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As the field of speech understanding matures, and partic-
ularly as the quality of front-end and phonetic components
improves, researchers have begun to explore ways to add
new kinds of language knowledge to the recognition pro-
cess. Such work includes augmenting recognizers with mod-
els of contextual dependencies (Cohen 1989; Phillips et al.
1991), more advanced models of syntax, (Seneff et al. 1992;
Kai & Nakagawa 1992), and gender information (Murveit
et al. 1991). This new direction is being developed at ICSI
in the context of the Berkeley Restaurant Project (BeRP), a
medium-vocabulary (1300 word), speaker-independent, sponta-
neous continuous-speech understanding system. The primary
function of BeRP is to serve as a testbed for a number of our
speech-related research projects, including robust feature ex-
traction, connectionist speech recognition, automatic induction
of multiple-pronunciation lexicons, foreign accent detection and
modeling, and the use of advanced language models.

The BeRP system functions as a knowledge consultant whose
domain is restaurants in the city of Berkeley, California. As a
knowledge consultant, it draws inspiration from earlier consul-
tants like VOYAGER (Zue et al. 1991). Users ask spoken language
questions of BeRP, which, in a mixed initiative fashion, directs
questions to the user and then queries a database of restaurants
and gives advice to the user, based on such use criteria as cost,
type of food, and location.

This paper describes three preliminary experiments in adding
new language knowledge to the recognizer BeRP:

e an automatically-induced multiple-pronunciation lexicon,
which improves word error in the recognizer from 40.6%
to 32.1%.

e a stochastic context-free grammar (SCFG)! with a proba-
bilistic Earley-based parser which provides word transition
probabilities at each frame (‘tight coupling’), improving
word error rate from 33.7% (bigram) to 29.6% (SCFG).

*Currently at Dept. of Defense

LAn SCFG is a context-free grammar in which each rule is augmented with
the conditional probability of the nonterminal on the LHS expanding to the
right-hand side.

e algorithms for detecting and modeling foreign accent,
which in prototype form give 67.9% accuracy in distin-
guishing German from American speakers of English.

Figure 1 gives an overview of the architecture.
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Figure 1: The BeRP Architecture

Figure 2 gives some statistics which give the reader a feeling
for the BeRP system as implemented. The numbers do not yet
reflect the incorporation of our tight-coupling or accent results.?
Figure 3 illustrates a sample interaction between user and the
current implementation of BeRP.

Corpus 2621 sentences spontaneous speech
Vocabulary 1064 words
Data Base 1 database table, 150 restaurants
Bigram Perplexity 10.7 with 77% coverage
Grammar 1177 handwritten SCFG rules
Implementation | 18,000 lines of C++
Performance Recognition 32.1% error
Parsing 63% training 51% test
Understanding | 34% error

Figure 2: BeRP Status in April 1994

2We don’t yet have performance numbers on our most recent system, which
has a larger corpus of 5350 sentences, a vocabulary of 1329 words, and a
grammar of 1289 sentences with a 70% coverage of the training set and 54%
on the test set. See Jurafsky et al. (1994) for these results. Note that the MLP
phonetic likelihood estimator is bootstrapped with additional sentences from the
TIMIT database as well.



Computer: ‘‘Welcome to BeRP. How may I help
you?'’

User: “I’m looking for a Thai restaurant”
Computer: ‘‘When would you like to go out?’’
User: “I’d like to go for lunch on Saturday”

Computer: ‘‘How far from ICSI are you willing to
travel?’’

User: “anywhere within walking distance”

Computer: '‘How much money do you want to
spend?’’

User: “doesn’t matter”

Computer: ‘‘Here are some restaurants that meet
your requirements:’’

Name | Address

THAI BAR-B-Q | 1958  SHATTUCK AV | $$ | 5
PLEARN THAI CUISINE | 2050 UNIVERSITY AV | $$ | 5
BERKELEY THAI HOUSE | 2511 CHANNING WAY | $% | 20

SIAM CUISINE | 1181 UNIVERSITY AV | $$3 | 18

You may ask for additional information on any of

the above restaurants.

Ready for a new query.

