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ABSTRACT

TempoRAl Patterns (TRAPs) and Tandem MLP/HMM approaches
incorporate feature streams computed from longer time intervals
than the conventional short-time analysis. These methods have
been used for challenging small- and medium-vocabulary recog-
nition tasks, such as Aurora and SPINE. Conversational telephone
speech recognition is a difficult large-vocabulary task, with current
systems giving incorrect output for 20-40% of the words, depend-
ing on the system complexity and test set. Training and test times
for this problem also tend to be relatively long, making rapid de-
velopment quite difficult. In this paper we report experiments with
a reduced conversational speech task that led to the adoption of
a number of engineering decisions for the design of an acoustic
front end. We then describe our results with this front end on a full-
vocabulary conversational telephone speech task. In both cases the
front end yielded significant improvements over the baseline.

1. AUGMENTING CONVENTIONAL FEATURES

For decades, the feature extraction component of speech recogni-
tion engines has consisted of some form of local spectral enve-
lope estimation, typically with some simple transformation; cur-
rent front ends are based largely on the Mel cepstrum or percep-
tual linear prediction (PLP) [1] computed from an analysis win-
dow of roughly 25 or 30 ms surrounding a central signal point,
stepped along every 10 ms. A number of alternatives have been
developed in recent years. One such approach, tandem acoustic
modeling [2, 3, 4] uses a multi-layer perceptron (MLP) to first
discriminatively transform multiple feature vectors (typically PLP
from 9 frames) before using them as observations for Gaussian
mixtures hidden Markov models (GMHMM). Thus, the neural net-
work, which could be called a “feature net”, incorporates around
100 ms of speech. In this paper we will refer to the resulting vari-
ables as PLP/MLP features. Others have also tried incorporating
longer temporal information yielding significant improvements in
speech recognition performance (e.g., [5]).

The MLP is typically trained using phonetic targets. This ap-
proach works very well in matched training and test conditions,
often achieving lower word error rates than systems without the
discriminant nonlinear transformation provided by the MLP. How-
ever, in the case of mismatched training and testing conditions,
ICSI and OGI researchers working on the Aurora task found it
preferable to augment the original features with the feature net
outputs, essentially using the concatenation of the original features
and the PLP/MLP features as the front end for the GMHMM [6].

A similar approach was used in [7], where standard features were
augmented by a complimentary source of information (in this case,
estimates of formants from a mixture of Gaussians).

Another promising approach has been to combine the
PLP/MLP features with features derived from the outputs of MLPs
incorporating long-time log critical band energy trajectories (500
ms - 1 s) [8, 9]. The set of these MLPs forms the TRAPS system,
named as such because the system learns discriminative Tempo-
RAl Patterns (TRAPS) in speech. MLPs in the TRAPS system are
also trained with phonetic targets. We have observed that systems
using the combination of the two feature sets perform better than
those using either feature type alone.

The approaches listed above were developed on small tasks,
i.e., connected digits, continuous numbers, and TIMIT phone
recognition, where the training and testing sets were small in both
vocabulary and data size. We have now tested systems that incor-
porate these features in two progressively larger tasks. We used
conventional front end features (12th order PLP plus energy and
derivatives), augmented with the combination of PLP/MLP and
TRAPS features. These corresponded to three different temporal
spans. The original PLP features were derived from short term
spectral analysis (25 ms time slices every 10 ms). In contrast,
PLP/MLP used 9 frames of PLP features (100ms), and TRAPS
used 51 frames of log critical band energies (500ms). For the
PLP/MLP stream, we trained discriminative feature net MLPs us-
ing 46 phoneme targets generated from forced alignments using
the SRIDECIPHER recognizer. For the second stream, the first
stage TRAPS MLPs took log critical band energy trajectories,
formed by taking 51 consecutive frames of log critical band en-
ergies every 10ms, and transformed by principal component anal-
ysis (PCA). These critical band MLPs were trained with the same
phoneme targets as in the feature net MLP. A “merger” MLP
(trained with these same phoneme targets) combined the output
of the critical band MLPs to produce a single estimate of phoneme
posteriors every 10 ms.

Since the outputs of both the TRAPS classifier and the PLP net
can be interpreted as posterior probabilities of the 46 phonemes,
we could combine them using frame-wise posterior probability
combination techniques [10, 11] (described briefly below). Af-
ter combination, we took the log of the posterior vector to make it
more Gaussian, and then orthogonalized and reduced the dimen-
sionality of the posterior vector using PCA. The resulting variables
were then appended to the original PLP cepstra to form the aug-
mented feature vector. Figure 1 summarizes this process.

