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Abstract—Information flow analysis has largely focused on
methods that require access to the program in question or total
control over an analyzed system. We consider the case where
the analyst has neither control over nor a white-box model
of the analyzed system. We formalize such limited information
flow analyses and study an instance of it: detecting the usage of
data by websites. We reduce these problems to ones of causal
inference by proving a connection between noninterference and
causation. Leveraging this connection, we provide a systematic
black-box methodology based on experimental science and
statistical analysis. Our systematic study leads to practical
advice for detecting web data usage, a previously unformalized
area. We illustrate these concepts with a series of experiments
collecting data on the use of information by websites.

Keywords-information flow analysis; causation; online track-
ing; blackbox experiments;

I. INTRODUCTION

Web Data Usage Detection: Suppose you are shown

a car ad by Google while reading an article on a news

webpage. You might wonder whether the ad appears because

you visited a car dealer website earlier in the day. That is,

you would like to know whether information flows from the

car dealers website (to the ad network) to the news webpage.

More generally, concerns about privacy (e.g., [1]) have led

to much interest in determining whether ad networks, such

as Google’s DoubleClick and the Yahoo Ad Exchange, use

certain types of information [2]–[9]. We call this problem

web data usage detection (WDUD). In this paper, we show

how to conduct experiments in a systematic way that can

help answer this and other kinds of privacy-related questions.

While WDUD studies are, in essence, attempting to

track the flow of information from inputs to some system

to outputs of it, they differ from traditional information

flow analyses (IFAs). The traditional motivation for IFA,

designing secure programs, leads to viewing the analyst as

verifying that a system under his control protects information

sensitive to the operator of the system. Thus, the problems

studied and analyses proposed tend to presume that the

analyst has access to the program running the system in

question or total control over its inputs and environment.

(See [10] for a survey.)

In the setting of WDUD, the analyzed system can be

adversarial toward the person studying the system. The

analyst may be aligned with (or even equal to) a data subject,

an entity whose information is collected by the system.

In this setting, the analyst has no access to the program

running the system in question, little control over its inputs,

and a limited view of its behavior. Thus, the analyst lacks

the abilities presupposed by traditional IFAs. To understand

the WDUD problem as an instance of IFA requires a fresh

perspective on IFA.

The original motivation underlying much of IFA research

also obscures its connection to other areas of research. For

example, copyright protection [11], [12], traitor tracing [13],

data leak detection [14]–[18], and the detection of pla-

giarism [19] are all in essence information flow analyses

in which the analyst has limited access to the system in

question (often a person). However, to keep the presentation

clear, we focus on WDUD, leaving a discussion of related

areas to future work.

Contributions: We develop a formal methodology for

conducting IFA for black-box information flow problems,

and for WDUD in particular. The overarching contribution

of this work is relating IFA in these nontraditional settings

to experiments designed to determine causation. We show

that the ability of the analyst to control some inputs enables

information flow experiments that manipulate the system

in question to discover the use of information without a

white-box model of the system. We present an easy-to-

apply, statistically rigorous methodology for information

flow experiments that future studies on WDUD and other

IFAs for black boxes may use to draw statistically sound

conclusions.

Our methodology is supported by a chain of contributions

that follows the paper’s outline:

§ II a systematization of black-box IFA problems

§ III a proof of a connection between IFA and causality

§ IV an experimental design leveraging this connection

§V a rigorous statistical analysis for such experiments

In particular, while the link has been subject to prior com-

ment [20], [21], we believe we are the first to formally prove

a connection between standard notions of information flow

and causation. We are also the first to provide a method for

conducting WDUD studies that comes with a methodology

showing that a positive result entails a flow of information

with a quantified certainty.

These contributions are each necessary for creating a

chain of sound reasoning from intuition about vague prob-



lems to rigorous quantified results. This chain of reasoning

provides a systematic, unifying view of these problems,

which leads to a concrete methodology based on well studied

scientific methods. While the notion of experimental science

is hardly new, our careful justification provides guidance on

the choices involved in actually conducting an information

flow experiment.

The systematization of experimental approaches to secu-

rity, privacy, and accountability is becoming increasingly

important as technological trends (e.g., Cloud and Web ser-

vices) result in analysts and auditors having limited access to

and control over systems whose properties they are expected

to study. This paper provides a useful starting point towards

such a systematization by providing a common model and

a shared vocabulary of concepts that places problems of

security and privacy into the context of causality, experi-

mentation, and statistical analysis.

Overview: We explore, both empirically and theoret-

ically, how to conduct IFA over black-box systems while

avoiding unjustified assumptions. First, in Section II, we

build upon traditional IFA by starting with noninterfer-

ence [22], a standard formalization of information flow. We

identify the limited abilities of the analyst in these problems

and cast WDUD as a form of analysis between the extremes

of white-box program analysis and black-box monitoring. In

doing so, we shift IFA from its traditional context of program

analysis using white-box models of software to the new

context of investigating black-box systems that hide much

of their behavior and operate in uncontrolled environments.

We thereby highlight an interesting flavor of black-box IFA

that lacks prior formal study.

In particular, we focus on WDUD as it is the least

understood nontraditional IFA problem. We formalize it in

terms of noninterference showing its relationship to IFA. We

prove that sound information flow detection is impossible in

this setting (Theorem 1).

Motivated by this impossibility result, we look for an

alternative statistical approach. To do so, we build upon

research on causality [23], strengthening the connection

between the two research areas. In Section III, we prove

that a system has interference from a high-level user H to

a low-level user L in the sense of IFA if and only if inputs

of H can have a causal effect on the outputs of L while

the other inputs to the system remain fixed (Theorem 3).

This connection allows us to appeal to inductive methods

employed in experimental science to study IFA. Such meth-

ods provide precisely what we need to make high-assurance

statistical claims about flows despite our impossibility result.

We leverage this observation to approach WDUD with

information flow experiments.

Section IV discusses the design of information flow ex-

periments. We show a correspondence between the features

of WDUD and the features of a scientific study (Table I).

We discuss the limitations and abilities of experiments to

find interference. In particular, we explain the difficulty

of finding that a single system has interference. We also

identify the ability to find that a system and its environment

acting together has interference. For example, we find that

while we cannot claim Google itself has interference, we

can determine that Google and it’s ad ecosystem does.

In Section V, we review significance testing as a sys-

tematic method of quantifying the degree of certainty that

an information flow experiment has observed interference.

We conduct pilot studies to explore what assumptions, and

therefore statistical analyses, are appropriate for WDUD.

We identify permutation testing [24], a method of signifi-

cance testing, as particularly well suited. In essence, it uses

randomization, similarly to security algorithms, to defeat

adversaries, making it appropriate for a security setting.

Section VI compares our method to those found in prior

WDUD studies. In Section VII, we empirically benchmark

our interpretations of some of their approaches with our own

WDUD study. This WDUD study is the first to come with

a methodology showing its relationship to IFA.

We then provide practical suggestions, summarized in

Section VIII, for systematically conducting future WDUD

studies. We end by discussing directions for new research

that further strengthens the connection between information

flow and causality and applies it to other security problems.

Throughout this work, we present our own experiments

to illustrate the abstract concepts we present. These results

may also be of independent interest to the reader.