Figure 3: A sample BeRP interaction

1 The Basic Architecture of BeRP

The BeRP recognizer consists of five components: the front
end, currently RASTA-PLP, the HMM pronunciation lexicon,
the phonetic likelihood estimator, a MLP which computes a
phonetic likelihood for each input frame, the Y, Viterbi de-
coder, and the natural language backend, including a database
of restaurants.

BeRP uses RASTA-PLP (Hermansky et al. 1992) as its front
end. RASTA-PLP isaspeech analysis technique that is robust to
steady-state spectral factors in speech such as those imposed by
different communication channels (i.e., different microphones).
We believe this is an important feature for the front end, es-
pecially when using databases that have been collected under
different recording conditions than those at ICSI.

The BeRP system uses a discriminatively-trained Multi-Layer
Perceptron (MLP) to estimate emission probabilities that are
used in an iterative Viterbi procedure (similar in spirit to the
segmental k-means algorithm); an MLP trained on phonetically
hand-labeled speech (TIMIT) is used to produce the initial state
alignments for the BeRP training data. Bourlard & Morgan
(1991) and Renals et al. (1991) show that with a few assump-

tions, an MLP may be viewed as estimating the probability
P(q|x) where ¢ is a subword model (or a state of a subword
model) and « is the input acoustic speech data. We can then
compute the likelihood P(x|q) needed by the Viterbi algorithm
by dividing by the prior P(q¢), according to Bayes rule; we can
ignore P () since it is constant in time-synchronous Viterbi:

Pq | 2)P(2)
Ply) @

In this hybrid HMM/MLP recognizer, it was shown that these
estimates led to improved performance over standard estimation
techniques when a fairly simple HMM was used. Current re-
sults on the speaker independent DARPA Resource Management
database for MLP monophone estimators continue to support
this contention (Cohen et al. 1992), and have yielded reasonable
performance (4-6% word error with the standard perplexity 60
wordpair grammar).

The architecture of the MLP phonetic recognizer (like our
monophone Resource Management recognizer (Cohen et al.
1992)) consists of a simple three-layer feed forward MLP trained
with the back-propagation algorithm (see Figure 4). The input
layer consists of 9 frames of input speech data. Each frame,
representing 10 msec of speech, is encoded by 9 RASTA PLP
coefficients, 9 delta-RASTA PLP coefficients, and an energy
term and a delta-energy term. Typically, we use 500-1000 hid-
den units. The output layer has 61 units, one for each of the
context-independent phonetic classes used in our lexicon. The
MLP is bootstrapped on the TIMIT database, along with the over
5000 sentences of spontaneous speech that we have collected in
the BeRP Corpus.

Pz |q) =

Output Layer
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Connected Units
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9 Frames of acoustics
features, each a vector
of 20 reals, total of 180
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Current Frame
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Figure 4: Phonetic Likelihood Estimator

The Yy recognizer uses a bigram language model (LM). For
each pair of words (w;,w;) in the vocabulary, the language
model stores P(w;|w;). With a vocabulary of over 1300 words,
there are over 1.7 million possible bigram pairs; since this num-
ber is two orders of magnitude greater than the number of tokens



in our corpus, the corpus by itself is quite insufficient to esti-
mate the probabilities, and so we use various smoothing meth-
ods, including the use of the SCFG LM (see below) as a bigram
smoother.

The BeRP natural language backend accepts as input the word
strings passed to it by the Y, recognizer, and produces both
database queries and appropriate responses to the user as output.

Dialogue
Manager
Template
input cost .
Istance .
type ... | | query
i B «DataBase
/ interpret each
sentence
| Parser Context
Grammar | Module

Figure 5: The BeRP | Back-End

Figure 5 shows the internal architecture of the natural lan-
guage processing component of BeRP, ignoring tight coupling.
The architecture is controlled by a template-filling dialog man-
ager, which asks questions of the user in order to determine cer-
tain restaurant features, which are used to fill a query-template,
and thus to query the database. The current template includes
such information as restaurant cost, distance, food type, and
business hours. For each template slot the system prompts the
user with a question. Let us examine the processing of one input
sentence from the BeRP corpus, in which the system asks the
following question:

[Computer:] "HOW CAN I HELP YOU?"
[User:] "I’'d like to have Indian food today"

Note that the user’s response should give the system two
kinds of information — food-type and date. First, the recognizer
computes and passes to the parser the most likely word string,
in this case:

i’d like to have indian food today

Next the bottom-up stochastic parser computes all possible
parses and semantic interpretations of the input, along with their
grammatical probabilities. It uses a stochastic context-free at-
tribute grammar in which simple semantic rules are encoded
in the attributes, written in a generalization of the PostQuel
database query language used by the BeRP database backend.
The 1289-rule grammar was written by hand, but rule probabil-
ities are learned from the BeRP corpus with the EM algorithm.

