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ABSTRACT

Speech disfluencies (such as filled pauses, repetitions, restarts) are
among the characteristics distinguishing spontaneous speech from
planned or read speech. We introduce a language model that pre-
dicts disfluencies probabilistically and uses anedited,fluent context
to predict following words. The model is based on a generalization
of the standard N-gram languagemodel. It uses dynamic program-
ming to compute the probability of a word sequence, taking into
account possible hidden disfluency events. We analyze the mod-
el’s performance for various disfluency types on the Switchboard
corpus. We find that the model reduces word perplexity in the
neighborhood of disfluency events; however, overall differences
are small and have no significant impact on recognition accuracy.
We also note that for modeling of the most frequent type of dis-
fluency, filled pauses, a segmentation of utterances into linguistic
(rather than acoustic) units is required. Our analysis illustrates a
generally useful technique for language model evaluation based on
local perplexity comparisons.

1. MOTIVATION AND OVERVIEW

Speechdisfluencies(DFs) are prevalent in spontaneousspeech, and
are among the characteristics distinguishing spontaneous speech
from planned or read speech. DFs are one of many potential
factors contributing to the relatively poor performance of state-of-
the-art recognizers on this type of speech, e.g., as found in the
Switchboard [2] corpus.

Past work on disfluent speech has focused on disfluency de-
tection, using either acoustic features [7, 6] or recognized word
sequences [1, 3]. Our goal in this work is to develop a statisti-
cal language model (LM) that can be used for speech decoding
or rescoring, and that improves upon standard LMs by explicitly
modeling the most frequent DF types. The main reason to expect
that DF modeling can improve the LM is that standard N-gram
models are based on word predictions from local contexts, which
are rendered less uniform by intervening DFs. Other researchers
have recently started exploring approaches to DF modeling based
on similar assumptions [4, 8].

Section 2 describes a simple N-gram-style DF model, based
on the intuition that DF events need to be predicted and edited
from the context to improve the prediction of following words.
Section 3 compares the DF model with a baseline LM, in terms
of both perplexities and word error rates on Switchboard data.
The emphasis is on a detailed analysis of the model at DF and
following word positions. Section 4 provides a general discussion
of the results.

2. THE MODEL

2.1. Disfluency types
Following [9], DFs can be classified based on how the actual utter-
ance must be modified to obtain the intended fluent utterance, i.e.,
the utterance a speaker would produce if asked to repeat his or her
utterance. The types can be characterized by the type of editing
required.

Filled pauses (FP) The pause filler (typically “uh” or “um”) must
be excised.

SHE UH GOT REAL LUCKY THOUGH
--> SHE GOT REAL LUCKY THOUGH

Repetitions (REP) Contiguous repeated words must be removed.

IT’S A IT’S A FAIRLY LARGE COMMUNITY
--> IT’S A FAIRLY LARGE COMMUNITY

Deletions (DEL) Words without correspondence in the repaired
word sequence must be deleted.

I DID YOU HAPPEN TO SEE ...
--> DID YOU HAPPEN TO SEE ...

We know from prior work [9] that these three types of DF are
the most frequent across a variety of spontaneous speech corpora,
accounting for over 85% of DF tokens in the Switchboard corpus.1

See [9] for a description of other, less frequent, types of DF that
are not modeled explicitly in our LM. For example, we are not
modeling word substitutions or speech errors.

2.2. The Cleanup Model
The central assumption incorporated in our DF language model is
that probability estimates for words after a DF are more accurate
if conditioned on the intended fluent word sequence. A secondary
assumption is that DFs themselves can be modeled as word-like
events, each having a probability conditioned on the context. A
standard language model, by contrast, would look only at the sur-
face string of words and assign word probabilities in a strictly
sequential manner.

Because of the central assumption, we call our DF model the
‘Cleanup Model.’ It is implemented as a standard backoff trigram
model with the following three modifications to account for DFs.

1. Words following a DF event are conditioned on the cleaned-
up, fluent version of the context. Filled pauses are removed

1DF frequencies in Switchboard were estimated from a hand-labeled
subset of 60 conversation sides, containing 40,500 words. The coverage
figure takes into account the further limits on modeled repetitions and
utterance-medial deletions described below.

To appear in Proc. ICASSP-96, May 7-10, Atlanta, GA 1 c� IEEE 1996



from contexts, as is the sequence of extraneous words in
repetitions and deletions.
For example, the probability estimate for “WANT” following
“BECAUSE I I” would be

P �WANTjBECAUSE I REP1� � P �WANTjBECAUSE I� �

where REP1 denotes a repetition event. The repeated “I” is
deleted from the context.