A related technical report contains details of experiments

and results, formal models, and the proof of each of our

theorems [25]. The code and data collected are available at

www.cs.cmu.edu/∼mtschant/ife.

Prior Work: Three of the authors augmented our

method and applied it to run information flow experiments

on Google [26]. That paper does not claim the results we

present herein as contributions.

Ruthruff, Elbaum, and Rothermel note the usefulness of

experiments for program analysis [27]. Whereas our work

focuses on problems where traditional white-box analyses

are impossible, their work examines experiments in the more

traditional setting where the analyst has control over the

system in question. Furthermore, we develop a formalism

relating informal flow and causality, provide proofs, and

present a statistical analysis.

While we could not find any prior articulation of the

formal correspondence between informal flow and causality

(our Theorem 3), we are not the first to note such a

connection. McLean [20] and Mowbray [21] each proposed

a definition of information flow that uses the lack of a

causal connection to rule out security violations even if

there is a flow of information from the point of view of

information theory. Sewell and Vitek provide a “causal type

system” for reasoning about information flows in a process

calculus [28]. We differ from these works by showing an



equivalence between a standard notion of information flow,

noninterference [22], and a standard notation of causality,

Pearl’s [23], rather than using a notion of causality to adjust

an information theoretic notion of information flow. Further-

more, Mowbray’s formalism requires white-box access to the

system while McLean’s only considers temporal ordering

as a source of causal knowledge. More importantly, they

use causality to handle problematic edge cases in their

formalisms whereas we reduce interference to causality so

that we may apply standard methods from experimental

science to IFA.

Our identification of WDUD as an interesting problem

for IFA was inspired by prior WDUD studies. Sweeney

uses a method similar to ours to study how search ads are

affected by search terms [5]. Our work provides a formal

justification of her method in terms of information flows.

Other prior studies either approach the problem with non-

statistical analyses [2]–[4], [6] or make assumptions that

our experiments show unlikely to hold in the setting we

study [7]–[9]. Section VI details these works.

We draw on works from experimental design and statis-

tics, whose discussion we defer until the point of use.

II. INFORMATION FLOW ANALYSIS

In this section, we discuss prior work on information flow

analysis starting with noninterference, a formalization of

information flows. We next discuss the analyses used in prior

work to determine whether a flow of information exists. We

present them systematically by the capabilities they require

of the analyst. We end by discussing the capabilities of

the analyst in our motivating applications, and WDUD in

particular, how prior analyses are inappropriate given these

capabilities, and the inherent limitations of these capabilities.

A. Noninterference

Goguen and Meseguer introduced noninterference to for-

malize when a sensitive input to a system with multiple

users is protected from untrusted users of that system [22].

Intuitively, noninterference requires the system to behave

identically from the perspective of untrusted users regardless

of any sensitive inputs to the system.

As did they, we will define noninterference in terms of a

synchronous finite-state Moore machine. The inputs that the

system accepts are tuples where each component represents

the input received on a different input channel. Similarly, our

outputs are tuples representing the output sent on each output

channel. For simplicity, we will assume that the machine

has only two input channels and two output channels, but

all results generalize to any finite number of channels.

We partition the four channels into H and L with each

containing one input and one output channel. Typically, H

corresponds to all channels to and from high-level users,

and L to all channels to or from low-level users. The high-

level information might be private or sensitive information

that should not be mixed with public information, denoted

by L. In the area of taint analysis, the roles are reversed

in that the tainted information is untrusted and should not

be mixed with trusted information on the trusted channel.

However, either way, the goal is the same: keep information

on the input channel of H from reaching the output channel

of L.

We will often have a single user using channels of both

sets since we are concerned with not only to whom infor-

mation flows but also under what contexts. To this end, we

interpret channel rather broadly to include virtual channels

created by multiplexing, such as a field of an HTML form

or the ad container of a web page. We also allow each

channel’s input/output to be a null message indicating no

new input/output.

A system q consumes a sequence ~ı of input pairs where

each pair contains an input for the high and the low input

channels. We write q(~ı) for the output sequence ~o that

q would produce upon receiving ~ı as input where output

sequences are defined as a sequence of pairs of high and

low outputs.

For an input sequence ~ı, let ⌊~ı↓L⌋ denote the sequence of

low-level inputs that results from removing the high-level

inputs from each pair of ~ı. That is, it “purges” all high-level

inputs. We define ⌊~o↓L⌋ similarly for output sequences.

Definition 1 (Noninterference). A system q has noninterfer-

ence from L to H iff for all input sequences ~ı1 and ~ı2,

⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ implies ⌊q(~ı1)↓L⌋ = ⌊q(~ı2)↓L⌋

Intuitively, if inputs only differ in high-level inputs, then

the system will provide the same low-level outputs.

To handle systems with probabilistic transitions, we will

employ a probabilistic version of noninterference similar to

the previously defined P-restrictiveness [29] and probabilis-

tic nondeduciblity on strategies [30]. To define it, we let

Q(~ı) denote a probability distribution over output sequences

given the input ~ı, a concept that can be made formal given

the probabilistic transitions of the machine [30]. We define

⌊Q(~ı)↓L⌋ to be the distribution µ over sequences ~ℓ of

low-level outputs such that µ(~ℓ) =
∑

~o s.t. ⌊~o↓L⌋=~ℓ
Q(~ı)(~o).

Probabilistic Noninterference compares such distributions

for equality.

Definition 2 (Probabilistic Noninterference). A system Q

has probabilistic noninterference from L to H iff for all

input sequences ~ı1 and ~ı2,

⌊~ı1↓L⌋ = ⌊~ı2↓L⌋ implies ⌊Q(~ı1)↓L⌋ = ⌊Q(~ı2)↓L⌋

B. Analysis

Information flow analysis (IFA) is a set of techniques to

determine whether a system has noninterference (or similar

properties) for interesting sets H and L. Examples include

analyses employing type systems [10], [31], model checking
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Figure 1. Taxonomy of analyses

of code [32], or dynamic approaches that instrument the

code running the system to track values carrying sensitive

information (e.g., [33]–[36]).

The above methods are inappropriate for WDUD since

they require white-box access to the program. That is, the

analyst must be able to study and/or modify the code. In our

applications, the analyst must treat the program as a black

box. That is, the analyst can only study the I/O behavior

of the program and not its internal structure. Black-box

analyses vary based on how much access they require to the

system in question. Figure 1 shows a taxonomy of analyses.

Numerous black-box analyses for detecting information

flows operate by running the program rather than analyzing

its code [37]–[41]. They run the program multiple times

with varying inputs to detect changes in output that imply

interference. However, these black-box analyses continue to

require access to the internal structure of the program even if

they do not analyze that structure. For example, the analysis

of Yumerefendi et al. requires the binary of a program to

copy it into a virtual machine for producing I/O traces [37].

In theory, such black-box analyses could be modified to not

require any access to code by completely controlling the

environment in which the program executes. To do so, the

analyst would run a single copy of the program and reset

its environment to simulate having multiple copies of the

system. We call this form of black-box analysis, with total

control over the system, testing as it is the setting typical to

software testing.