3 The *semantic’ grammar encodes more information in the
context-free portion than is common in purely ‘syntactic’ gram-
mars by allowing very specific non-terminal symbols, which
lowers the perplexity of the grammar and allows us to avoid
slow unification algorithms. 4

The parse tree for the input above is shown in Figure 6.

SS { (REST.rest_type = "indian") and (REST.TOD ~ "BLD") }

IWANTTO VP {1}
EATV gaToBy . and.}

FOODTYPE™ | TIME

Foop-
NATIONALITY 1 CLASS

i'd| like | to |have | ‘indian |food itoday |/

{ REST.rest_type :"“indian" } { REST.TOD ~ "BLD" }

Figure 6: The parse-tree produced by the interpreter

Each node of the parse tree is automatically annotated with a
a partial semantics. The semantics for the entire sentence is the
attribute for the top-level symbol ss, and thus can be read right
off of the parse tree for the complete sentence, and passed to
the context module, which fills out all context-dependent and
scope-dependent operators, such as temporal deictics (“nhow”,
“today”) and negation (“not far”). The final string below spec-
ifies that the user is interested in an Indian restaurant which
is open Monday (“REST.mon”) for any meal (breakfast ("B"),
lunch ("L") or dinner ("D")).

(REST.rest_type = "INDIAN") and (REST.mon " [BLD] ")

This semantics will now fill both the food-type and time slots,
and will become part of the eventual database query, which will
be completed when the template is full.

An important consideration in the parser is robustness to
grammatical and lexical gaps as well as recognizer errors. The
BeRP parser bases its robustness on two features: the use of a
bottom-up (CYK) algorithm for parsing, and the use of a greedy
semantic heuristic for combining parse fragments (see Jurafsky
et al. (1994) for details).

2 Inducing Multiple-Pronunciation Lexicons

Having described the basic architecture of the BeRP system, we
turn to the first of our three uses of more sophisticated linguistic
information, the automatically-induced multiple-pronunciation
lexicon. A number of HMM-based systems allow words to
have multiple pronunciations, in which a single complex HMM
has multiple possible phone paths, indicating different possible
pronunciations. These multiple-pronunciation models can be

3Using an algorithmsuggested by (Fujisaki et al. 1991) which is a simpler but
less efficient algorithm than the standard Inside-Outside method (Baker 1979).
4However we do expect to move to a feature-based grammar.



generated by phonological rules. For example, Cohen (1989)
describes a semi-automatic way of generating the models in
which allophonic rules are manually developed, and then auto-
matically applied to a set of baseform or “dictionary” pronunci-
ations, to automatically generate multiple pronunciation HMMs
for any word in the dictionary. Others (Withgott & Chen 1993;
Riley 1991) have proposed using decision trees, trained on pho-
netically transcribed data, to map the phonemes from a baseform
pronunciation into contextually appropriate allophones.

The method used in the BeRP system to automatically gener-
ate a multiple-pronunciation lexicon differs from both of these
techniques. Our approach is to induce a word model directly
from a set of pronunciations for the word. Our completely au-
tomatic bottom-up approach is in contrast to the semi-automatic
top-down technique introduced by Cohen, but is quite similar in
spirit to the decision tree techniques.

The basis of the bottom-up technique used in the BeRP sys-
tem is an algorithm proposed by Stolcke & Omohundro (1994)
for automatically inducing an HMM topology from examples.
The essential idea is to begin with a very specific HMM which
produces exactly the set of input strings, constructed by string-
ing together each possible pronunciation between a start and end
state. Thus the start state has as many outgoing transitions as
there are pronunciations, and each pronunciation is represented
by a unique path within the HMM.

