
In: Proc. 13th Ann. Conf. Cognitive Science Soc., Chicago, Ill., August 1991, pp. 908-912Syntactic Category Formation with Vector Space GrammarsAndreas StolckeComputer Science DivisionUniversity of CaliforniaBerkeley, CA 94720 International Computer Science Institute1947 Center St., Berkeley, CA 94704stolcke@icsi.berkeley.eduAbstractAmethod for deriving phrase structure categories fromstructured samples of a context-free language is pre-sented. The learning algorithm is based on adaptationand competition, as well as error backpropagation ina continuous vector space. These connectionist-styletechniques become applicable to grammars as the tra-ditional grammar formalism is generalized to use vec-tors instead of symbols as category labels.More generally, it is argued that the conversion ofsymbolic formalisms to continuous representations is apromising way of combining the connectionist learningtechniques with the structures and theoretical insightsembodied in classical models.IntroductionConnectionism, and especially Parallel Distributed Pro-cessing (PDP) has developed an array of models oflearning systems (backpropagation, Boltzmann ma-chines, competitive learning (Rumelhart, McClelland,& The PDP Research Group 1986)). These modelstypically operate on representations at a rather low andunstructured level (unit activations, bit vectors, micro-features) relative to the structures used in traditionallinguistic descriptions (trees and graphs, case frames,grammar rules, stacks). This is a necessary feature, thealgorithms used are powerful and general precisely be-cause they operate on simple and homogeneous repre-sentations. Simplicity and uniformity of the represen-tations also allows for mathematical analysis, leadingto theoretically well-founded methods such as gradientdecent or simulated annealing.A second prerequisite for these connectionist learningalgorithms is that representations be continuous. Con-tinuity of the representation space (ofter paired with re-quirement that some performance measure be di�eren-tiable with respect to the representations), ensures thatadaptive learning can take place, i.e., gradual adjust-ment towards a speci�ed goal. Again, continuity anddi�erentiability are typically not found in traditionallinguistic constructs, which tend to be inherently dis-crete (an exception are Fuzzy Languages (Zadeh 1972)).It seems desirable, then, to investigate ways to com-bine connectionist (usually vector-based) representa-

tions with structures and concepts developed in tradi-tional theories, especially in cases where those theorieshave a strong empirical or intuitive appeal. The goalwould be to use one or several of the learning tech-niques mentioned above to learn or develop representa-tions that are meaningful in the framework of the theoryat hand.The remainder of the paper gives an example of thisgeneral approach, applied to the theory of context-freegrammars and the problem of learning category labelsfor the phrase types in a language. First we intro-duce the the hybrid symbolic/connectionist formalismon which the algorithm is based, and then discuss learn-ing by way of a detailed example.Vector Space GrammarsThe formalism presented here has been dubbed VectorSpace Grammar (VSG) because it represents a gener-atization of traditional context-free grammars (CFGs)in which the nonterminals are represented by points ina continuous vector space rather than by symbols. Likein CFG, nonterminal rules (in Chomsky Normal From,CNF) are of the form x! y z (1)and lexical (terminal) rules of the formx! a (2)But whereas in CFG categories (x, y, z) are symbolsin a space with a binary metric (equality/nonequality),VSG uses vectors as nonterminals. This gives a contin-uous metric on the category space, thus ful�lling one ofthe prerequisites for an adaptive learning mechanism.Terminals (words) in VSG are still unanalyzed atomicentities, and strings of terminals form the domain overwhich a language is de�ned.A standard non-terminal rule maps two speci�c sym-bolic categories into a third symbolic category (the left-hand side of the rule). Similarly, a VSG rule maps twovectors onto a third. From a bottom-up parsing pointof view, a traditional CFG rule is applicable if and onlyif its two right-hand side categories match exactly twoother categories (roots of partial parses). In VSG, ruleapplicability becomes a graded notion, and every rule