Testing will not work for our applications. For example, in

the setting of WDUD, the analyst cannot reset and run the

program multiple times since the analyst has only limited

interactions with the program over a network. Thus, it

cannot force the program into the same initial environment

to reset it. Furthermore, unlike a program, Google’s ad

system is stateful and, thus, modifying its environment alone

would be insufficient to reset it. In this setting, the analyst

must analyze the system as it runs, not a program whose

environment the analyst can change at will.

At the opposite extreme of black-box analysis is monitor-

ing, which passively observes the execution of a system.

While some monitors are too powerful by being able to

observe the internal state of the running system (e.g. [42]),

others match our needs in that the analyst only has access to

a subset of the program’s outputs (e.g., [43]). However, all

monitors are too weak since they cannot provide inputs to

the system as our application analysts can. We need a form

of black-box analysis between the extremes of testing and

monitoring.

Thus, we find no prior work on IFA that corresponds to the

capabilities of the analyst in WDUD or our other motivating

applications.

C. Information Flow Experiments

Unlike the primary motivation of traditional IFA, devel-

oping programs with Mandatory Access Controls (MAC),

our motivating examples involve situations in which the

analyst and the system in question are not aligned. Thus, the

information available to the analyst is much more limited

than in the traditional security setting. In particular, the

analyst

1) has no model of or access to the program running the

system,

2) cannot observe or directly control the internal states

of the system,

3) has limited control over and knowledge of the envi-

ronment of the system,

4) can observe a subset of the system’s outputs, and

5) has control over a subset of the inputs to the system.

We will call performing IFA in this setting experimenting.

Experiments are an interactive extension of a limited form

of execution monitoring that allows analyst inputs but limits

the analyst to only observing a subset of system I/O.

Prior work shows that no monitor can detect information

flows [42], [44], [45]. We argue that experiments, with their

additional ability to control some inputs to the system, do

not improve upon this situation. In particular, we prove that

no non-degenerate experiment can be sound for interfer-

ence or for noninterference, even on deterministic systems.

(Although, we will later show that experiments do enable

statistical analyses with probabilistic soundness properties.)

Experiment Model: We model an experiment as a pair

〈~ı, d〉 where ~ı is an input sequence and d is a decision

function from the set of output sequences to {ni, ?, in}. ~ı

represents the sequence of inputs that the analyst supplies

to the system in question and d represents how the analyst

goes from the sequence of resulting outputs to either the

conclusion that the system q has interference (in), has

noninterference (ni), or that she does not know (?), all for

a fixed H and L. The result of the experiment 〈~i, d〉 on the

deterministic system q is d(q(~ı)). We allow the analyst just

one I/O sequence since the analyst cannot restart the system,

which would include resetting its hard drives, clocks, etc.

to their initial states. The analyst can embed into its single

sequence multiple subsequences each corresponding to a run

of a program on the system.



Adversary Model: The system in question q might be

under the control of an adversary trying to trick the analyst

as to whether the system has interference. We model the

adversary as being able to select any automaton for the

system q. In essence, the following theorems show that for

any experiment, the adversary can select a system that fools

the analyst.

To prove the unsoundness of black-box experiments for

interference, we consider an arbitrary system q for which an

experiment returns a positive result indicating interference.

In our setting, the experiment must base its decision solely

upon its interactions with the system. Thus, it will return the

same positive result for a system qN that always produces

the same outputs as q did irrespective of its inputs. Since qN
always produces these outputs, it has noninterference making

the positive result false.

Theorem 1 (Unsoundness for Interference). For all experi-

ments 〈~ı, d〉, if there exists a system q such that d(q(~ı)) = in,

then there exists a system qN with noninterference from H

to L such that d(qN(~ı)) = in.

The argument for noninterference is symmetric, but re-

quires that interference is possible given the system’s input

and output space. That is, the system must have at least two

high inputs and two low outputs.

Theorem 2 (Unsoundness for Noninterference). If H has

two inputs and L has two outputs, then for all experiments

〈~ı, d〉, if there exists a system q such that d(q(~ı)) = ni, then

there exists a system qI with interference from H to L such

that d(qI(~ı)) = ni.

Note that these theorems hold even if the analyst can

observe every input in H and L making the above shift

of focus to the composite system of Google operating in its

environment unsuccessful. However, as we will later see, we

can probabilistically handle the lack of total internal control

of the composite system using statistical techniques. Since

we can never be sure whether we have started a particular

sequence of inputs from the same initial state as another

sequence, we use many instances of each sequence instead

of one for each. Intuitively, if the outputs for one group

of inputs are consistently different from outputs for the

other group of inputs, then it is likely that the difference

is introduced by the difference between the groups instead

of from the initial states differing. We formalize this idea

to present a probabilistically sound method of detecting

interference. We leave detecting noninterference to future

work.

III. CAUSALITY

In this section, we discuss a formal notion of causality

motivated by the studies of the natural sciences. We then

prove that noninterference corresponds to a lack of a causal

effect. This result allows us to repose WDUD as a problem

of statistical inference from experimental data using causal

reasoning.

A. Background

Let us start with a simple example. A scientist might

like to determine whether a chemical causes cancer in mice.

More formally, she is interested in whether the value of the

experimental factor X , recording whether the mouse ingests

the chemical, causes an effect to a response variable Y , an

indicator of mouse cancer, holding all other factors (possible

causes) constant.

Pearl [23] provides a formalization of effect using struc-

tural equation models (SEMs), a formalism widely used

in the sciences (e.g., [46]). A probabilistic SEM M =
〈Ven,Vex, E ,P〉 includes a set of variables partitioned into

endogenous (or dependent) variables Ven and exogenous (or

independent) variables Vex. M also includes in E , for each

endogenous variable V , a structural equation V := FV (~V )
where ~V is a list of other variables other than V and FV

is a possibly randomized function. A structural equation is

directional like variable assignments in programming lan-

guages. Each exogenous variable is defined by a probability

distribution given by P . Thus, every variable is a random

variable defined in terms of a probability distribution or a

function of them.

Let M be an SEM, X be an endogenous variable of M ,

and x be a value that X can take on. Pearl defines the sub-

model M [X:=x] to be the SEM that results from replacing

the equation X := FX(~V ) in E with the equation X := x.

The sub-model M [X:=x] shows the effect of setting X to

x. Let Y be an endogenous variable called the response

variable. We define effect in a manner similar to Pearl [23].

Definition 3 (Effect). The experimental factor X has an

effect on Y given Z := z iff there exists x1 and x2 such

that the probability distribution of Y in M [X:=x1][Z:=z]
is not equal to its distribution in M [X:=x2][Z:=z].

Intuitively, there is an effect if FY (x1, ~V ) 6= FY (x2, ~V )
where ~V are the random variables other than X and Y .

B. The Relationship of Interference and Causality

Intuitively, interference is an effect from a high-level input

to a low-level output. Noninterference corresponds to lack

of an effect, which Pearl calls causal irrelevance [23]. We

can make this connection formal by providing a conversion

from a probabilistic system to an SEM.

Given a probabilistic Moore Machine Q, we define a SEM

MQ. Intuitively, it contains endogenous variables for each

input and output and exogenous variables for each user. In

more detail, for each time t, MQ contains the endogenous

variables HIt. It also contains HOt for high outputs, LIt for

low inputs, and LOt for low outputs, all at the time t. MQ

also has exogenous variables HUt and LUt that represent the

behavior of high and low users of the system at time t.