Next, this initial model is simplified and generalized by re-
peatedly merging states. Merging two states ¢; and ¢, means
replacing them by a new state » whose transitions and emis-
sion probabilities are weighted mixtures of those for ¢; and
q2, producing a simpler (i.e., smaller) but more general model.
In generalizing a model, we are trading off model likelihood
against a bias toward simpler models. Since we are looking for
the model with the maximum a posteriori probability P(M |z),
which is proportional to the product of the model prior P(M)
and the likelihood of the data P(x|M), we can use the prior
probability distribution over HMMs to prefer simpler models.
We can then repeatedly merge states until we reach a model with
(locally) maximum posterior probability.

Because the multiple-pronunciation models generated by this
model-merging approach are still quite complex, we apply the
further step of pruning out unlikely states or paths from the
model to produce a model with a more manageable number of
states.

The benefit of this technique is that it is completely auto-
matic. However, it cannot currently be used to generate HMMs
of words that are not contained in the training data, as can be
done with Cohen’s rule-based approach, and with the decision
tree methods. Future developments include using a decision
tree and/or an MLP to map from baseform pronunciations to
multiple-pronunciation word models for words in the BeRP lex-
icon that do not occur in the TIMIT database.

Figure 7 shows the initial multiple-pronunciation model for
the word waiting, computing from the samples in the TIMIT
and other corpora and dictionaries. Figure 8 shows how the
multiple-pronunciation HMM for “waiting” is merged, and then
pruned. The top HMM has merged together all the examples of
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Figure 7: Unmerged, unpruned multiple-pronunciation HMM
for the word “waiting”

the word, but has not pruned any unlikely paths. The bottom
HMM has pruned out the unlikely paths.

Table 1 shows the significant improvement which our multi-
ple pronunciation models provide over the single pronunciation
models. (Note that our most recent results reported in §5 are
somewhat improved from these.)

| System | Word Error | Ins [ Dels | Subs |

Single Pron 40.6 521103 | 251
Multi-Pron 32.1 73| 59 | 189

Table 1: Performance of Pronunciation Models.

3 Accent/Dialect Detection and Modeling

Our second experiment with BeRP was the addition of knowl-
edge of foreign accents. The users of the BeRP system, like the
citizens of the United States, speak English with a broad variety
of accents. These include regional United States dialects of the
type included in the TIMIT database, but, more significantly, in-
clude large numbers of speakers with German-, British-, Italian-,
Spanish- and Chinese-accented English, as well as many others.



Figure 8: Merging and pruning for “waiting” multiple-
pronunciation HMM

Robustness to foreign accents is a seriously underexplored
area of speech recognition. For example, we have shown that
a system trained only on American English speech has signifi-
cantly more errors on speakers with non-native accents. Specif-
ically, when we tested our (American-trained) BeRP system
tuned for good performance with American speakers with an
accent-balanced test set (277 American-accent sentences and
277 German-accent sentences) we incur a substantial 25% more
errors (compare American to total test set numbers for the Amer-
ican optimized system) as shown in Table 2. No matter how the
system is optimized, there is a penalty to pay.

Test Set
Optimization | American | German | Total
American 32.7 49.7 40.8
German 38.2 40.0 39.1
Total 35.2 41.9 38.4

Table 2: Percent word error for various tunings of a system
trained only on American speech.

Useful speech recognition systems must have the ability to
deal with these and other sources of speaker variability. Most
current recognition systems deal with this problem implicitly
by taking pains to use training data with a broad coverage of
speaker groups. For instance, most of the large speech corpora
provided by NIST were specifically designed to include speech
from major dialect regions of the United States. While the large-
database approach to modeling speaker variability has proved
quite useful and has been widely accepted, by itself, it provides
very little guidance for making significant progress in dealing

with speaker-group variability. Cohen (1989) proposed an alter-
native approach in his study of pronunciation modeling: using
extrinsic information about a speaker, such as dialect region and
gender, to help predict the speaker’s pronunciation.

Our approach to accent/dialect detection and modeling is sim-
ilar in spirit to the approach Cohen and his colleagues have in-
troduced. The specific goal is to build into our recognizer the
ability to both automatically detect and model foreign accents of
English, while retaining high performance with native American
English speech.

Our work in foreign accent detection so far has focused on us-
ing two sources of information about accent, acoustic-phonetic
information, and syntactic information. A baseline acoustic-
phonetic system that uses a very simple MLP training procedure
to distinguish between two accents of English (German and
American), has provided evidence that, minimally, there is eas-
ily extracted information at the acoustic-phonetic level exposing
the accent of a given speaker.