b cay zxt e r m i n a l s y m b o l sFigure 1: Vectors involved in VSG rule application. Thenew root vector a is a function of the subtree root vectorsb and c and the vectors in the rule x ! y z, e.g., a =(b � y)(c � z)x.will be applicable to every two categories to some ex-tent. However, the formalism is designed such thatwell-matching rules give a `high' output, and poorlymatching rules result in a vector close to the zero vec-tor. This is accomplished by the following `activationfunction' for VSG rules. Let x ! y z be the rule ap-plied to two categories b and c (we use bold letters todenote vector quantities). Then the category resultingfrom the rule application is de�ned asa = (b � y)(c � z)x (3)where � denotes the inner product of the vector space.The two inner products on the right express the matchbetween the categories speci�ed by the rule and the cat-egories assigned to the substrings. Match values rangebetween �1 and +1 if the category vectors are normal-ized. Since the right-hand side terms in a context-freerule work conjunctively (all have to match), the matchvalues are multiplied. Choosing the inner product asthe measure of matching partly determines the struc-ture of the category space: categories will behave di�er-ently to the extent that they are orthogonal. The ele-ments involved in rule application are depicted schemat-ically in Fig. 1.Traditional CFGs can be mapped into the vectorrepresentation such that equation 3 works precisely astraditional grammar rules do (using an all-or-nothingmatch between categories). This isomorphism mapseach nonterminal in the CFG to a dimension in the VSGcategory space, and demonstrates that VSGs are indeeda formal generalization of symbolic phrase-structuregrammars.Acceptance of strings by a grammar can be de�nedanalogously to traditional grammars, although accep-tance becomes a non-discrete function (as in fuzzy lan-guages). Since these de�nitions are not directly relevantto the learning procedure we will omit them here andturn immediately to the learning algorithm (see (Stol-cke 1991) for details).

Learning with Vector Space GrammarsThe problem of learning to parse strings of a languagecan be broken down into two subproblems: �nding thestructure of the parse tree (i.e., the phrase bracket-ing), and assigning category labels to the nodes in thetree (the phrases). Current work with VSGs addressesmainly the second of these problems, for several rea-sons.There are indications that the two problems might infact be handled separately by natural language speak-ers, and that there are cues independent from categoryassignment that allow speakers to derive the phrasebracketing information. It has been shown that thereare very e�ective statistical methods to �nd phraseboundaries (without phrase type classi�cation) in text(Magerman & Marcus 1990). Secondly, psycholinguis-tic data indicates that humans can learn language struc-tures successfully only when they can draw from a richset of universal intra- and extra-sentential cues to in-duce phrase structure independently (Morgan, Meier,& Newport 1987; Morgan, Meier, & Newport 1989).Morgan (1986) has also argue for the prior availabilityof phrase structure information on learnability grounds.Another source of independent phrase structure in-formation comes from strong correlations between syn-tactic and semantic structure, i.e., the fact that syn-tax usually exhibits a structure parallel to one of theconceptual dependencies it expresses. This fundamen-tal `iconic relationship' between syntax and concepts isunderstood by some linguists as the very essence of lan-guage (Langacker 1985). A learner could capitalize onthis principle if one assumes that certain general cogni-tive capacities are available prior to syntax learning.For the purpose of this paper, then, we will assumethat a learning system has access to phrase-bracketinginformation from independent sources. We will discusshow the category system and the rules for a languagecan be learned within the formal framework provided byVSG, given positive (and possibly negative) instances ofthe language along with their phrase structure bound-aries. The kinds of structures available to the learn-ing algorithm are familiar from Levy and Joshi's (1978)skeletal structural descriptions, and have been shownto be su�cient for syntax learning (Fass 1983). Theselearnability results, however, use automata inductiontechniques with very complex data structures (equiv-alence classes of trees structures), and are thereforenot directly comparable to the methods employed here.VSG learning uses only very simple vector data struc-tures and works on-line, i.e., no history of past sam-ples has to be stored. All the primitive computationsperformed could be implemented using standard con-nectionist hardware, except for the global control andstructure allocation mechanism.Two global parameters of the system are the dimen-sion of the category space and the number of rules tobe used. These parameters should be set `large enough'for a given language, and have an e�ect similar to thenumber of hidden units in a backpropagation network.



With too little resources, the system will not convergeon a solution, and with too many degrees of freedomthe solution might be redundant and not express cer-tain generalizations about the input.At the outset of learning, then, a �xed number of non-terminal rule `templates' of the form (1) (with a givenvector space dimension) are allocated. Additionally, foreach terminal symbol, a rule of the form (2) is created.All category vectors, in all rules, are set to random unit-length vectors.Given a sample string from the language and a parsetree skeleton, we construct a labeled parse tree fromthe current set of rules. To assign a category vector toa node, the rule whose right-hand side represents thebest match for the child node categories is selected andequation (3) is used to compute the output categoryfor that node. `Best match' is de�ned according to thesame inner product metric as used in equation (3), i.e.,using the value (b � y)(c � z). Only the rules selectedat some node will later participate in the learning pro-cess. Since only the currently best rules get selected thewhole process strongly resembles the method of compet-itive learning (Rumelhart & Zipser 1985).By working from the terminal nodes to the root wearrive at a category label for the entire string. If thetraining sample is a positive instance of the languagewe know what the target category for the parse shouldbe: the sentence category `S' that every grammar hasto provide. Without loss of generality we can �x Sthroughout training to be a particular vector, e.g., theunit vector (1; 0; : : : ; 0).The second idea adapted from connectionist learningmethods is that of error backpropagation (Rumelhart,Hinton, & Williams 1986). At the root node we canimmediately compute an error term for the discrepancybetween the desired output and the actual output. Forpositive examples this is just the di�erence between Sand the root category, for negative examples we com-pute an error term which tends to make the output cat-egory and S orthogonal. A recursive procedure (basedon the chain rule) can then compute the derivative ofthat error with respect to every category vector occur-ring in some rule (left of right-hand side) applied some-where in the tree. The computation of error derivativesis straightforward because of the simple linear opera-tions used in equation 3 but omitted here for lack ofspace (see (Stolcke 1991)).Derivatives for each category vector are then addedup and multiplied by some constant (the `learning rate')to give the adjustment to be applied to that category.All rules are updated accordingly, all categories arerescaled to unit-length, and the next training exampleis processed. The algorithm cycles through the train-ing set until the error becomes negligible or no furtherimprovement is observed over a long period of time.It is important to realize that the backpropation stepcan not assign errors that are due to choosing the`wrong' rule at some point, because rule selection isa discrete step that allows no di�erentiation. Unfor-