The behavior of Q provides functions Flo,t defining the

low output at time t in terms of the previous and current

inputs. The output may depend upon previous inputs via

a variable St representing the state of the system. Similar

functions exist for the other variables. For example, the

function Fs,t for updating the state is determined by the

transition function of Q.

The following lemma shows that Q and MQ are equiva-

lent. To state it, we use ~V t to denote the vector holding those

variables Vt with an index of t or less (in order). We let It

represent a similar vector of input variables combining HIt

and LIt. We use ~V t = ~v as shorthand for
∧t

j=1
~V [j] = ~v[j].

Lemma 1. For all Q, t, ~ı, and ~lo of lengths t and t + 1,

respectively, P( ~LO
t+1

=~lo | do(~It:=~ı)) = ⌊Q(~ı)↓L⌋(~lo).

The key theorem follows from Lemma 1 and the proper-

ties of SEMs and interference:

Theorem 3. Q has probabilistic interference iff there exists

low inputs ~li of length t such that ~HI
t

has an effect on ~LO
t

given ~LI
t
:= ~li in MQ.

Notice that Theorem 3 requires that the low-level inputs

to the system in question be fixed to a set value ~li. This

requirement is a reflection of how noninterference only

requires that low-level outputs be equal when low-level

inputs are equal (Definition 1).

IV. EXPERIMENTAL DESIGN

Having reduced the problem of information flow exper-

iments to that of checking for effects, we can employ the

checking method often used in empirical sciences, random-

ized controlled experiments. However, doing so requires

mapping the features of WDUD and other black-box IFA

problems into the standard terms of experimental design.

Furthermore, it requires scoping the experiment to be within

the limited abilities of the analyst. In particular, we must

respect the requirement of Theorem 3 that the analyst be

able to fix all low-level inputs. We discuss each of these

issues before turning to the actual running of the experiment.

A. The Setup of Experiments

A randomized controlled experiment randomly assigns

each experimental unit, such as a mouse, to either a control

or an experimental treatment. The treatment determines the

value of the unit’s experimental factor, which maps to the

changed variable X in Definition 3. The experimenter holds

other factors under her control constant to isolate the effect

of the treatment. These factors map to Z in Definition 3. The

experimenter measures a response, some feature, of each

unit. The experimenter attempts to determine whether the

treatments have an effect on the measured responses.

For example, consider a WDUD study to determine

whether a pattern of behavior, or profile, affects the ads that

General Terms Chemical Study Behavioral Marketing

natural process cancer marketing

population of units mice browser instances

experimental factor diet visitor behavior

treatments chemical or placebo behavioral profiles

constant factors water allowance IP address etc.

noise factors age, weight, etc. other users, advertisers

response variables tumor count sequences of ads

effect carcinogenic use of data

Table I
GENERAL TERMINOLOGY AND TWO INSTANCES OF EXPERIMENTAL

SCIENCE. IN THE CHEMICAL STUDY, A SCIENTIST STUDIES WHETHER A

CHEMICAL IS CARCINOGENIC WHEN ADDED TO THE DIET OF MICE. IN A

BEHAVIORAL MARKETING STUDY, THE SCIENTIST STUDIES WHETHER

CHANGES IN VISITOR BEHAVIOR CAUSES CHANGES IN ADS.

Google shows to a user. Table I summarizes how to view it

and an archetypal cancer study as experiments.

In the case of WDUD, the natural experimental unit

might appear to be Google. However, since a randomized

controlled experiment requires multiple experimental units

and there is just one Google, we must select some subsets

of interactions with Google as the experimental units. Since

one of the major goals of WDUD is to determine the nature

of Google’s behavioral tracking of people, interactions with

Google at the granularity of people could be an appropriate

experimental unit. However, since we desire automated

studies, we substitute separate automated browser instances

for actual people. In particular, we can use multiple browser

instances with separate caches and cookies to simulate

multiple users interacting with the web tracker. We can

apply treatments to browsers by having them controlled by

different scripts that automate different behaviors.

The treatments are various behavioral profiles that the

analyst is interested in comparing. The constant factors can

include anything the analyst can control: the IP address, the

browser used, the time of day, etc. The response may be the

ads shown to the simulated browser.

B. Scoping the System

Properly scoping an the experiment for WDUD is particu-

larly important. Suppose in the above example, the system in

question is Google. Since the profile of the user is of interest,

it dictates the high-level inputs. Since every input must be

either low-level or high-level, all inputs not determined by

the profile are low-level. These low-level inputs include

some that the analyst cannot observe or control, such as

inputs from advertisers to Google. However, Theorem 3

requires that the all the low-level variables remain fixed.

That is, to use Theorem 3, the analyst must select the system

and its inputs so that she can ensure that the low-level inputs

are fixed.



The analyst must shrink the set of low-level inputs to just

those that she can fix. One means of achieving this goal is to

consider more inputs high-level, but if the inputs converted

to be high-level are already known to determine the ads

shown (such as inputs from advertisers), then the analysis

would be of little interest. Another means would be to alter

Google so that it no longer accepts such inputs, but the

analyst does not have such control over Google. However,

the analyst does have control over which system she studies.

Rather than study Google in isolation, she could study the

composite system of Google and the advertisers operating in

parallel. By doing so, she converts the uncontrolled low-level

inputs to Google from the advertisers into internal messages

of the composite system, which are irrelevant to whether

interference occurs.

The practical consequences of these limitations for

WDUD is that we cannot determine that Google has in-

terference on its own. Rather, we can only determine that

Google operating in its environment has interference. That

is, we can determine that the composite system consisting of

Google and the other systems making up the ad ecosystem

has interference.

This limitation means that we cannot explain how ob-

served interference occurs. Upon seeing interference, one

explanation is that Google directly used the information

in question to select ads. However, it is also possible that

Google shared the information with an advertiser that used

the information to change its bids, which, in turn, caused

Google to change its ads. If the output to the advertiser is

low-level, then Google itself does not have interference in

the second case.

Nevertheless, we know that some part of the ad ecosystem

used the information. This finding can be useful in its own

right if one is interested in the complete process of how ads

are selected. It could also justify a white-box investigation

by either internal auditors or external regulators who may

compel internal access.

Lastly, note this scoping does not enable sound nor

complete analyses of the composite system: Theorems 1

and 2 continue to apply since they do not require non-empty

sets of low-level inputs. The analyst’s continued inability

to observe the internal state of the system means that the

analyst must still employ statistical analyses.

C. Running the Experiment

With the system properly scoped, we run such a random-

ized controlled experiment as follows:

1) Assign each browser either an experimental or control

profile at random.

2) Each browser instance simulates those profiles by

interacting with webpages.

3) Each browser instance collects ads from (possibly

other) webpages.

4) Compare the collected ads from browsers with one

profile to browsers with the other profile.

In more detail, the analyst prepares a vector ~x with a

length equal to the number of units that hold treatment

values. Typically, half will be control treatments and half

experimental treatments. She randomly assigns each experi-

mental unit k to an index ik of ~x so that no unit is assigned

the same index. For each k, she then applies the treatment in

the ikth slot of ~x to the unit k, which in our setting implies

providing inputs corresponding to a profile. Units assigned

the same treatment form a group.

