentially memorizing the data, with the submodels still hewing

to specific observed instances; stopping too late may lead to a vacuous model whose powers of

discrimination have been compromised. Moreover, at any point, many candidate merge operations

may be possible; some of these may strand the model in an inhospitable region of the search space,

perhaps even a local minimum.

The Bayesian variant of model merging (Stolcke 1994; Stolcke & Omohundro 1994) addresses

these problems by applying the Bayesian MAP criterion to control the merging process, that is, by

selecting at every step the merge that leads to the largest increase in the overall probability of the

model given the data encountered so far. The MAP estimate provides the means of guiding (and

stopping) the search over possible merges. Each merge results in a model that is simpler (i.e., has

fewer models, and thus has a higher prior probability) but less specific to the data (i.e., has lower

likelihood). The algorithm chooses merges that increase the model’s posterior probability, and stops

when such merges are no longer available. Stated in its most general form:

Bayesian model merging algorithm (Stolcke 1994; Stolcke & Omohundro 1994)

1. Data incorporation. Given a set of examples D, build an initial model M0 that explicitly
includes each example.

2. Structure merging. Until the posterior probability decreases:

(a) Find the candidate merge of substructures that results in the greatest increase in
posterior probability.

(b) Perform the candidate merge and remove the original structures.

The algorithm has a number of properties that make it a particularly appealing and cognitively

plausible candidate for the current task. Models at all levels of specificity can happily coexist; as-

pects of both imitative learning (especially early in learning) and generalization (as more data is

encountered) are reflected in model performance, just as in patterns of child language acquisition;

and posterior probability provides a principled evaluation metric for guiding the search toward

incrementally better models. The algorithm also lends itself to an online version, in which the two

steps can be repeated for batches of data (or, in the limit, single examples).

Examples

The following two applications of model merging are especially relevant to the current problem:

Probabilistic attribute grammars. Stolcke (1994) applies model merging to learn several classes

of probabilistic language models, including hidden Markov models, probabilistic context-free

grammars and probabilistic attribute grammars. The last of these is the most relevant here: a prob-

abilistic attribute grammar (PAG) extends a stochastic context-free grammar backbone with proba-
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bilistic feature constraints, which can express simple semantic relations. Input is drawn from the

L0 task mentioned in Section 1.2.2 (Feldman et al. 1996), based on simple scenes of shapes in a

trajector-landmark configuration. Thus sentences like “a circle is above a square” are paired with

attribute-value pairs describing the scene (e.g., “tr=circle lm=square rel=above”). The model suc-

cessfully learns PAGs that parse the input sentence and produce accurate corresponding scene

descriptions (analogous to the task of comprehension).

Lexical semantic representations. Bailey (1997) applies the model merging algorithm to a se-

mantically richer though syntactically simpler domain than Stolcke’s PAG domain to model the

crosslinguistic acquisition of hand action verbs. The semantic domain draws on an active motor

representation based on the x-schema formalism described in Section 2.3.3. The input consists of

single words (e.g., push and shove) paired with features structures parameterizing x-schemas of

the associated actions (e.g., “schema=push force=high posture=palm direction=away ...”). Merging

these feature structures yields fewer structures with broader multinomial probability distributions

over their features, resulting in a final lexicon containing one or more submodels for each verb. It

thus exhibits both polysemy (e.g., with different models for pushing a block and pushing a button)

and near-synonymy (e.g., similar models for push and shove, where the latter has a higher force com-

ponent). The model also demonstrates how the same underlying action description, motivated by

presumed universals of motor control, can give rise to crosslinguistic diversity in systems for nam-

ing actions, as shown for languages including Tamil, Farsi, Spanish and Russian. Learned lexicons

allow the model to perform successfully on single-word versions of comprehension” (generation of

a feature structure based on a verb) and production (selection of a verb given a feature structure).

These examples demonstrate how the general model merging algorithm can be adapted for a

given domain, as summarized below in terms of four main components:

Data incorporation strategy: how to incorporate new data, that is, how to construct the initial

model. Typically, a (sub)model is created for each input example, effectively memorizing the

data encountered. The PAG case, for example, simply adds a new grammar rule expanding

the start symbol into the input sentence and features; while the verb learning model adds a

specific verb submodel matching the input verb and feature structure.

Structure merging operations: how to merge substructures. The merging operations typically per-

form generalization over submodels appropriate to each domain. The verb sense model com-

bines probability distributions over each feature of two merged submodels for a given verb.

The PAG model offers more structure (both CFG rules and feature equations) and correspond-
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ingly more merging operations. In addition to a generalization operator that merges rules

with similar expansions to create more general rules, the model allows chunking (or composi-

tion) of two nonterminals into a separate new nonterminal, as well as additional operations

on the feature equations.