2. Disfluencies are represented by probabilistic events occurring
within the word stream, some of which are hidden from direct
observation. For simplicity, we model only the most prevalent
subtypesfor eachDF class, namely filled pausesUH andUM,
repetitions of one or two words (REP1, REP2), deletions at
the beginning of a sentence (SDEL), and other one- or two-
word deletions (DEL1, DEL2).

3. Just as words, DFs are treated as events that are assigned
probabilities conditioned on their context. The contexts them-
selves are subject to DF cleanup as described above. For ex-
ample, P �REP1jBECAUSE I� is the probability of repeating
“I” after “BECAUSE.”

By representing DFs simply as another type of N-gram event,
we allow DFs to be conditioned on specific lexical contexts, so
that simple word-based regularities in their distribution can be
captured. Furthermore, because of its simple N-gram character,
the model does not embody specific assumptions or constraints
about the distribution of DF events.

2.3. Probability computation
To account for the hidden DF events potentially occurring between
any two words, a forward computation is carried out to find the
probability of a sentence prefixP �w1w2 � � � wk�. Conditional word
probabilities are then computed as

P �wk�1jw1 � � � wk� �
P �w1 � � � wk�1�

P �w1 � � � wk�
�

If the underlying N-gram model is a trigram, it is sufficient to keep
eight states for each word position, according to whether the DF
prior to wk was NODF (none), FP (filled pause), SDEL, DEL1,
DEL2, REP1, REP2, or the second position after a REP2 event.
To illustrate, the partial computation involving just the NODF and
REP1 states is shown here.

P �w1 � � � wkNODFwk�1� � P �w1 � � � wk�1NODFwk�

p�wk�1jwk�1wk�

�P �w1 � � � wk�1REP1wk�

p�wk�1jwk�2wk�1�

P �w1 � � � wkREP1wk�1� � ��wk� wk�1�

�p�w1 � � � wk�1NODFwk�

p�REP1jwk�1wk�

�P �w1 � � � wk�1REP1wk�

p�REP1jwk�2wk�1��

where ��wi� wj� � 1 if wi � wj , and 0 otherwise. Trigram
probabilities are denoted by p��j��; these are obtained through the
usual backoff procedure [5]. The total prefix probability is then
computed as

P �w1 � � � wk� �
X

X

P �w1 � � �Xwk� �

where X ranges over the hidden states representing the disfluency
types (including NODF).

2.4. Estimation
The backoff N-gram probabilities in the model are estimated from
N-gram counts, including counts of the DF events. We used stan-
dard Good-Turing discounting in the backoff for both baseline and
DF trigram models. For experiments reported here involving hid-
den DF events, we useda subset of the Switchboardcorpus that was
hand-annotated for disfluencies as well as for linguistic segments.2

In the absence of hand-annotated training data, an iterative rees-
timation (EM) algorithm could be used to estimate the N-gram
probabilities for hidden DF events.

When counting N-grams for the DF model, the same context
modificationsused in the DF cleanupoperationsmust beperformed
on the training data. For example, the word sequence

<s> SHE UH GOT REAL LUCKY

is counted as having the following trigrams:

<s> SHE UH <s> SHE GOT
SHE GOT REAL GOT REAL LUCKY

Note that the trigrams

SHE UH GOT UH GOT REAL

which would be generated for a standard trigram LM are not gen-
erated for the DF model.

Because DF and word events are represented uniformly as N-
grams in the model, the standard estimation procedure will nor-
malize DF and non-DF event probabilities. This is a convenient
simplification over alternative approaches in which DFs are mod-
eled separately from the fluent word sequences.

3. RESULTS AND ANALYSIS

3.1. Overall results
We trained a trigram model for FP, REP, and DEL disfluencies
as described above, using 1.4 million words of Switchboard data
labeled for DF events (see note 2). The model was then evaluated
on a test set of 17,500 words. Table 1 compares baseline trigram
and DF models.3

Table 1. Overall results

Model Perplexity Word error
Baseline trigram 119.1 50.21%
DF trigram 120.9 50.23%

As can be seen, there is no significant difference in recognition
word error rates. While this may be due to a number of factors
(some of which we discuss in Section 4), we would have expected
at least a reduction in perplexity for the DF model; this was not the
case. We wanted to know whether this was becauseour underlying
assumptions were wrong, or whether it was due to other factors, so
we decided to analyze the DF model performance in detail.

We note with regard to these and later results that some types
of disfluencies may contain word fragments (from speakers cut-
ting themselves off in mid-word). According to [9], 20 to 25%
of repetitions and deletions in Switchboard contain word frag-
ments; however, filled pauses, as classified here, never involve
words fragments. Fragments are usually not part of the vocabulary
of current recognizers, and are not modeled in our system. They

2A preliminary version of annotated Switchboard data was made avail-
able to the 1995 Johns Hopkins Language Modeling Workshop; the LDC
will release a final version.