Groups may vary due to noise factors, variations among

the experimental units other than those from the application

of treatments. Proper randomization over larger sample sizes

makes negligible the probability that the groups vary in a

systematic manner. If the analyst also ensures that no other

systematic differences are introduced to the groups after the

application of the treatment, the units will not systematically

differ between the groups under the null hypothesis that the

treatment has no effect. Thus, any difference in responses

that consistently shows up in one group but not the other

can only be explained by chance under the null hypothesis.

If given the sample size, this chance is small, then the

analyst can reject the null hypothesis as unlikely, providing

probabilistic evidence of a causal relationship, which we

quantify in the next section. (See [47] for a more detailed

review of these concepts.)

V. STATISTICAL ANALYSIS

To quantify the probability that the collected responses

could appear to show a flow of information due to a chance

occurrence, we use significance testing [48]. A statistical

test of the data provides a p-value, the probability of seeing

results at least as extreme as the observed data under

the assumption that the null hypothesis is true. A small

p-value implies that the data is unlikely under the null

hypothesis. Typically, scientists are comfortable rejecting

the null hypothesis if the p-value is below a threshold of

0.05 or 0.01 depending on the field. Rejecting the null

hypothesis makes the alternative hypothesis that there is an

effect more plausible. In our case, using significance testing

requires selecting a test of independence. We discuss the

process of selecting one and detail the one we have selected,

permutation testing.

A. Selecting a Test of Independence and Pilot Studies

Some tests of independence require assumptions about

the system in question. These assumptions enable powerful

statistical techniques, which in some cases allow smaller

sample sizes or more detailed characterizations of a research

finding.

Parametric tests assume that the behavior of the system

in question is drawn from some known family of distribu-

tions with a small number of unknown parameters. Another
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Figure 2. Ads collected from the first browser instance to visit the Chicago
Tribune. The time interval for collection was one minute. The x-axis is time
measured in hh:mm. The y-axes ranges over unique ads ordered by the time
at which the instance first observed it in the experiment.

common assumption is that, under the null hypothesis, the

responses of the experimental units are independent of one

another and identically distributed (i.i.d.).

Some statistical analyses require that giving or withhold-

ing a treatment from one unit will not have an effect upon

the other units (e.g., [49, p. 19]), that is, the absence of

cross-unit effects.

Given our understanding of how ad networks operate,

these assumptions appear suspicious. The complex behavior

of ad networks makes selecting a family of distributions to

model one difficult. The fact that budgets control the number

of ad impressions creates the possibility that one browser

instance receiving an ad might decrease the probability that

another receives it, invalidating the i.i.d. assumption. Any

choice of experimental unit other than all of Google, which

leads to a sample size of one, will possibly exhibit cross-

unit effects by virtue of units being multiplexed onto a single

system.

To empirically explore how reasonable these assumptions

are in our setting, we conducted two pilot studies, which

show them difficult to defend in our setting.

Experiment 1. We collected ads served by Google on

a third-party website to understand how they vary over

time. Following Balebako et al.’s study [3], we used the

Breaking News page of the Chicago Tribune (http://www.

chicagotribune.com/news/local/breaking/).

To collect ads, we simultaneously started two browser

instances, and collected the ads served by Google on the

webpage. Each instance reloaded the web page 200 times,

with a one minute interval between successive reloads.

Figure 2 shows a temporal plot of the ads served to one of

these instances. The plots suggest that each instance received

certain kinds of ads for a period of time, before being

switched to receiving a different kind, which implies that

ads are not identically distributed across time. This pattern

held using other intervals for reloads.

One explanation for this behavior is that Google associ-

ated users with various ad pools switching users from pool

to pool over time. While hierarchical families of parametric

models could capture this behavior, we are not comfortable

making such an assumption and the resulting models would

be more complex than those typically used in parametric

tests. Thus, parametric tests would employ models of low

confidence.

Our results do not mean that one could not reverse

engineer enough of Google to find an appropriate model.

However, they suggest that such reserve engineering would

be difficult. Furthermore, it runs against the spirit of per-

forming black-box information flow analysis.

Shortly after we conducted these experiments, the

Chicago Tribune stopped hosting text ads from Google.

Thus, when we later wanted to replicate the study, we instead

looked at the Times of India, the BBC, and Fox News.

The ads continued to appear to violate the i.i.d. assumption

with some ads being shown over and over again in streaks.

However, the binning behavior was gone. This difference in

behavior suggests that any success at reverse engineering

Google may be specific to a webpage or short lived as

Google changes its behavior.

We carried out this and all other experiments using Python

bindings for Selenium WebDriver, which is a browser au-

tomation framework. A test browser instance launched by

Selenium uses a temporary folder that can be accessed

only by the process creating it. So, two browser instances

launched by different processes do not share cookies, cache,

or other browsing data. All our tests were carried out with

the Firefox browser. When observing Google’s behavior, we

first “opted-in” to receive interest-based Google Ads across

the web on every test instance. This placed a Doubleclick

cookie on the browser instance. No ads were clicked in an

automated fashion throughout any experiment.

Experiment 2. We studied whether multiple browser in-

stances running in parallel affect one another. We compared

the ads collected from a browser instance running alone

to the ads collected by an instance running with seven

additional browser instances each collecting ads from the

same page.

A primary browser instance would first establish an inter-

est in cars by visiting car-related websites. We selected car-

related sites by collecting, before the experiment, the top 10
websites returned by Google when queried with the search

terms “BMW buy”, “Audi purchase”, “new cars”, “local

car dealers”, “autos and vehicles”, “cadillac prices”, and

“best limousines”. After manifesting this interest in cars, the

instance would collect text ads served by Google on the In-

ternational Homepage of Times of India (http://timesofindia.



indiatimes.com/international-home). We attempted to reload

the collection page 10 times, but occasionally it would time

out. Each successful reload would have 5 text ads, yielding

as many as 50 ads.

Our experiment repeated this round of interest manifesta-

tion and ad collection 10 times using a new primary browser

instance during each round. We randomly selected 5 of the

rounds to include seven additional browsers. When the ad-

ditional browsers were present, three of them performed the

same actions as the primary one. The other four would wait

doing nothing instead of visiting the car-related websites and

then went on to collecting ads after waiting. All instances

would start collecting ads at the same time.

The experiment showed that the primary browsers ran in

isolation would receive a more diverse set of ads than those

running in parallel with other browsers. We repeated the

experiment four times (twice using 20 rounds) and found

this pattern each time:

Rounds Unique ads in isolation Unique ads in parallel

10 37 25

10 46 33

20 58 47

20 57 52

The presence of this pattern leads us to believe that cross-

unit effects between browser instances exist. While a sta-

tistical test could report whether the observed effect is

significant, doing so would inappropriately shift the burden

of proof: if a scientist would like to use a statistical analysis

that requires an absence of cross-unit effects, then the onus

is on her to justify the absence.

This experiment also leads us to suspect that browser

instances are not identically distributed. In particular, the

nature of the cross-unit effects suggested by the experiment

raises the possibility that the one browser receiving an ad

might decrease the probability for another browser, leading

to non-identical distributions.

