
Neural Computation, vol. 1, no. 4, 558-566, 1989

Unification as Constraint Satisfaction in
Structured Connectionist Networks

Andreas Stolcke
Computer Science Division,

University of California, Berkeley, CA 94720,
and

International Computer Science Institute,
1947 Center Street, Suite 600, Berkeley, CA 94704

Abstract

Unification is a basic concept in several traditional symbolic formalisms that
should be well-suited for a connectionist implementation due to the intuitive nature
of the notions it formalizes. It is shown that by approaching unification from
a graph matching and constraint satisfaction perspective a natural and efficient
realization in a structured connectionist network can be found.

1 Introduction

Unification is a special matching operation on recursive symbolic structures widely
used—in a number of variants—in fields related to symbolic artificial intelligence,
most prominently theorem proving (Martelli & Montanari, 1982) and computational
linguistics (Shieber, 1986). In the connectionist literature unification is addressed in
the context of resolution theorem proving (Ballard, 1986), although considering only a
simple special case.

Investigating the possibilities for a connectionist approach to unification seems
worthwhile for at least two reasons: The importance and ubiquity of the concept in
traditional formalisms, and the fact that unification incorporates notions that, at an
informal level, seem to be essential to human cognition. These include integrating
and merging of information into a consistent whole, checking for compatibility, and
pattern matching. Since connectionist models are generally assumed to be well-suited
for problems involving these tasks, unification is a potentially useful concept in the
realm of neurally-inspired processing.

1



2 Feature Structures and Unification

Unification is usually defined in a strictly technical sense, namely referring to a specific
operation in certain types of algebras. The variant considered here operates on recursive
sets of attribute-value pairs known as feature structures (f-structures). An f-structure
is either an atomic label like, e.g., square, or a set of features with f-structures as their
values. Complex f-structures are conventionally represented as feature matrices such
as 2664 shape : square

length :

�
value : 5
unit : inch

��
width : � 3775 (1)

The asterisk marks a feature value that is shared among more than one feature.
These possible reentrancies in f-structures suggest an alternative representation which
maps every structure into a rooted directed labeled graph. The graph corresponding to
structure (1) is depicted in Figure 1(a).

Unifying a set of f-structures intuitively means merging all the features into a single
structure, preserving reentrancies. Using t as the unification operator, structure (1)
may be obtained as:�

length :
�

value : 5
� � t�

width :
�

unit : inch
� � t24 shape : square

length :
� ��

width : � 35 = 2664 shape : square

length :

�
value : 5
unit : inch

��
width : � 3775 (2)

Hence unification can be thought of as taking the union of features at each level and
unifying values of identical features recursively. This process bottoms out at atomic
values where feature values have to match exactly. Consequently unification is said to
fail (or result in Ω) if atomic values mismatch as in�

shape : square
color : red

� t � color : blue
� = Ω (3)

It should be evident from this short discussion that unification incorporates the
three intuitive concepts alluded to above: data from several sources is merged into a
single structure, checking for compatibility in the process. Alternatively, each of the
structures being unified can be view as a recursive pattern against which all the other
structures are matched.1

1The more familiar variant of term unification used in logic-based formalisms can be shown to be a special
case of the version presented here (for details see, e.g., Stolcke (1989a)). Also, the model described here
translates to term unification in a straightforward way.

2



3 Unification as Graph Matching

Consider the graphs involved in unification (2), shown in Figure 1(b). There is a
mapping from nodes in the operand structures onto nodes in the unified structure such
that edges are consistent among both. This suggests that unification can be viewed as a
specialized form of graph matching and given a connectionist treatment as a a discrete
constraint satisfaction problem (the same general approach has recently been used by
Mjolness et al. (1989)).

This idea can be made precise by observing that the mapping from operand nodes
to result nodes defines an equivalence relation (partitioning). Thus, in Figure 1, the
partitions are fs3; s5; s7g, fs4; s6; s8g, fsquareg, f5g, and finchg, corresponding to
nodes s1, s2, square, 5, and inch, respectively, in the unified structure. Equivalence
relations thus induced by unifications satisfy certain conditions:

(V1) For any pair of edges with identical labels (features) x:f = x0, y:f = y0, x � y
only if x0 � y0.

(V2) For any pair of atomic nodes (values) u, v, u � v only if u = v.

(V3) For any atomic node u and non-atomic node y, u � y only if y has no outgoing
edges y:f .

[Here � denotes the equivalence relation and x:f refers to the value of feature f on
node (structure)x.] We will call equivalence relations satisfying these constraints valid,
in accordance with Paterson and Wegman (1976) who used the concept to devise a fast
sequential algorithm for unification.

It can be shown that the unification of a set of f-structures is isomorphic to the par-
titions obtained from the finest valid equivalence which makes the operand structures’
root nodes equivalent. Such an equivalence is guaranteed to exist if the structures are
unifiable. Hence we can redefine unification entirely in terms of a set of constraints on
binary relations between graph nodes.