3Both baseline and DF models were trained on the same data, which
corresponds to only a portion of the full training corpus. Therefore, the
perplexity figures are higher here than in some of the comparisons below.
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were therefore omitted from the transcripts used for our perplexity
computations. We can expect an additional benefit from successful
fragment recognition, since they would serve as extra evidence for
repetitions and deletions, as well as for other DF events.

3.2. Analysis by DF type
To assess the potential of the DF model specifically at DF locations,
we computed perplexities for models covering eachDF type in turn,
and separately for a number of word positions relative to the DF
event. In each case, we also computed perplexities for the non-
DF positions, to make sure the model did not penalize fluent text
(reported below in the “non-DF” columns).

3.2.1. Filled pauses
A trigram model with special DF modeling for filled pauses

only was trained on 1.8 million words of acoustically segmented
Switchboard transcripts. The test set consisted of 1861 acoustic
segments containing 17,500 words. Table 2 shows the perplexi-
ties of the baseline and FP models for the FPs themselves (UH,
UM), the words after (UH+1, UM+1), and two words after (UH+2,
UM+2). The surprising result is that deleting FPs from N-gram
contexts does not help the LM; it actually significantly increases
the perplexity of the word following the FP. That is, on average,
the FP itself is the best predictor of the following word, not the
context preceding the FP. This conclusion is also supported by the
correspondingbigram perplexities, which exhibit the same pattern.
Apparently, FPs correlate strongly with certain lexical choices or
syntactic structures, and thus give useful information regarding
their neighbors to the right. We investigate this question further in
Section 3.3.

3.2.2. Repetitions
A trigram model with DF modeling for repetitions was trained

and tested as described above. Table 3 shows word perplexities for
positions relative to repetition events. REP1 refers to the second
instance of a repeated word in a one-word repetition; REP1+1 and
REP1+2 denote the first and secondword, respectively, after sucha
repetition. REP2 and REP2+1 refer to the repeated words in a two-
word repetition; REP2+2 denotes the word following a two-word
repetition. Unlike the case of FPs, the Cleanup Model is generally
beneficial in REP contexts, reducing the joint perplexity (all the
above positions relative to REP) from 85.9 to 76.6.

We also tested whether the words following the repetition might
be better predicted by the REP event itself, rather than the actual
wordsbeing repeated, analogousto what we found for filled pauses;
this turned out not to be the case.

3.2.3. Deletions
A deletion-only DF model was trained on 1.4 million words

of DF-annotated transcripts. In order to perform an analysis by
DF type and position, the models were tested on 17,800 words of
similarly annotated data.4 Only sentence and one-word deletions
are reported in Table 4, since the test data contained only a single
two-word deletion. The second row for “DEL model” gives the
perplexity based only on the word following a deletion, without
including the probability for the deletion event itself. This shows
that the context modification has the intended effect of making the
next word more likely on average.

3.3. Filled pauses and utterance segmentation
As shown above, the Cleanup Model as applied to filled pauses
yields a higher perplexity overall than the baseline trigram model.
This is largely attributable to poorer word probability estimates
at locations immediately following a filled pause. In prior work

4Due to differences in amount of training data and type of segmentation,
the perplexities are not directly comparable to the previous two studies.

Shriberg [9] observed that filled pauses tend to occur at linguistic
segment (e.g., clause) boundaries. Since the standard LM test ut-
terances are segmented according to acoustic criteria, filled pauses
around linguistic boundaries can actually occur in the middle of
acoustic utterance segments. At such locations, the assumptions of
the Cleanup Model would be grossly violated, since the preceding
words actually belong to a different linguistic segment. The stan-
dard model, on the other hand, can produce reasonable predictions,
as the filled pause can serve as an indicator of the boundary.

To test this hypothesis we compared the perplexities of both
models on a subset of the test data that was hand-annotated for
linguistic segmentations, and that had been re-segmented accord-
ingly (10250 words in 1325 segments). Specifically, we compared
the perplexities of words following medial filled pauses, i.e., filled
pausesnot occurring as the first or last word in a linguistic segment.
Results are shown in Table 5.

Table 5. Local perplexities after medial filled pauses

Position UH+1 UM+1
Baseline 849.0 437.4
FP model 606.2 361.7

We see that the Cleanup Model is the better predictor for words
following medial FPs, the reverse of the result for acoustically
segmented utterances. That is, the cleanup assumption holds for
medial FPs if one models utterancesbasedon linguistic, rather than
acoustic, segments.