Given the results of these experiments, for information

flow experiments, we find each of these assumptions to

be suspect: parametric models, i.i.d. responses, and the

absence of cross-unit effects. Any work employing these

assumptions must take care to justify their use in their

particular experimental design and setting with pilot studies.

Believing that these assumptions do not hold for many

such experiments, we instead choose to focus on statistical

analyses that do not require making such assumptions.

B. The Permutation Test

Let us look at selecting a statistical test from the angle

of security. In our setting, the system in question, not the

analyst, is the adversary. From this angle, the pilot studies

are reflections of the adversary’s ability to violate most

assumptions an analyst might wish to make about it. In

a security setting, one of the few assumptions safe for

the analyst to make is that the adversary cannot guess the

(pseudo-)random numbers she generates. Indeed, selecting a

random key is the core of many security algorithms, such

as encryption.

With the security properties of randomization in mind, we

should adopt a statistical test that leverages randomization

rather than the types of assumptions more typically seen

in statistics. Fortunately, permutation tests (e.g., [24]), also

known as randomization tests, uses randomization to allow

cross-unit interactions [50] and non-i.i.d. responses.

At the core of a permutation test is a test statistic s. A

test statistic is a function from the data, represented as a

vector of responses, to a number. The vector of responses

~y has one response for each experimental unit. The vector

must be ordered by the random indices ik used to assign

each unit k a treatment from the treatment vector ~x prepared

during the experiment. Thus, the kth entry of ~y received the

treatment at the kth entry of ~x. In particular, s could use

the first n components of the data vector as the results of

the experimental group and the remaining m as the results

for the control group where the groups have n and m units,

respectively.

For example, consider an experiment on whether visiting

car-related websites impacts the ads one sees. In it, the

experimental group visits such websites while the con-

trol group does not. The analyst could use a keyword-

based test statistic skw, which looks at the number of

ads that each instance received containing the keywords

“bmw”, “audi”, “car”, “vehicle”, “automobile”, “cadillac”,

and “limo”, words whose presence we believe to be indica-

tive of an instance being in the experimental group. Let the

value of skw be the number of ads that contained any of the

keywords amongst the experimental group less the number

in the control group. Intuitively, a small value would suggest

no noteworthy difference between the groups whereas a large

value would indicate that the experimental group saw more

car ads as a result of visiting car-related websites.

To make this intuition formal, we must quantify “small”

and “large” values. Since the scientist is allowed to pick

any function s from response vectors to numbers for the

test statistic, the permutation test needs to gauge whether an

observed data vector ~y produces a large value with respect

to s. To do so, it compares the value of s(~y) to the value

of s(π(~y)) for every permutation π of ~y. Intuitively, this

permuting mixes the treatment groups together and compares

the observed value of s to its value for these arbitrary

groupings.

The significance of these comparisons is that under

the null hypothesis of independence (noninterference), the

groups should have remained exchangeable after treatment

and there is no reason to expect s(~y) to differ in value from

s(π(~y)). Thus, we would expect to see at least half of the



comparisons succeed. Thus, we call a permutation π such

that s(~y) ≤ s(π(~y)) fails to hold a rejecting permutation

since too many rejecting permutations leads to rejecting the

null hypothesis.

Formally, the value produced by a (one-tailed signed)

permutation test given observed responses ~y and a test

statistic s is

pt(s, ~y) =
1

|~y|!

∑

π∈Π(|~y|)

I[s(~y) ≤ s(π(~y))] (1)

where I[·] returns 1 if its argument is true and 0 otherwise,

|~y| is the length of ~y (i.e., the sample size), and Π(|~y|) is

the set of all permutations of |~y| elements, of which there

are |~y|!.
Recall that under significance testing, a p-value is the

probability of seeing results at least as extreme as the

observed data under the assumption that the null hypothesis

is true. pt(s, ~y) is a (one-tailed) p-value using s and ≤ to

define at least as extreme as in the definition of p-value.

To see this, recall that the null hypothesis H0 is that the

treatments have no effect. Thus, since the order of the

responses in ~y is by treatment, which should not matter

under H0, and otherwise random, any permutation of them

would be equally likely under H0. Thus,

pt(s, ~y) =
∑

π∈Π(|~y|):s(~y)≤s(π(~y))

Pr[~Y = ~y |H0] (2)

matches the definition of a p-value. One could use other

definitions of as extreme as by replacing the ≤ in (1) and (2)

by ≥ or by comparing the absolute values of s(~y) and

s(π(~y)) to check for extremism in both directions (a two-

tailed test).

Good discusses using sampling to make the computation

of pt(s, ~y) tractable for large ~y [24]. Greenland provides

detailed justification of using permutation tests to infer

causation [51].

C. Discussion

The above method avoids some pitfalls. Most funda-

mentally, we use a statistical analysis whose assumptions

matches those of our experimental design. Assumptions

required by many statistical analyses appear unjustifiable in

our setting.

Remark 1. The permutation test provides a method of

determining whether a system has interference that is prob-

abilistically sound to a degree quantified by the p-value.

Our use of randomization implies that many factors that

could be confounding factors in an unrandomized design

become noise in our design (e.g., [24]). While such noise

may require us to use a large sample size to find an effect,

it does not affect the soundness of our analysis. We expect

our methodology to suggest that an effect exists when one

does not with a probability equal to or less than the p-value.

Remark 2. The permutation test is not sound for finding

noninterference nor complete for finding interference.

Our method might fail to detect some use of information.

For example, the web service’s behavior might vary by some

feature not measured by the test statistic.

Furthermore, we do not claim that results generalize

beyond the setting of the experiment. To do so, our method

may be combined with random sampling and methods to

ensure that the observed system does not attempt to evade

the study.

Lastly, we do not claim that our method shows how the

system in question uses information internally. Any observed

effect may be the result of complex interactions between

the system and other ones in its environment. In particular,

as discussed in Section II-C, our method finds interference

not within the system in isolation, but rather for the system

operating in its environment.

VI. PRIOR STUDIES OF WDUD

Our work was inspired by prior WDUD studies. Table II

provides an overview of those using other methods. The first

four studies used non-statistical analyses, Sweeney’s uses

a method similar to ours, and the last four use statistical

analyses under assumptions that appear not to hold in

the setting we study. Additionally, a recent study under

submission has adopted our method [26].

The method of Guha et al. [2], which Balebako et al. adopt

to study the effectiveness of web privacy tools [3], uses three

browser instances. Two of them receive the same treatment

and can be thought of as controls. The third receives some

experimental treatment. They collect the ads Google serves

each of them, which they compare using a similarity metric.

Based on experimental performance, they decided to use

one that only looks at the URL displayed in each ad. For

each instance, they perform multiple page reloads and record

the number of page reloads for which each displayed URL

appears. From these counts, they construct a vector for each

unit where the ith component of the vector contains the

logarithm of the number of reloads during which the ith ad

appears. To compare runs, they compare the vectors resulting

from the instances using the cosine similarity of the vectors.

More formally, their similarity metric is sim(~v, ~w) =
coss(ln∗(~v), ln∗(~w)) where ~v and ~w are vectors that record

the number of page reloads during which each displayed

URL ad appears, ln∗ applies a logarithm to each component

of a vector, and coss computes the cosine similarity of two

vectors. They conclude that a flow of information is likely if

sim(~vc1, ~vc2) is much larger than sim(~vc1, ~ve) where ~vc1 and

~vc2 are the responses from the two control instances and ~ve
is the response from the experimental instance.