Search strategy: how to search the model space for candidate merges. An exhaustive search

through all possible pairs of structures may be possible for small domains, but in practice,

heuristics for guiding the search are useful and necessary to reduce computation time. The

PAG model and others described in Stolcke (1994) apply best-first search with some looka-

head, while the verb sense model uses a similarity metric to keep track of the most similar

feature structures as the best candidates for merging.

Evaluation criteria: how to compare competing candidates for merging, that is, how to measure

the prior and likelihood used to compute posterior probability. In both cases above, the priors

bias models toward simplicity (fewer and shorter rules; fewer total verb senses), while the

likelihoods are calculated according to the relevant probabilistic model. The PAG model also

keeps counts of rule use to avoid costly reanalysis of the entire input data.

Both of these examples are direct predecessors of the current model. The PAG formalism ex-

hibits structural complexity: rewrite rules expand nonterminals to sequences that may include non-

terminals that are themselves expanded. This complexity corresponds directly to ECG constituent

structure. The verb learning model shows how semantically richer representations can be learned,

subject to many of the same cognitive and developmental constraints as the present model.

5.3.3 Model merging for embodied constructions

How can the model merging paradigm be applied to the construction learning scenario at hand?

As noted earlier, the domain of embodied constructions differs in important respects from previ-

ous language formalisms. A naive translation of the components above will therefore not suffice.

Extensions to the model are prompted by three main considerations: the nature of the ECG repre-

sentation itself; the tight relationship between language learning and understanding; and cognitive

constraints on learning.

Representational expressivity. The ECG formalism has explicit notions of category structure,

constituency and constraints. Additional structure comes from its basic function of linking the two

domains of form and meaning. The model merging algorithm must be modified to handle these
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sources of structure, both within and across constructions. Operations for modifying the grammar

must be extended to accommodate the internal structure of relational constructions, in particular to

refine the notion of similarity to recognize the potential for shared, unshared and overlapping struc-

ture across constructions. In addition, appropriate evaluation criteria must be defined for scoring

ECG grammars, corresponding to the Bayesian prior probability but suitable for the discrete nature

of (this version of) the ECG formalism.

Usage-based learning. Processing considerations necessitate fundamental modifications to the

model. Unlike previous model merging applications, in which training examples are initially incor-

porated directly (i.e., memorized) as exemplars, the path from input token to construction is medi-

ated by language comprehension. In fact, the goal of learning is to discover how existing structures

can be exploited and combined into larger relational constructions. Thus, it is most economical to

take advantage of the partial analyses provided by language comprehension, adding new construc-

tions only as needed to supplement and extend existing constructions. Usage processes should also

directly guide the search for grammar modifications: the choice of best operation may be triggered

by specific instances of usage as they are analyzed and resolved. Finally, appropriate evaluation

criteria must be defined for evaluating how well a grammar performs on a corpus, corresponding

to the likelihood. The constructional score defined in Section 4.3 partially fulfills this function, since

it measures the constructional probability P (d|G) of the input token d given the grammar G. But

the other factors included in Section 4.3 for measuring how well the grammar facilitates language

comprehension should also be incorporated, as in Bryant (2008).

Cognitive constraints. Some additional changes to standard model merging are motivated

by cognitive considerations, in particular the constraint that the learner may have limited stor-

age memory capacity for both input tokens and constructions, as well as limited working memory

to support the learning process. Incorporating each new example as a separate model, for example,

may be reasonable for (some) lexical items and short multi-word sequences, but automatically codi-

fying every new input token in its full glory as a novel construction seems less cognitively plausible.

It may also be infeasible to search through the entire space of possible structure merging operations

at every step, or to assess how a candidate construction affects a grammar’s posterior probability

by reevaluating the entire corpus of previously seen data. Appropriate heuristics for limiting the

search space or reducing computation are needed; these will be discussed in Chapter 7..
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5.4 Usage-based construction learning: overview

This section synthesizes the considerations above to present a usage-based model of construction

learning that addresses the general class of language learning problems defined in Section 5.2. Fig-

ure 5.2 revisits the integrated understanding-learning cycle introduced in Chapter 1 (Figure 1.1).

The structures and processes involved in the language understanding pathway — including em-

bodied schemas and constructions, the input token of an utterance in its situational context, the

analysis and resolution processes and the resulting semspec — have now been explicitly defined.

The language understanding process provides a direct usage-based impetus for the language

learning part of the cycle, depicted here as two processes: the hypothesis of new constructions and

the reorganization of existing ones. These construction learning operations, corresponding to the

structure merging operations in model merging, are motivated and constrained by the nature of the

target space, the processes of language comprehension and cognitive considerations. They are also

are mediated by quantitative evaluation metrics (not shown in the figure), approximating Bayesian

scoring criteria. As the learner encounters more data in the usage-learning loop, the constructional

mappings learned and refined should facilitate increasingly more complete and accurate compre-

hension of new data.