In what follows, we refer to these augmented feature vectors
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Fig. 1. Augmenting PLP Front End Features

as PLP+combomethod(Streams), wherecombomethodcan be one
of three frame-wise posterior combination methods: the average
of the posteriors combination (AVG); the average of log posteriors
combination (AVGLog), and finally, the inverse entropy weighted
combination (INVENT) [11].Streamsrefers to the PLP/MLP fea-
ture stream and TRAPS feature stream. The first two combina-
tion methods essentially assume that each MLP feature stream is
equally important, while the entropy-based combination assumes
that the MLP feature with lower entropy is more important than an
MLP feature with high entropy. This is intuitively correct, since a
low entropy posterior distribution (such as would occur with a high
single peak) implies strong confidence in class identity. Generally,
the combined posterior can be written as:

~P (qkjx) = !1 ~P (qkjx
1) + !2 ~P (qkjx

2) (1)

where ~P (qkjx1) and ~P (qkjx
2) are the posteriors (or log posterior

in the case of log posterior average combination) from two differ-
ent MLPs for the same framek. In both variants of average com-
bination,!1=!2=0.5. For entropy-based posterior combination,!

is the inverse entropy computed over one frame for an MLP output
and normalized so that the sum of all weights is one. We also use
a threshold in our entropy computations as done in [11], so that if
the entropy for a frame from an MLP is greater than 1, it is set to a
large value (e.g., 10000).

In all of our initial experiments we performed, the baseline
feature vector consisted of 12th order PLP coefficients plus en-
ergy, along with 1st and 2nd order deltas, to yield a 39-dimensional
baseline feature. We also used mean and variance normalization
per conversation side.

We used a stripped-down version of SRI’s Hub-5 conversa-
tional speech transcription system for our HMM back-end. In par-
ticular, the back-end that we used was similar to the first pass of
the system described in [12], using a bigram language model and
within-word triphone acoustic models.

2. THE 500 WORD CTS TASK

Before applying our approaches to the full-vocabulary Switch-
board task, we considered a more limited task, that of recognizing
the 500 most common words1 in Switchboard I, the most com-
monly used conversational telephone speech (CTS) corpus. Given
the frequent occurrence of these words, it was likely that error rate

1This reduced task was proposed by our colleague George Doddington.

Table 1. Training set composition details
Training set size (hours of data)

Data Source “Short” RUSH
Male Female Male Female

English CallHome 0.56 2.75 0.19 0.92
Mississippi SWB1 30.28 31.30 10.08 10.63

SWB Cellular 1.83 2.03 0.59 0.69
SWB Credit Card 0.20 0 0.06 0

Total 32.87 36.08 10.92 12.24

reduction would also apply to Switchboard in general, and less
training data would be required than would be needed for the full
task. This in turn sped training time accordingly. Finally, decoding
complexity for this task was smaller, which also improved experi-
ment turn-around times.

For training our 500-word system, we created a subset of the
“Short” training set used at SRI for CTS system development,
which we referred to as the Random Utterances of Short Hub or
the RUSH set. The “Short” training set takes telephone speech
data from four sources: English CallHome, Switchboard I with
transcriptions from Mississippi State [13], Switchboard Cellular,
and Switchboard Credit Card Corpus. Our RUSH subset randomly
picks one third of the total number of utterances spoken by each
speaker in the “Short” training set. Table 1 describes the composi-
tion of both “Short” and RUSH training sets.

The 500-word test set was a subset of the 2001 Hub-5 eval-
uation data. Given the 500 most common words in Switchboard
I, we chose utterances2 from the 2001 evaluation data in which
at most 10% of the words in an utterance were out-of-vocabulary
(OOV) words. 49.6% of the utterances in the 2001 evaluation data
met this requirement, and the total OOV rate on the retained ut-
terances was 3.2%. We then partitioned this set into a tuning set
(0.97 hours, 8,242 word tokens) and a test set (1.42 hours, 11,845
word tokens). We used the tuning set to adjust the word transition
weight and language model scaling, and we determined word error
rates on the test set. The language model (LM) used was the first-
pass bigram used by SRI for Hub-5 evaluations in 2000. Note that,
although the vocabulary of the test set was limited by virtue of the
data selection process, the recognition LM was the same 33k-word
vocabulary used in the standard recognition system, so that OOV
words in the test set were not a significant source of error.