+ ((a circle) (touches (a square)))+ ((a square) (touches (a circle)))+ ((a circle) (is (below (a square))))+ ((a square) (is (below (a circle))))+ ((a circle) (is (above (a square))))+ ((a square) (is (above (a circle))))- (a square)- (a circle)- (above (a circle))- (below (a square))- (touches (a circle))- (touches (a square))- (is (above (a square)))- (is (above (a square)))- (is (below (a circle)))- ((a circle) (below (a square)))- ((a square) (above (a circle)))- ((a circle) (is (touches (a square))))- ((is circle) (touches (a square)))- ((a circle) (a (a square)))- ((a square) (is (below (is circle))))- ((a square) (touches (below (a circle))))- ((a circle) (is (a square)))- ((a square) (a (above (a circle))))Figure 2: Training set used for the VSG learning experi-ment. The data is drawn from a fragment of English gen-erated by the grammar given in the text. Positive traininginstances are labeled with +, negatives ones with -.tunate rule selection has to be overcome by changingthe rules themselves, and competitive rule selection isa heuristic to minimize rule selection errors.A Sample GrammarWe have run simulations of the algorithm describedabove to verify that is can indeed converge onto work-ing VSG grammars for a variety of small arti�cial and`natural' languages. As indicated in the introduction,one of our main goals was to not only attest learningsuccess (as de�ned by the error function) but to try tounderstand how the category vectors formed collabo-rate to produce a meaningful system of rules.As an example consider a fragment of English consist-ing of transitive sentences (`A circle touches a square')and copula sentences (`A circle is below a square') in-volving the nouns circle, square, the verbs is, touches,the prepositions above, below and the determiner a (thisfragment is borrowed from the L0 project domain (Feld-man et al. 1990), a sample grammar for it is givenbelow).The algorithm was run over a set of 6 positive and18 negative samples, listed in Fig. 2. the number ofrules was set to 5 and the category dimension to 15. Ata constant learning rate of 0.5 the error was typicallynegligible after 50 passes over the training set.As a method for analyzing the resulting VSG we usedcluster analysis, which groups vectors according to adistance metric in a hierarchical fashion. Fig. 3 showsthe result of clustering all vectors occurring in rules aswell as the �xed S vector.The graph shows that the vectors fall into nine majorclusters of left-hand side and right-hand side rule vec-tors. We can reconstruct a symbolic rule system from
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Figure 3: Clusters of category vectors derived from sam-ple language. Left-hand side and right-hand side vectorsin non-terminal rules are labeled by one of `lhs', `rhs1' and`rhs2', and the rule number (R1{5). Left-hand side vectorsof terminal rules are labeled as `lex' and the terminal theygenerate. `cat-S' is the �xed S category vector. Branchesleading to clusters that can be identi�ed with non-terminalsfrom the context-free grammar given in the text are labeledwith the corresponding symbol.the diagram by identifying these clusters with (initiallyarbitrary) symbols and then �lling in the rule templatesused. Once this is done, we can interpret the rules onthe basis of their interaction with other rules and re-name the symbols according to our traditional namesfor syntactic categories if an unambiguous interpreta-tion is possible.Analysis of cluster diagram for this example showsnot only that a rule system has been formed thataccounts precisely for the input sample, but alsothat these rules and categories can be put intoa one-to-one correspondence with a natural stan-dard CFG for the language at hand, such as:S ! NP VPNP ! Det NVP ! VT NPVP ! VC PPPP ! P NP N ! squarejcircleVT ! touchesVC ! isP ! abovejbelowDet ! a(Fig. 3 explains how CFG symbols map to vector clus-ters.)