Wills and Tatar also studied how Google selects ads by

posing as various sorts of website visitors [4]. They drew

conclusions in two ways. The first was similar to Guha



Work Venue Year Approach Limitations/Assumptions

Guha et al. [2] IMC 2010 cosine similarity lacks test of statistical significance

Balebako et al. [3] Web 2.0 Sec. & Priv. 2012 cosine similarity lacks test of statistical significance

Wills and Tatar [4] WPES 2012 manual examination lacks test of statistical significance

Sweeney [5] CACM 2013 randomized χ
2 test over browsers requires a large sample size

Liu et al. [6] HotNets 2013 process of elimination lacks test of statistical significance

Barford et al. [7] WWW 2014 non-randomized χ
2 test over ads assumes ads identically distributed

Lécuyer et al. [8] Usenix Security 2014 parametric model over ads correlation; assumes ads identically distributed and model

Englehardt et al. [9] submitted 2014 parametric model over ads assumes independence between ads

Table II
PRIOR WORKS EXPERIMENTING ON ONLINE MARKETING SYSTEMS WITH OTHER METHODS

et al.’s methodology of looking for differences between

the ads seen by various profiles. While their study was

conducted by hand and without statistics, they intuitively

used the keyword test statistic similar to skw presented in

Section V-B. The second was to observe Google showing

them ads that included sensitive information they provided

to Google by interacting with a website that uses a Google

service.

Liu et al. provide AdReveal, a system designed to de-

termine the reasons behind the ads a user sees [6]. They

consider three types of ads: (1) ads for particular products

that the user has previously expressed interest in, (2) ads

based on the context of the website, and (3) ads from

behavioral marketing. To check for the first, they check

the webpage for Javascript code that sets up re-marketing

frameworks. To check for the second, they use machine

learning to construct a model that intuitively judges whether

an ad and a webpage cover the same topic. They consider ads

that do not trigger either of these checks to be behavioral.

None of these studies performed a statistical analyses to

show whether or not their results are significant. It remains

possible that the differences observed are simply from

random variations caused by factors other than behavioral

marketing.

Sweeney examined the flow of information from a search

field to ads shown alongside the search results [5]. Among

other things, she found that, compared to characteristi-

cally white names, searching for characteristically black

names yielded more ads for InstantCheckmate that were

suggestive of the searched name having an arrest record.

She randomized the order of names searched [52], which

can enable statistical analyses without making questionable

assumptions. She used the χ2 test to analyze her results and

found them to be significant.

Under some conditions, the χ2 test becomes an approx-

imation of the permutation test [53]. With the size of her

data set, such approximations become not only accurate, but

useful for computational reasons. Indeed, her results are also

statistically significant under the permutation test [52].

We believe that our methodology with permutation testing

provides a foundation for such approximations by linking

them to information flow, especially considering that the

traditional justification of the χ2 test includes an assumption

that the experimental units are independent [54], which

seems unlikely in some cases (Experiment 2). The permuta-

tion test is also more flexible in that it works for any response

variable whereas the χ2 test is only for a single categorical

(binary) response from each experimental unit (e.g., browser

instance). For example, the χ2 test cannot be used if the

response is the number of times a certain ad appears to each

browser since this is not a categorical response.

For each webpage, ad, and user profile, Barford et al. [7]

record the number of times that webpage shows that ad to

a user with that profile as they crawl the web. Using the

χ2 test, they identify those ads shown on a webpage to

some profiles more often than others, suggesting behavioral

targeting. However, rather than use randomization for the

purposes of the χ2 test, they counted each ad as an i.i.d.

response [55] (cf. Experiments 1 and 2).

Lécuyer et al. present XRay, a tool that looks for corre-

lations between the data that web services have about users

and the ads shown to users [8]. While their tool may check

many changes to a type of input to determine whether any

of them has a correlation with the frequency of a single

ad, it does not check for causation, as our method does.

Furthermore, they assume identically distributed ads (cf.

Experiment 1).

Englehardt et al. study filter bubbles with an analysis

that assumes a binomial model and independence between

observations [9] (cf. Experiment 2).

VII. COMPARISON OF TEST STATISTICS

Given all the test statistics discussed, one might wonder

how they compare. We will empirically compare a subset

of the test statistics in our motivating setting of WDUD.

However, we caution that our experiment should not be con-

sidered definitive since other WDUD problems may result

in different results. We recommend that each experiment

is preceded by a pilot study to determine the best test(s)

for the experiment’s needs. For example, we have found



pilot studies useful for selecting distinguishing keywords

to search for in ads. Other work discusses automating this

process for our method [26].

The following experiment also illustrates our experimental

design and statistical analysis. We find that it works as

expected by running it in settings where we can be almost

certain that targeting either is or is not happening.

Experiment 3. Each run of the experiment involved ten

simultaneous browser instances, each of which represents

an experimental unit. We used a sample size of ten due to

the processing power and RAM restrictions of our server.

For each run, the script driving the experiment randomly

assigns five of the instances, the experimental group, to

receive the treatment of manifesting an interest in cars (a

heavily marketed topic). As in Experiment 2, an instance

manifests its interest by visiting the top 10 websites returned

by Google when queried with certain automobile-related

terms: “BMW buy”, “Audi purchase”, “new cars”, “local

car dealers”, “autos and vehicles”, “cadillac prices”, and

“best limousines”. The remaining five instances made up

our control group, which remained idle as the experimental

group visited the car-related websites. Such idling is needed

to remove time as a factor ensuring that the only systematic

difference between the two groups was the treatment of

visiting car-related websites.

As soon as the experimental group completed visiting

the websites, all ten instances began collecting text ads

served by Google on the International Homepage of Times

of India. As in Experiment 2, each instance attempted to

collect 50 text ads by reloading a page of five ads ten times,

but page timeouts would occasionally result in an instance

getting fewer. We repeated this process for 20 runs with

fresh instances to collect 20 sets of data, each containing

ads from each of ten instances.

Across all runs of the experiment, we collected 9832 ads

with 281 being unique. Instances collected between 40 and

50 ads with two outliers each collecting zero. Both outliers

were in the 19th run and in the experimental group. We

analyzed the data with multiple test statistics.

First, we used the permutation test with ssim, an extension

of Guha et al.’s cosine similarity metric sim for comparing

more than two responses (Section VI), as the test statistic [2].

We first aggregate together multiple URL-count vectors by

computing the average number of times each URL appeared

across the aggregated units. Formally, let avg(~u) compute

the component-wise average of the vectors in ~u, a vector of

vectors of URL counts. We can then define the test statistic

ssim(~y) as −sim(avg(~y1:n), avg(~yn+1:n+m)) where ~ya:b is

the sub-vector consisting of the entries a though b of ~y, the

first n responses are from the experimental group, and the

next m are those from the control group. We use negation

since our permutation test takes a metric of difference, not

similarity. Intuitively, the permutation test using the test

statistic ssim will compare the between-group dis-similarity

to the dis-similarity of vectors that mix up the units by a

permutation. In aggregate, the dis-similarity of these mixed

up vectors provide a view on the global dis-similarity inherit

in the system.