4 The Connectionist Implementation

4.1 Representation

F-structures can be seen as an abstraction of several frame-like data-structures com-
monly used for knowledge representation, some of which have been addressed in the
connectionist literature using various distributed and local representations (Touretzky,
1987; Shastri, 1988). Our implementation uses a localist scheme for representing both
f-structures and node equivalences. All units in the model are binary threshold units
choosing their activations asynchronously between 0 and 1.

F-structures are represented simply as their constituting set of edges. Assuming
we draw nodes from some pool N and given a feature set F , we obtain a pool E �N�F�N of possible edges, each of which is assigned an e-unit. The e-unit hx:f = yi

3



is active precisely when the corresponding edge is present. In many cases the semantics
of a specific application rule out all but some small subset ofN�F�N , or predetermine
the presence or absence of many of the edges, thus avoiding the full combinatorics of
the representation. This is illustrated in Stolcke (1989b) where the model is applied to
the processing of unification-based grammars.

Node equivalences—or, loosely speaking, node unifications— in N � N are rep-
resented by u-units. The u-unit hx � yi is active iff x and y are considered equivalent
(unified). The encoding of constraints requires that non-equivalence be explicitly rep-
resented as well, hence nu-unit hx 6� yi is active whenever x and y are non-unifiable.

4.2 Enforcing Validity

Figure 2(a) shows how the first validity constraint (V1) is enforced by interactions
between e-unit, u-units, nu-units, and auxiliary units implementing conjunctions. The
global result is that node unifications propagate top-down from the roots of the struc-
tures towards the leaves, while non-unifiability is determined bottom-up, starting at
incompatible atomic values. Initial activation for nu-units is provided as a consequence
of constraint (V2) which requires nu-units of the form hu 6� vi, where u and v are
non-equal atomic values, to be clamped on. The network structure in Figure 2(b)
implements constraint (V3) and causes additional nu-units to become active.

To attempt unification of f-structures rooted in x and y, the u-unit hx � yi is
externally activated. This is the only source of initial activation for u-units and also
allows the network to return its result: if a unification exists the network will settle into
a state where hx � yi and all other relevant u-units are turned on; otherwise hx � yi
will be deactivated by hx 6� yi. This happens either as a result of some stable state or
as part of an oscillation in the network.

4.3 Enforcing consistency

The correctness of the solution found by the network relies on the fact that all its stable
states represent valid equivalence relations. Hence consistency of the representation
with regard to equivalence needs to be enforced. Reflexivity and symmetry can be
made intrinsic to the representation by simply omitting reflexive u/nu-unitsand merging
corresponding symmetric units. Transitivity is enforced by a dedicated link structure
shown in Figure 3.

Consistency between u-units and nu-units is guaranteed by inhibitory links (shown
in Figs. 2(a) and 3) that allow nu-units to suppress their counterparts unconditionally.
This is justified by the observation that nu-units denote non-unifiability whereas u-units
merely represent attempts at unification.

An exact specification of all network parameters, as well as a number of case studies
of the network’s dynamics can be found in Stolcke (1989a).

4



5 Discussion

The foremost characteristic of the connectionist implementation is that it naturally
exploits opportunities for parallel processing of substructures. Therefore the network
will arrive at a solution (or negative result) in time proportional to the depth of the
f-structures processed if the structures are essentially tree-like, giving time complexity
of the order of the log of the structure sizes. [Known serial algorithms are linear in the
structure size (Paterson & Wegman, 1976).]2

The number of units and links required for this speedup is quadratic in the number
of edges and cubic in the number of nodes. Typical applications, however, often include
a fair number of fixed edges. These together with nu-units that have to be clamped
on due to constraints (V2) and (V3) imply that a certain portion of units have constant
activations. Such units can be eliminated by a straightforward optimization.

The network places no limit on the number of separate f-structures being unified
at once (other than by the total number of nodes and edges). When trying to unify
sets of more than two f-structures cases arise where the complete set has no unifier,
but overlapping subsets can still take part in partial unifications. The asynchronous
operation of the network would randomly choose between alternative pairings of f-
structures in this case. By adding controlled noise the network might be used to search
stochastically through a space of mutually exclusive unifications.

Conventional algorithms usually do not allow f-structures to be cyclic, although
unification is well-defined on such structures (Colmerauer, 1982). Incidentally our
model naturally represents and processes cyclic structures.

It is encouraging (and maybe surprising) that a formalism prototypical for highly
structured, symbolic processing lends itself to a relatively straightforward connectionist
implementation, namely when approached from the point of view of constraint satis-
faction. One basic deficiency of the model in its present form, however, is inherited
from the underlying formalism it implements.