Our initial approach for using acoustic-phonetic information
involves training a simple MLP with one output unit for each
accent (the same architecture as in Figure 4 but with only two
output units). The accent of the speaker who produced the input
frame is used as the desired output. This essentially treats each
frame, no matter what sentence or speaker it came from, as an
independent instance of the accent that produced it. The goal
of this type of training is to enable the MLP to locate those
acoustic-phonetic events that are highly indicative of one accent
or the other.

The frame by frame MLP outputs for each accent are accu-
mulated over an entire sentence using the formula

N
log P(accent|S) ~ Z logOA +C (2)
t=0

where P(accent|S) is the probability of an accent given the
sentence S, O7 is the activation of the American output unit at
time ¢, C is a constant independent of accent for the balanced
test set, and the sum is over the NV frames of a sentence. By
multiplying the MLP’s frame level probabilities of each accent,
we obtain its estimate of the most probable accent given the
sentence. To date, our best speaker independent accent identifi-
cation performance is 67.9% correct at the sentence level with
the accent-balanced test set. We are currently investigating ap-
proaches that target specific phones (context-independent and
context-dependent) that are reliably different between accents.

With respect to our primary concern, better recognition per-
formance, we have found that knowing the speaker’s accent can
indeed reduce the word error rate.

We used two MLP’s, one trained only on German data with a
German pronunciation lexicon, and one trained only on Ameri-
can data with an American pronunciation lexicon.® We tried var-
ious methods to choose between the output from either system,
including the speaker’s true accent, the accent-MLP’s estimate

5Both were initialized with a TIMIT-trained net, which had exclusively
American training.



| System Choice Method | Percent Word Error |

True Accent 30.8
Accent ID 33.8
American Only 33.4
German Only 37.3

Table 3: Percent word error on the accent-balanced test set for
several methods that choose between an American-tuned system
and a German-tuned system on a sentence by sentence basis.

of the speakers accent, and simply picking either system for all
sentences.

The best performance is obtained when given perfect knowl-
edge of the speaker’s accent. Picking between the two tuned
systems based on the speaker’s true accent significantly outper-
forms the other methods for combining these two systems. Our
current level of accent identification performance based only on
acoustic-phonetic information, however, is not yet good enough
to outperform the American-tuned system. Further, when we
pool both the German and American training data together, we
get very good performance on the balanced test set (30.6% word
error). This pooled-data error rate can not be directly compared
to the other results in Table 3 because the pooled-data MLP was
trained on twice as much data. But this result does demonstrate
that simply including the different accents in one training data
set is a reasonably effective way to deal with accent variability.
Our goal is to show, unequivocally, that information about the
speaker’s accent can be used to modify the system and result in
lower word error rates, and better semantic recognition. These
results, constituting our baseline acoustic-phonetic accent sys-
tem, show that for systems trained with equivalent amounts of
data, accent can be used to give better system performance.

Similarly, we developed a baseline syntactic system that can
be easily trained and does provide information about a speak-
er’s accent. Of course syntactic information cannot give direct
information about phonetics; our intention is to use syntactic
information about the slightly different dialects used by native
versus non-native speakers to help distinguish them. Once we
determine that a speaker is likely to be German based on the
syntactic characteristics of his or her dialect, we can use this
information to help select appropriate pronunciation models.

One intuitive way to detect this type of syntactic dialect dif-
ference would be to mark certain constructions in the grammar
as German, and others as particularly American. Then speakers
who use more German constructions can be flagged as German,
and conversely for Americans. Our formal model of this intu-
ition is to split our corpus of 5350 sentences into an American
and German set, and to train different stochastic LMs for the
German and American speakers. Then for each speaker we can
use these models to compute the posterior probability that the
speaker is German. Table 4 shows some sample SCFG proba-
bilities computed over our German and American corpora.