2.1. Results on Top 500 Words Task

Using the baseline PLP features, we trained gender-dependent tri-
phone HMMs on the 23-hour RUSH training set, and then tested
this system on the 500-word test set, achieving a 43.8% word error
rate (see Table 2). As seen in the table, the word error rate was
reduced 10% relative by augmenting the baseline features with the
gender-dependent PLP/MLP and TRAPS features.

The three combination methods yielded similar word error
rates, though the inverse entropy approach was slightly better (but
not by a statistically significant margin). The averaging methods
have the advantage of simplicity, and don’t rely on any estimation
method. On the other hand, we observed that the inverse entropy
combination technique was sometimes robust to poor classifier

2We treated each of the waveform segments defined by NIST for eval-
uation purposes as one utterance, regardless of whether these represented
coherent linguistic units or not.



Table 2. Word error rate (WER) and relative reduction of WER on
the top 500-word test set of systems trained on the RUSH set using
different combination approaches.Streamsdenotes the PLP/MLP
feature stream and the TRAPS feature stream.

500 Word Relative
Feature Vector Test Set Reduction

WER WER

PLP Baseline 43.8% -
PLP+AVG(Streams) 39.4% 10.0%

PLP+AVGLog(Streams) 39.5% 9.8%
PLP+INVENT(Streams) 39.2% 10.5%

streams. In one experiment, we unintentionally combined a badly
degraded TRAPS stream with the other features using both meth-
ods. When probabilities were multiplied or added without weights,
the degraded stream hurt performance badly. On the other hand,
the inverse entropy-weighting automatically reduced the impor-
tance of the poor stream so that the overall performance essentially
matched what was achieved for a feature vector that consisted of
the baseline PLP features concatenated with the PLP/MLP feature
alone. Thus, the entropy-based approach to combination appears
to be more robust to unexpectedly poor streams. This property
might be particularly useful for future efforts in which we might
combine a larger number of streams, most of which will provide
less useful information for any particular frame.

3. FULL CTS VOCABULARY

Since the new front end improved performance on the 500-word
task, we incorporated it in a system that was tested on the full-
vocabulary CTS task.

Error rates on Switchboard test sets were unacceptably high
for systems trained on the RUSH training set alone, so we used
SRI’s “Short” CTS training set from which RUSH was derived.
See Table 1 for the “Short” training set composition. As in the 500-
word task, we trained triphone gender-dependent HMMs as well as
gender-dependent PLP/MLP feature nets and TRAPS systems.

For testing, we used the full 2001 Hub-5 Switchboard eval-
uation set. This evaluation set contains a total of 6.33 hours of
speech, with 62,890 total word tokens. For tuning our system pa-
rameters, we used a subset of the disjoint 2001 Hub-5 development
set.

3.1. Results on Full CTS Task

The baseline system achieved a 43.8% word error rate on the 2001
Hub-5 evaluation set (see Table 3). The augmented features re-
duced the error rate by about 7% relative. The last row in the table
shows an improved result for the INVENT stream combination ap-
proach, after the system was further tuned using an SRIDECIPHER

parameter called the “Gaussian weight”, which in the earlier ex-
periments had been optimally tuned for the baseline feature. The
Gaussian weight scales the Gaussian log likelihoods but does not
affect other parts of the acoustic model (mixture weights, transition
probabilities). With more feature dimensions, the weight is typi-
cally tuned to a smaller number, thus compensating for the added
terms in the Gaussian likelihoods and the fact that feature dimen-
sions are not independent despite the use of diagonal covariances.

Table 3. Word error rate (WER) and relative reduction of WER
on the 2001 Hub-5 evaluation set of systems trained on SRI’s
“Short” CTS training set using different combination approaches.
Streamsdenotes the PLP/MLP feature stream and the TRAPS fea-
ture stream. The last row corresponds to a version that has been
optimized for the best Gaussian weight for the new feature vector;
the baseline had already been tuned in this way.

Hub-5 Relative
Feature Vector EVAL2001 Reduction

WER WER

PLP Baseline 43.8% -
PLP+AVG(Streams) 40.5% 7.5%

PLP+AVGLog(Streams) 41.0% 6.4%
PLP+INVENT(Streams) 40.6% 7.3%
PLP+INVENT(Streams)’ 39.6% 9.6%

With this additional tuning, the error rate reduction increased to
almost 10% relative.