Unification as traditionallydefined does not distinguishbetween different degrees of
unifiability (or matching), although this might seem natural given its intuitive interpre-
tation. Therefore it remains to be seen if unification can be usefully generalized into a
graded notion of structured matching. Related to this issue, and a subject of ongoing re-
search, is the question of how unification can deal with distributed and/or non-discrete
forms of connectionist encoding of compositional structures, such as coarse-coding
(Touretzky, 1986) and recursive auto-association (Pollack, 1988).

Acknowledgments

I wish to thank Steffen Hölldobler and Jerome Feldman for their helpful comments
and the International Computer Science Institute for general support. The author is
currently an IBM Graduate Fellow.

2Note, however, that in the worst case reentrancies can prevent effective parallelization causing the
network to degenerate into sequential behavior (cf. Dwork et al. 1984).

5



References

Ballard, D. H. (1986). Parallel Logical Inference and Energy Minimization. In Pro-
ceedings of the 5th National Conference on Artificial Intelligence, pp. 203–208,
Philadelphia, Pa.

Colmerauer, A. (1982). Prolog and infinite trees. In Clark, K. L. & Tarnlund, S.-A.,
eds., Logic Programming, pp. 231–251. Academic Press, New York.

Dwork, C., Kanellakis, P. C., & Mitchell, J. C. (1984). On the sequential nature of
unification. Journal of Logic Programming, 1:35–50.

Martelli, A. & Montanari, U. (1982). An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems, 4:258–282.

Mjolness, E., Gindi, G., & Anandan, P. (1989). Optimization in model matching and
perceptual organization. Neural Computation, 1(2):258–282.

Paterson, M. S. & Wegman, M. N. (1976). Linear Unification. Report RC 5904
(#25518), IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.

Pollack, J. B. (1988). Recursive Auto-Associative Memory: Devising Compositional
Distributed Representations. In Proceedings of the 10th Annual Conference of the
Cognitive Science Society, pp. 33–39, Montreal, Quebec, Canada.

Shastri, L. (1988). A Connectionist Approach to Knowledge Representation and Lim-
ited Inference. Cognitive Science, 12:331–392.

Shieber, S. M. (1986). An Introduction to Unification-Based Approaches to Gram-
mar. No. 4 in CSLI Lecture Note Series. Center for the Study of Language and
Information, Stanford, Ca.

Stolcke, A. (1989a). A Connectionist Model of Unification. Technical Report TR-89-
032, International Computer Science Institute, Berkeley, Calif.

Stolcke, A. (1989b). Processing Unification-based Grammars in a Connectionist Frame-
work. In Proceedings of the 11th Annual Conference of the Cognitive Science
Society, pp. 908–915, University of Michigan, Ann Arbor, Mich.

Touretzky, D. S. (1986). BoltzCONS: Reconciling Connectionism with the Recursive
Nature of Stacks and Trees. In Proceedings of the 8th Annual Conference of the
Cognitive Science Society, pp. 522–530, Amherst, Mass.

Touretzky, D. S. (1987). Representing Conceptual Structures in a Neural Network.
In Caudill, M. & Butler, C., eds., Proceedings of the IEEE 1st International
Conference on Neural Networks, pp. 279–286, San Diego, Calif.

6



(a) s1

square s2

shape length width

5 inch

value unit

(b) s3

square s4

shape length width t s5s6

5

length

value

t s7s8

inch

width

unit

Figure 1: (a) Labeled graph representing structure (1). Features map into directed edges,
atomic values translate into terminal nodes. Internal nodes correspond to substructures
and are numbered for reference. (b) Three f-structures whose unification results in the
structure given in (a).

7



(a) A x:f = x0y:f = y0 Bx � y
x0 � y0

x 6� y
x0 6� y0

(b) Cx 6� vx 6� u : : :x:g = zx:f = y : : :
Figure 2: Link structure enforcing validity of node equivalences. (a) Auxiliary units A
and B implement constraint (V1). They operate conjunctively, i.e. become active only
when receiving activation from all three of their inputs. E-units with matching featuresf effectively enable paths allowing equivalences and non-equivalences to propagate
top-down and bottom-up, respectively. Unification may fail, however, therefore nu-
units are allowed to suppress corresponding u-units via strong inhibitory nu-links.
(b) Constraint (V3) requires non-equivalence of a node x with any atomic nodesu; v; : : : if x has any outgoing edges. This is accomplished by auxiliary unit C which
behaves disjunctively.

8



A B C x � z D Ex � y
y � z

x 6� y
y 6� z

Figure 3: Network structure guaranteeing transitivity of node equivalences. Units A
through E implement the implications x � y ^ y � z ) x � z and x 6� y ^ y �z ) x 6� z. Omitted here are additional inhibitory links that render A;B;C and D;E
mutually exclusive. These links are necessary to prevent stable coalitions of u-units
and nu-units.

9