The differing probabilities show a number of interesting di-
alect facts. For example, Americans were twice as likely as
Germans to put the word “please” at the end of a sentence. But

| Rules | American | German |

ss = s 'please’ 0.046 0.020

ss = OPENING s 0.065 0.035
OPENING = "please’ 0.00057 0.10
OPENING = "well’ 0.0095 0.0045
WANTTO = "want’ ’to’ 0.62 0.44
WANTTO = "would’ ’like’ ’to” | 0.10 0.38
WANTTO = "wanna’ 0.010 0.082

Table 4: A grammar trained on German and American corpora

Germans were 200 times as likely as Americans to start a sen-
tence with “please”. This fact correlates well with the syntax
of German, in which the word “bitte” (corresponding to English
“please™), usually occurs sentence-initially. Note that Germans
were about 4 times as likely as Americans to use the verb group
“would like to”, and 8 times as likely to use the contraction
“wanna”. Americans were more likely to say “want to” or, not
shown here, to contract “I’d like to”.

Given these grammars and the probabilistic chart parser dis-
cussed above, it is possible to compute for each sentence the
likelihood that it is generated by each grammar, i.e., P(sentence
| German) or P(sentence | American). Now, using Bayes’ rule,
we compute the posterior probability that the sentence was spo-
ken by a German as follows:

P(s|German)P(German)
P(s)

P(German|s) = (©)

The priors P(German) and P(American) can be estimated from
relative frequency of sentences in the corpora. We have built
an initial version of this accent detector, training German and
American grammar priors and then computing a posterior dialect
probability for each sentence in our test corpus. The results for
our baseline experiments are shown in Table 5.° Using a con-
fidence measure and a threshold value for rejecting ambiguous
sentences we obtained results at O percent sentence rejection,
and 50 percent sentence rejection. We found no benefit to com-
bining the acoustic and syntactic probabilities at the 0 percent
rejection criterion, but there does seem to be a benefit at the 50
percent rejection point.

| Percent Sents Used | Acoustic | Syntactic | Combined |

100 62 60 62
50 70 68 73

Table 5: Percent correct accent identification at sentence level.

4 Tight Coupling

A number of researchers have proposed ways to use natural-
language-backend information in the speech recognition pro-
cess. Moore et al. (1989) used a unification-based CFG to
generate word transitions for a Viterbi recognizer. Goodine

6These results were obtained with an early version of the acoustic-phonetic
accent identification method.



etal. (1991) describe a system which uses the CFG-based TINA
parser to predict next words for the SUMMIT speech recognizer,
Kita & Ward (1991) used a CFG to filter to bigram follow-sets
for the Sphinx recognizer. In all these cases, the CFG was used
to generate or filter the word-transition list, but not to assign
probabilities. Goddeau (1992) extended these results by using
a probabilistic LR parser to actually produce word-transition
probabilities. In this section, we discuss our tight coupling
model, which augments a probabilistic version of the Earley
algorithm (Stolcke 1993) to compute word transition probabil-
ities from a stochastic context-free grammar (SCFG), signifi-
cantly improving recognition word error from 33.7% (bigram)
t0 29.6% (SCFG).

The fundamental reason to use a more advanced LM isto pro-
vide a better match to the input data, and thus lower the language
perplexity as seen by the recognizer, and improve recognition
performance. Currently, however, structurally simple grammars
like n-grams have outperformed more complex grammars be-
cause more complex grammars are often not probabilistic, not
trained on large corpora, do not integrate semantic information
on-line, and are not robust. In order to overcome these prob-
lems, the BeRP parsers are based on SCFGs trained on a corpus
of thousands of hand-transcribed sentences, directly incorpo-
rate semantic features into the context-free rules, and include
fragment combination and bigram back-off for robustness.

We have experimented with a number of ways to use the
information provided by the SCFG:

1. Usethe SCFG to smooth the bigram grammar, by taking our
original corpus, adding a pseudo-corpus generated from the
SCFG, and building the bigram with Monte-Carlo sampling
on this joint corpus.

2. Usethe SCFG to smooth the bigram grammar by generating
the characteristic bigram for the SCFG in closed form.

3. Use the SCFG directly to provide word transition probabil-
ities on each frame.

4. Use a mixture of the SCFG and bigram probabilities di-
rectly to provide word transition probabilities on each
frame.

In the first two methods, we use the SCFG to smooth the
bigram grammar, and then use this improved bigram grammar
in the recognizer. The first method extends an idea of Zue
et al. (1991), who used an advanced language model to gener-
ate random sentences from which to train a word-pair model.
We extended this idea to generation of bigrams by Monte-Carlo
sampling, by using the SCFG-based parser to generate a pseudo-
corpus of 200,000 sentences, adding in our regular BeRP corpus,
and then using our standard bigram-building tools on the com-
bined corpus.