Finally, for these experiments, there was a small penalty for
the AVGLog combination method in comparison to the other ap-
proaches.

4. PERFORMANCE USING A BETTER BASELINE

While the previous experiments are encouraging, it is important
to see if the new front end will still yield comparable relative re-
ductions in word error rates in the presence of other improvements
that are typical for the current best research systems. In particular,
since the new front end is discriminatively trained, a key question
is whether other discriminant approaches such as heteroskedas-
tic linear discriminant analysis (HLDA) [14], which is now com-
monly used in such systems, might not provide error reductions
that would be redundant with those provided by the proposed front
end. More generally, we wanted to significantly improve the base-
line system by other means in order to see if the error rate reduction
from the proposed front end was still significant.

To explore these issues, we repeated the task described in Sec-
tion 3, with the same training and testing sets. The baseline fea-
ture used in this section is the PLP and energy feature with the
first three derivatives, transformed by HLDA. HLDA is a discrim-
inant transformation that is used to reduce the feature dimension
from, in our case, 52 to 39. As implemented in the SRI system,
the transform is trained to optimize the discrimination among the
Gaussians in a reference model of phonetically-tied mixtures pre-
viously trained on the same data. It has been observed by several
research groups that adding the third cepstral derivatives can be
useful when followed by HLDA. We will refer to this new baseline
feature as HLDA(PLPddd). The new baseline system also uses
a significantly improved bigram LM, incorporating more sources,
improved smoothing, and a total of 3.2 million bigrams as opposed
to 1.3 million bigrams in the earlier system. While there is no ob-
vious redundancy between an improved LM and an improved front
end, it is nonetheless likely that some of the same errors are pre-
vented by each of these improvements.

We augmented HLDA(PLPddd) with an MLP-based feature
vector similar to the one described in Section 1. Using the same
MLP/PLP and TRAPS streams as before, we combined their pos-
terior outputs using inverse entropy weighting. We performed



Table 4. Word error rates (WER) and relative reduction of the
WER on the 2001 Hub-5 evaluation set with the improved baseline
and augmented features.

Hub5 Relative
Feature Vector EVAL2001 Reduction

WER WER

HLDA(PLP ddd) 37.2% -
HLDA(PLP ddd)

+HLDA(INVENT(streams))
34.4% 7.5%

mean and variance normalization by conversation side on the
MLP-based features, as was done for the baseline features. Finally,
HLDA (instead of previously PCA) was applied to the MLP fea-
ture, reducing it to 25 dimensions. The same HLDA training cri-
terion and procedure as for the HLDA(PLPddd) feature was em-
ployed We call the resulting feature HLDA(INVENT(streams)),
and concatenated it with HLDA(PLPddd). As for the last result
in Table 3, the Gaussian weight parameter was tuned (on the inde-
pendent tuning set).

The word error rates of systems using baseline and augmented
feature vectors are shown in Table 4. As noted in the table, the new
features provided significant reductions in error (7.5% relative).
The error reduction relative to the improved baseline with HLDA
and improved LM is slightly smaller, but on the same order as that
obtained with the previous baseline.

5. DISCUSSION AND CONCLUSIONS

As we had hoped, incorporating the augmented feature vector
significantly reduced the word error rate for both reduced and
full-vocabulary tasks. In both cases the combination methods all
seemed to be effective. However, the inverse entropy method was
the best (or nearly so) for both tasks, and also appeared to be ro-
bust to catastrophic degradations of feature streams. This property
may be more important if we apply these methods to combining
a larger number of probabilistic feature streams. This view seems
to be supported by earlier work at IDIAP [11]. Using dynamically
weighted combination of streams at the feature level may also be
advantageous for features that are only occasionally useful. Such
features will tend to be be of little help when combined at higher
levels (e.g., for word candidates with ROVER).

The PLP/MLP and TRAPS features that were used here were
significantly different from the baseline features. As one might ex-
pect, this complementarity leads to improvements. Furthermore,
the improvements in the smaller task were roughly predictive of
improvements in the larger task. On the other hand, it is likely that
further optimization of performance can be achieved by work with
the larger task. This is always true, but the ability to bring some
of the performance improvements forward following work on a
smaller task is extremely important for speeding the development
of novel approaches. Our experience suggests that providing an
intermediate task as a “stepping stone” can greatly aid in develop-
ment of new speech recognition modules, particularly for the front
end. Our next step is to incorporate these methods in one or more
of the current best laboratory systems for conversational telephone
speech.
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