Observe that there are 10! > 3 million different permu-

tations for the ten instances. However, since sim treats the

response vector provided to it as two sets (intuitively, the

experimental and control groups) many permutations will

produce the same value for ssim. To speed up the calculation,

we replaced comparing all permutations with comparing all

partitions of the responses into equal sized sets of 5, yielding

only
(

10
5

)

= 252 comparisons.

Second, we tested the statistic skw inspired by Wills and

Tatar [4] and discussed in Section V-B, which looks at

the number of ads that each instance received containing

a keyword. As with ssim, we have at most 252 unique

comparisons to make.

Third, we tested a simplified version of skw, skw01, that

treats each browser instance as providing a categorical

(binary) response that is 1 if it got any number of ads with

a keyword and 0 if it got none. Comparing skw to skw01
illustrates the power of non-categorical responses.

Lastly, we conducted the χ2 test on a 2× 2 contingency

table computed from the data from each round. The type

of treatment was represented in rows, while the presence or

absence of keywords was represented in the columns, using

an approach similar to skw01 since the χ2 test is limited

to categorical variables. However, our sample size was not

large enough to produce meaningful results from the χ2 test,

which requires that each outcome shows up with a certain

minimum frequency. Thus, we did not consider this test

further.

For comparison purposes, we re-run the above experi-

ment without having the experimental group manifest any

interests. That is, we compared two control groups against

one another expecting not to find statistically significant

differences.

Table III summarizes the results using the standard α =
0.05 cutoff for statistical significance. For the experiment-

control setup, in which we do expect to find a difference

between the groups, both ssim and skw reported a positive

result 18 out of 20 times whereas the skw01 reported no

significant results. For skw, 13 of the p-values were less than

0.004. They show, with high certainty, that Google and its

ad ecosystem has interference from visiting the car related

webpages to the ads that Google shows. Furthermore, these

results show that skw is indeed a more powerful test statistic

than skw01, which is limited to categorical responses.

As expected with a theoretical false positive rate of α =
5% and 20 tests, we found that each of the permutation

tests produced one or fewer statistically significant results

for the experiments with no difference (control-control and

experiment-experiment). We provide no minimal acceptable



Setup
Actual

positives

Reported positives

ssim skw skw01

Experiment-control 20 18 18 0

Control-control 0 1 1 1

Experiment-experiment 0 0 1 0

Table III
THE NUMBER OF RUNS OUT OF 20 EXPERIMENTS THAT VARIOUS TESTS

CONSIDER TO SHOW INFORMATION USAGE.

number of true positives for the experiment-control setup

since significance testing does not guarantee any rate.

The wide range of tests might tempt one into running

more than one test on a data set. However, running multiple

tests increases the chance of getting a low p-value for one of

them by an unlucky randomization of units rather from an

effect. Thus, one cannot look just at the test that produced

the lowest p-value. Rather one must report them all or apply

a correction for multiple tests such as those for the false

discovery rate [56].

VIII. CONCLUSIONS AND SUGGESTIONS

Based upon theoretical results, we reduced finding a flow

of information in WDUD and related applications to that of

finding an effect using experiments. Based upon empirical

observations, we recommended an experimental design and

a statistical analysis, based on permutation testing, that is

well suited to studying behavioral marketing. This process

allows us to convert the abstract principles of experimental

design and analysis into concrete suggestions:

1) Use an appropriate statistical test. Attempting to shoe-

horn data into familiar statistics can result in incurring

requirements, such as i.i.d. data, that cannot be met

in our setting. Fortunately, they are not required for

permutation testing.

2) Randomly assign treatments to units. Randomization

provides the justification needed for permutation test-

ing, which allows us to avoid unachievable require-

ments needed for other statistical tests.

3) Use domain knowledge gained during pilot studies to

select a test statistic. Finding the correct keywords to

examine in ads allowed us to not only get results that

were statistically significant, but also intuitive.

While statistical analyses can be intimidating due to

their complex requirements, selecting the correct test is

liberating by also identifying what conditions the analyst

needs not worry about. In addition to not needing i.i.d. data,

permutation testing does not require complete control over

the environment or a lack of cross-unit effects, none of which

are achievable in our setting.

Furthermore, we do not require random samples. Acquir-

ing units by randomly sampling from a more general pop-

ulation will, with high likelihood, provide a representative

sample, which allows findings of effects to generalize to the

population as a whole. While results need not be general

to show that a marketer tracks some behavior, showing that

the marketer often does is more interesting. However, given

that the marketer could alter its behavior in response to the

atypical patterns of access exhibited by experiments, we take

comfort in knowing that our findings of information usage

will hold even if they do not generalize to marketer’s typical

behavior. (Also, it would be odd for a marketer to only

exhibit questionable behavior to those looking for it.)

In general, information flow experiments allow an analyst

to exercise oversight and detect transgressions by an entity

not controlled by the analyst and unwilling or unable to

provide the analyst complete access to the system. We see

this setting becoming ever more common: data lives in the

cloud, jobs are outsourced, products licensed, and services

replace infrastructure. In each of these cases, a party has

ceded control of a resource for efficiency. Nevertheless, each

party must ensure that the other abides by their agreement

and respect privacy policies while having only limited access

to the other. Thus, we envision black-box experimentation

for auditing and accountability playing an increasing role in

information security, privacy, and society in general.

IX. FUTURE DIRECTIONS

Demonstrating Noninterference: The permutation test

requires that the null hypothesis be that the system has

noninterference. Thus, it can only provide a quantitative

measure of the evidence against noninterference. Conceptu-

ally, proving noninterference would require looking at every

test statistic under every input sequence. Since examining an

infinite set of sequences is impossible, using the scientific

method to show that a system has noninterference would

require building a theory of the system’s operation and then

proving noninterference in that theory.

Other Notions of Information Flow and Causation:

We examined only one information flow property, a proba-

bilistic noninterference, and one notion of causality, effect.

Exploring the many alternatives could tighten the connec-

tion between the two fields and further organize each. For

example, some definitions of information flow differ from

noninterference by being epistemic in nature, that is, they are

defined in terms of a change in an agent’s state of knowledge

(e.g., [57]). We believe that this dichotomy is mirrored

in causality by the distinction between causation and as-

sociation (i.e., correlation). Also, differential privacy [58],

being an approximate form of our definition of probabilistic

noninterference, is a causal rather than information theoretic

notion, which explains why it works for all adversaries

regardless of their knowledge.

Formalizing Permutation Testing as IFA: In Sections IV

and V, we leverage the relationship of interference and

causal effects to use a standard experimental design and

statistical analysis to find interference. Future work could



model the experimental design itself as a network of au-

tomata. Doing so would allow us to formalize permutation

testing in terms of the resulting composite system. Looking

at statistical concepts from the fresh angle of IFA could shed

light on statistical concerns and yield rigorous automated

experiments.

Monitoring and Observational Studies: Passive moni-

toring in IFA corresponds to observational studies. A wide

range of work deals with the cases under which one can infer

causation from a correlation learned from an observational

study (see, e.g., [23]). Future work can import these results

to IFA showing how monitoring could be useful in some

cases despite its inherit unsoundness [42], [44], [45].
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