In the second method, we have shown (Stolcke & Segal 1994)
that it is possible to generate a bigram from a stochastic context-
free grammar directly, by computing its characteristic n-gram
in closed form. The method computes the expected bigram
counts for strings generated by each of the nonterminals in the
grammar by solving a system of linear equations derived from

the grammar rule probabilities. We have implemented this algo-
rithm recently, and will use it instead of the Monte Carlo method
to generate our future bigrams.

In the third method, we use the SCFG directly as the LM
for the recognizer. We focus on this method for the rest of
this section. We begin by abstracting away from probabilities.
Consider the problem of using a CFG to produce a follow-set,
given a prefix string. For example, if the recognizer passes
the string | want British to the parser, it will produce the follow
words “food”, “restaurants”, “places”, “cuisine”, etc. The parser
parses the prefix string, and then looks at every non-terminal
symbol that the Earley parser is predicting next. For each such
non-terminal, we look up its left-corner list — the list of terminal
symbols which the non-terminal can generate on the left fringe
of some parse tree. This list can be computed in advance.

S

N
WANTING-SENTENCES

WANT-VERBS WANT-OBJECTS

NATIONALITY FOOD-RESTAURANT
i want british
food
restaurants
Left corner list for FOOD—RESTAURANT: places

cuisine

The recognizer needs more than just follow sets, however, it
needs actual conditional probabilities. In this case, it needs the
various probabilities P(‘food’ | ‘I want British”), P(‘restaurants’
| ‘1 want British’) etc.; i.e., for each word w; in the follow set,
we need to compute

P(wi|w1w2 . .wi_l) (4)

To compute these probabilities, we first augment the left corner
list to produce the probability that a given non-terminal expands
to aterminal. Fora given pair of symbols < X, w >, where X is
a non-terminal and w is a terminal, the left-corner probability is
the probability that X generates some string which begins with
w. Jelinek & Lafferty (1991) give an algorithm for computing
this left-corner probability for every pair of non-terminals and
terminals in the grammar with a single matrix-inversion.

If all sentences were unambiguous, this would be sufficient to
produce the correct transition probabilities. However, sentences
are ambiguous. Because of this, there will be multiple parses for
each prefix, and hence we will need to combine the left-corner
probabilities for non-terminals from different parses. We can do
this by weighting the follow-set for each parse, or derivation, by
the probability of the derivation.

P(wi|w1...wi_1) = Z

dederivations

P(d)P(wZ'|w1 Wi, d)

(%)
Thus the parser must be able to compute prefix probabilities
for derivations of input strings. For a given parse, the prefix



probability is just the product of the probabilities of all the rules
used in the parse. In order to compute this probability effi-
ciently, we augment our probabilistic chart parser by annotating
each edge of the chart with quantities: a prefix probability and
an inside probability. Each edge-creation action computes the
inside probability and prefix probability for the new edge from
the old edges and the grammar rule probabilities. Readers with
interest in the details of this probabilistic Earley computation
are referred to Stolcke (1993), which extends the simpler prefix
algorithm used in BeRP to deal with left-recursive grammars
and unit productions.

We have described how the parser is able to compute follow-
set probabilities for each string that is passed to it by the rec-
ognizer. We turn now to the tight-coupling interface. For each
frame, the Y decoder must compute word strings to pass to the
parser. A bigram-based recognizer would simply look up the
bigram transition probability for each word that can end at the
current frame. Since an SCFG-based recognizer will use the en-
tire prefix to compute the transition probabilities, the recognizer
must perform a backtrace to determine the prefix associated
with the word. The optimal algorithm would search through the
Viterbi array to find the N-best word strings, and pass each to the
recognizer. In practice, we use a simple (but we believe poor)
approximation to the N-best algorithm, in which at each 10 ms
frame, Yy finds the 10 words most likely to end, and for each
performs a single backtrace to find 10 strings. Each of these is
passed to the parser, which computes a probability vector over
the follow-set words. The recognizer then uses each of these
probabilities as the transition probability from the word ending
at frame f to each of the words which the follow-set vector
gives a non-zero probability of starting at frame f. If a word is
included in the follow-set of more than one backtrace, we pick
the maximum probability (Viterbi) backtrace.