DiscussionThe details of the resulting rule and category struc-ture are highly dependent on the training environment.For the example in the previous section, extreme con-ditions were intentionally chosen to generate the per-fect correspondence between the structure learned andthe traditional CFG. Speci�cally, constraining the num-ber of rules to �ve forced a parsimonious use of cate-gories. With more rules to work with either redun-dancies would have developed (several rules serving thesame function) or some rules stay useless (never win-ning a competition and not converging onto meaningfulcategories). Also, the relatively large number of nega-tive examples ensured that the categories formed weresu�ciently discriminatory. With less or no negative ex-amples a grammar develops that accounts for all thepositive examples but fails to exclude all the negativeones, due to overly general rules.The need for negative examples is the most bother-some problem if one is looking for a plausible mecha-nism for natural language acquisition (and widely ac-knowledged as a major challenge for many theories ofacquisition, see, e.g., (Pinker 1989)). Although our cur-rent system is certainly too impoverished to claim to bea model of natural language acquisition (it handles onlysyntax, for one thing), it would be nice to obviate theneed for negative examples.Experiments show that just dropping the negative ex-amples from the training set produces grammars withtoo few rules. They account for the training data byclustering a large number vectors together, resulting incategories that are too general and have too little dis-criminatory power to rule out false negative examples.This situation arises partly due to a well-known prob-lem with competitive learning schemes. A small num-ber of rules win most of the competitions early, therebypulling all category vectors into a few large pools. Manyrules never get applied and never learn to be useful asa result. To counteract this tendency we have recentlymodi�ed the learning algorithm to incorporate an ideafrom learning in genetic systems (Holland 1975). In themodi�ed learning schedule, rules that never are used areperiodically eliminated from the rule set and replacedby copies (`clones') of rules that are heavily used. Theseare the ones that tend to be overly general, and du-plicating them allows the two copies to specialize intodi�erent roles in the grammar. A modi�ed algorithmbased on this heuristic does much better in positive-only training, and is able to derive a category structuresimilar to that in Fig. 3 with only one overly generalcluster (merged VP and PP vectors, an error that isin fact motivated by the similar syntactic functions ofthese two categories).Before concluding, we would like to contrast the gen-eral line followed here with some of the pure PDP ap-proaches to language. Many of these take the view thatlearning networks have to `discover' whatever struc-ture is implicit in language, and are reluctant to pro-vide the network with clues to this e�ect. In this ap-



proach, interpreting the results and representation ob-tained through successful learning (as well as their the-oretical implications) becomes a major problem. Fre-quently researchers resort to post hoc analyses hopingto �nd familiar structures in their data using techniquessimilar to the ones used here (Elman 1988; Pollack1990).Part of the motivation underlying VSGs is that fa-miliar structures (e.g., context-free rules) can be builtinto connectionist representations as a bias, allowing amore straightforward interpretation of the results. Inthe example, traditional categories emerged as a dis-crete approximation to the cluster structures developedin learning, thereby guiding their interpretation. (Thecase for symbolic representations as approximationsto sub-symbolic entities has been made by Smolensky(1987).) ConclusionsWe have argued for generalizations of traditional sym-bolic representations and models to bene�t from someof the learning power found in connectionist systemswithout completely discarding the structural propertiesand intuitions embodied in traditional theories. As anexample, we have introduced a generalization of phrasestructure grammars, Vector Space Grammars, that isbased on vectors instead of symbols to represent gram-matical categories. An algorithm using VSGs based onthe principles of adaptation of categories and compe-tition between rules can be used to derive a syntac-tic category system from exposure to phrase-bracketedsample sentences. The results of learning can be in-terpreted in traditional notions by interpreting vectorclusters as category symbols.AcknowledgementsI thank Jerry Feldman, Terry Regier, and Subutai Ahmadfor valuable discussions of the ideas presented here. Thiswork is supported by an IBM Graduate Fellowship.ReferencesElman, J. L. 1988. Finding Structure in Time. CRL Tech-nical Report 8801, Center for Research in Language,University of California at San Diego, La Jolla, Calif.Fass, L. F. 1983. Learning Context-Free Languages fromtheir Structured Sentences. ACM SIGACT News 15(3).Feldman, J. A., Lako�, G., Stolcke, A., and Weber, S. H.1990. Miniature Language Acquisition: A touchstonefor cognitive science. In Proceedings of the 12th AnnualConference of the Cognitive Science Society, 686{693,MIT, Cambridge, Mass.Holland, J. 1975. Adaption in natural and arti�cial systems.Ann Arbor, Mich.: University of Michigan Press.Langacker, R. 1985. Foundations of Cognitive Grammar.Vol. 1: Theoretical Prerequisites. Stanford: StanfordUniversity Press.Magerman, D. M., and Marcus, M. P. 1990. Parsing a Nat-ural Language Using Mutual Information Statistics. In
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