Figure 5.3 gives a high-level incremental learning algorithm corresponding to Figure 5.2, along

with a version taking a corpus of input tokens that simply loops over the above procedure. The

algorithm provides a class of solutions to the language learning problems defined in Section 5.2,

adapting Bayesian model merging for the construction-learning domain to address the concerns

outlined in Section 5.3.3 as follows:

Data incorporation: Input tokens are not incorporated directly as new constructions, but are in-

stead first analyzed and resolved using the current grammar. They are indirectly incorporated

via learning operations that propose new constructions based on the results of analysis.

Grammar update operations: Structure merging operations are extended to allow both the hy-

pothesis of new constructions and the reorganization of existing ones. These must satisfy

both the structural demands of the ECG construction formalism (to exploit the presence of

shared internal structure) and the process-based demands of language analysis (to improve

comprehension of new input).

Search strategy: The search for candidate constructions is guided by incoming data. In some cases,

the results of analyzing the current input token directly triggers specific learning operations.
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Figure 5.2. Usage-based construction learning: Input tokens (utterance-context pairs) are analyzed
and resolved, producing a resolved semantic specification and prompting the hypothesis of new
constructions and the reorganization of existing ones.

Learn from input token: Given input token d and grammar G, return grammar G′.

1. Analyze d using G, producing analysis ad and resolved semspec rssa.

2. Find the set L of candidate learning operations based on ad, rssa and G, by hypothesizing
new constructions and reorganizing existing constructions.

3. For each learning operation l ∈ L:

(a) Create new grammar Gl by performing operation l on G.

(b) Calculate the grammar improvement ∆(Gl, G).

4. Set G′ to the Gl that maximizes ∆(Gl, G).

5. If ∆(G′, G) exceeds threshold of improvement, return G′; else return G.

Learn from corpus: Given a corpus D and a grammar G0, return grammar G1.

1. Initialize current grammar G to G0.

2. For each input token d ∈ D, learn from d and current grammar G, producing G′.

3. Return current grammar as G1.

Figure 5.3. Usage-based construction learning algorithm: algorithms for learning new grammars
from a single token and from a corpus.
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In others, the search for new constructions may be restricted to a subset of the entire reposi-

tory (e.g., recently used constructions and their nearest neighbors in the construction set).

Evaluation criteria: The grammar improvement ∆(G′, G) corresponds to the posterior probability

used in model merging, but it is adapted for the discrete structures of the ECG domain to use

a simplicity-based criterion that balances a prior favoring simpler grammars against a likeli-

hood favoring simpler analyses of the data using the grammar (i.e., encoding a bias toward

better prediction of the data). The calculation of this score may be restricted to a subset of the

corpus (e.g., recently encountered tokens, or especially relevant or problematic tokens).

Besides the representational modifications needed for the ECG domain, the most significant adap-

tations to each component above are motivated by aspects of language comprehension. In par-

ticular, the shift to a data-driven, analyzer-mediated basis for processing input removes the strict

boundary between data incorporation and the search for new constructions: both depend on the

ongoing flow of data as it is processed by the current grammar. The model is thus usage-based in

that its path through the space of grammars depends directly on specific instances of language use.

It is also usage-based in the related sense of exploiting the statistical characteristics of usage over

time, as reflected in the model’s scoring criterion.

Like the general class of problems it addresses, this class of solutions admits many instantia-

tions; each of the algorithmic components above leaves significant room for interpretation. The next

two chapters together instantiate a solution that satisfies the constraints of the construction learn-

ing problem defined in this chapter, where the ECG-based structures described in Chapter 3 and,

especially, the language analysis processes described in Chapter 4 bear directly on every aspect of

the model.

• Chapter 6 addresses issues related to the search for candidate constructions, motivated by

both the nature of the search space and domain-specific strategies suggested by developmen-

tal evidence. I define several operations for the hypothesis and reorganization of construc-

tions and describe the conditions under which they apply (corresponding to step 2 of the

high-level algorithm).

• Chapter 7 focuses on the quantitative evaluation of candidate grammars, defining a heuristic

for calculating the grammar improvement ∆(G′, G) based on minimum description length.

This heuristic is guided by an information-theoretic bias toward a minimal encoding of the

grammar together with the data.
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In fleshing out the requisite details, I will make a number of simplifying assumptions to ease

both exposition and implementation. It is essential to bear in mind that the intent is not to define an

exhaustive set of learning operations or the most statistically sensitive evaluation criteria possible.

The nature of the problem space and relative paucity of data available for experimentation make it

unlikely to reward much ingenuity in model design at this initial stage. Fortunately, the learning

framework guarantees that with enough data, any reasonable optimization criteria should lead to

improvement over time. The goal here is thus to define a basic toolkit of usage-based operations

and criteria, sufficient to demonstrate how the underlying dynamics of the model push it toward

increasingly better grammars over the course of experience.
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