3.4. Results from related work
We are aware of two other groups of researchers currently inves-
tigating similar approaches to DF language modeling. In [4] a
cleanup-style model for filled pauses is described. Ries and Qui
at CMU [8] have experimented with models for repetitions and
certain types of sentence deletion that incorporate the cleanup as-
sumption. Overall, their results are consistent with ours (higher
perplexity for filled pauses, lower perplexity for repetitions and
deletions), but the overall effects are small, as in our case.

4. DISCUSSION AND CONCLUSIONS

The preceding analysis shows that a disfluency model based on the
intuition underlying the Cleanup Model can yield only very small
improvements in model perplexity, although the cleanup assump-
tion seems to be valid on the Switchboard data we used in our
experiments. The local perplexity analysis we performed shows
that the word positions at and immediately following DF events
can be predicted with sometimes significantly lower perplexity, al-
though the effect on overall perplexity is very small, due to the low
frequency of DF events.

An interesting (and prima facie unexpected) result was that the
CleanupModel does not lower perplexity for filled pauses in acous-
tically segmentedutterances. We attribute this to the particular way
that the cleanup assumption is violated by filled pauses at linguis-
tic segment boundaries internal to an acoustic segment. There are
correlations between segmentation and other types of DFs, too, but
the effects on the LM should be smaller in those cases as the bi-
gram contexts for following words are not as radically changed by
different segmentations. Our findings highlight the need for a more
careful modeling (possibly with automatic recovery) of linguistic
structures in conversational speech, a topic we plan to address in
future work.

However, even for repetitions and deletions, it does not follow
that recognition accuracy would necessarily improve with better
local perplexities. In fact, we tested a trigram DF model (modeling
only REP and DEL events) against a standard trigram on a Switch-
board test set of 1192 segments, and found virtually no difference
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Table 2. Local perplexities at filled pause positions.

Position UH UH+1 UH+2 UM UM+1 UM+2 non-FP overall
Baseline 39.0 223.5 89.8 174.9 36.7 71.9 103.4 101.9
FP model 39.9 291.5 91.4 175.8 73.4 69.2 103.4 103.3
#events 502 502 373 188 188 94 19426

Table 3. Local perplexities at repetition DF positions.

Position REP1 REP1+1 REP1+2 REP2 REP2+1 REP2+2 non-REP overall
Baseline 47.7 183.4 86.4 111.0 12.6 216.0 102.9 101.9
REP model 38.2 191.5 84.7 94.2 2.1 222.3 103.1 101.3
#events 386 386 320 44 44 44 19426

Table 4. Local perplexities at deletion DF positions.

Position SDEL SDEL+1 DEL1 DEL1+1 non-DEL overall
Baseline 415.5 49.5 523.3 35.0 75.5 76.2
DEL model 402.0 47.9 544.2 36.0 75.4 76.1

word event only 99.1 289.5
#events 130 130 15 20454

in overall word error rate (49.5% in both cases). This can be at-
tributed to a number of factors. First, the REP/DEL model affects
only a small portion of the total corpus (less than two cases per
100 words). Second, its advantage in modeling REP/DEL contexts
should rarely come into effect due to the high error rate on adjacent
words.

There are other reasons why lower perplexity may not lead to
reduced word error rate. For instance, it could be that DFs tend to
involve words of high frequency for which good acoustic models
exist, so that a slightly improved LM would not affect recognition
accuracy.

The overall conclusion is that by DF modeling at the LM level,
contrary to high hopes in parts of the LM community, one should
not expect a significant improvement in terms of word recognition
performance. The main reason is that DFs are inherently local phe-
nomena that are modeled surprisingly well by standard N-grams,
even without context “cleanup.”

On the positive side, our results confirm that DFs have a sys-
tematic, nonrandom distribution that can be partly captured even
with simple N-gram-like models; it is therefore conceivable that
more sophisticated approaches could reap benefit for recognition
accuracy.

One potential source of improved DF modeling are correlations
with speaker identity. For example, [9] found that speakers can be
grouped into those preferring deletionsover repetitions (‘deleters’),
and those with the opposite tendency (‘repeaters’). Such cross-
utterance effects could be modeled in the LM using standard tech-
niques, e.g., using adaptive interpolation of specialized models.

Finally, we note that the languagemodeling techniques described
could also be used for automatic disfluency tagging and removal.
Given a sequence of words and a probabilistic DF model of the
type used here, one can use a Viterbi-style backtrace to recover the
most likely sequenceof DF events underlying the words sequence.
This is another application we plan to study in the future.
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