If the parser fails at any point in parsing a backtrace, it backs
off to the bigram grammar to compute word-transition probabil-
ities for the remainder of the sentence. As Figure 9 shows, this
backoff is quite rare, only happening for a very small number
of the sentences (mostly the very long sentences). Thus even
sentences whose correct transcription falls outside the CFG are
usually forced into the nearest CFG-grammatical string.

% backtraces parseable by CFG

100%

80% ] Backoff to
60% Bigram
40%
20%
0%

A T N~ O M O O
— = - <« «N

M Parseable

Sentence Length

Figure 9: Percentage of backtraces covered by the SCFG

One of the most challenging design aspects of this algorithm
was achieving real-time performance, since the Y, recognizer
requires word-transition probabilities after every 10 ms frame,
requiring on average 2400 calls to the parser per sentence. De-
spite this large number, our prototype tightly-coupled recognizer
runs just 36% slower than our non-tightly-coupled recognizer
using bigram probabilities. In order to make the coupling this
fast, we optimized the algorithm extensively by using efficient
indexing in the grammar and the chart, making use of shared
substring information for the prefix computation, and adding a
cache between the recognizer and the parser to avoid reparsing
repeated backtraces.

The final way to use SCFG information relies on the intuition
that the SCFG and the bigram offer complimentary sources of
knowledge about grammar. Where the SCFG is best at model-
ing long-distance dependencies and hierarchical structure, the
bigram is best at local and lexical dependencies. Our idea is to
mix the two models on a frame-by-frame basis. We have exper-
imented with two versions of this mixing. In one, we weight the
models equally:

P(w;|prefix) = 0.5P(w;|prefix,SCFG) +
0.5P(w;|prefix,Bigram) (6)

In the second, we weight each model by how likely it is
given the prefix (which we compute using Bayes’ rule); this
reflects the intuition that we should rely more on the model
which demonstrates a better fit with previous input:

P(w;|prefix) = P(SCFG|prefix) P (w;|prefix,SCFG) +
P(Bigram|prefix) P(w; |prefix,Bigram)  (7)

Table 6 presents our word error results.

Word Error
Bigram 33.7
SCFG-Smoothed Bigram 29.6
SCFG 29.6
SCFG/Bigram Weighted Mixture 29.5
SCFG/Bigram Equal Mixture 28.8

Table 6: BeRP Tight Coupling Performance

Note that the SCFG gave a significant 4.1% improvement in
word error over the bigram. The SCFG and the SCFG-smoothed
bigram performed equally, and the mixture models were slightly
but not significantly better than either SCFG model. One con-
clusion we can reach is that compiling the SCFG into a bi-
gram preserved most of the useful information. Additionally,
the equal-mixture model seemed to do the best, although the
difference with the other mixture and SCFG models was not
significant — we plan to rerun these experiments on a larger test
set. We suspect that the relative success of the equal-mixture
over the weighted-mixture model was due to a useful side effect
of equal-mixtures which penalizes the bigram model by normal-
izing itto 0.5 just in those backtraces where the SCFG returns a
zero probability.

"These results are on a slightly different system than that used for the



5 Results and Conclusions

The BeRP system has provided a useful and productive frame-
work with which to implement and test a number of our research
ideas, and demonstrates a successful combination of quite dis-
parate elements in a working system. In addition, it has proved
quite usable in its function as a real-time database frontend, with
a word error rate of 32.1% and a semantic sentence error rate of
34.1%.8

The table below shows the system’s overall sentence semantic
error rate. This is measured by comparing with a hand-designed
correct query component for each sentence. This correct query
is compared to the query produced by the entire system and also
to the query produced by just the backend operating without
the recognizer on hand-transcribed sentences. Finally we show
the results of comparing the recognizer output with the output
produced by the natural language on perfect strings, to get an
idea for the semantic performance of the recognizer.

Semantic Error Rate
BeRP system 34.1
Backend alone 18.1
Recognizer alone 21.7

Table 7: BeRP semantic performance

Further details of the BeRP system are presented in Wooters
(1993) and Jurafsky et al. (1994).
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