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Today’s lecture: Source Separation

9|é Two approaches to the problem ...

9|é Auditory scene analysis

9|é Microphone array techniques

9|é Research project ideas ...
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Secondary auditory cortex

Primary auditory cortex

Medial geniculate body

TABLE 14.1 Cells in the Auditory Nuclei of the
Monkey?®

Central Auditory Nucleus Number of Cells

Cochlear nuclei 88,000

Superior olivary complex 34,000 Inferior colliculus
Nuclei of lateral lemniscus 38,000

Inferior colliculus 392,000

Medial geniculate body (pars principalis) 364,000 .
Auditory cortex 10,000,000 Lateral lemniscus

N} Superior olive

Cochlea ES O

Cochlear nucleus



Far-field noise, > 50 cm

LMV1091 Pure analog solution

provides superior
performance over DSP
solutions

Analog

Noise
Canceling Near-Field Voice >

Block

92I0A pI8l4-JedN
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| ;/—_&
Far field noise reduced
by up to 20 dB in properly
configured and using
+/-0.5 dB - = +/-0.5 dB matched
matched microphones

omnidirectional
microphones
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9|é Auditory scene analysis
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Elevation, y°

Where do we begin to understand how auditory
spatial maps are computed in the brain?

Azimuth, x°



Spatial hearing cues ...

The story

begins

with

acoustics

of the >
head ... /-j’l:?muth

(horizontal)

clevation
(vertical)
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Sound source

0 Trigonometry 4=
maps 0 to (/’
“extra leng’rh .
tion

(Azimuth)
Extra leng th
of sound path
to far ear
Left
| Speed of sound determines
Right
ear /\"/ time difference that
time
corresponds to the
sound [—]

onset ongaing fime “extra Ieng’rh".



150 mm average human head size limits
the interaural timing cue fo 600 ys,
corresponding to detecting the phase

of a 1.7 kHz sine wave
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Acoustic shadow

For kHz sound energy,
azimuth can be
computed by comparing
interaural intensity
cues generated by the
head shadow effect.
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Elevation cues
are coded by
acoustic comb
filtering in
the outer ear.




.. Q. How does the brain
”compu’re neural maps
™. of space from
™. acoustic

cues ?

eev ez es e
.....
.

A. By processing the
data coded by the
auditory nerve.



Pressure

Electric Potential

Single Fiber

Input Waveform

Auditory Nerve Spikes

L

Many Fibers

Cycle-by-cycle
acoustic
waveform
shape

can be
reconstructed
from the
spike frains of
multiple
auditory
nerve

fibers.
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To compute the

0 time delay,
Left
ear cross-correlate
the waveforms
foae encoded by the
» auditory nerve

(AZII’T\UH’\) sound

onset

of the left and
right cochlea.

o~

NM

Cochlea

NM

Nucleus Laminaris:

Neural structure in owl

audl’rory pathway that
appears to be a spike

cross-correlation module

(Jeffress model).




Anatomy (left) and
neurophysiology (below)
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Engineers borrowed this concept, and built
computational auditory maps of
interaural time differences ..
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Secondary auditory cortex

Primary auditory cortex

Medial geniculate body

TABLE 14.1 Cells in the Auditory Nuclei of the
Monkey?®

Central Auditory Nucleus Number of Cells

Cochlear nuclei 88,000

Superior olivary complex 34,000 Inferior colliculus
Nuclei of lateral lemniscus 38,000

Inferior colliculus 392,000

Medial geniculate body (pars principalis) 364,000 .
Auditory cortex 10,000,000 Lateral lemniscus

N} Superior olive

Cochlea ES O

Cochlear nucleus



.. and multi-map
systems to compute
periodicity, onsefts,
spectral shape, etc.

“Turn audition into
the vision problem”
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Computational Auditory Scene Analysis

Typical problem: Separate 2 voices captured by 1 microphone.

Male voice mpgr1/sx419
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. by using a auditory scene analysis pipeline that is
inspired by the Gestalt school of visual processing.

input signal discrete
mlxture Front end features Object objects Groupi ng Source
(maps) formation rules > groups

g. ey

freq|

time

v3n7 - Original mixture v3n7 - Hu & Wang mask v3n7 - Hu & Wang Separation
N 20
(o8
o
- 0
-20
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o === = = e ) |ovel / dB
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time /s

FIGURE 39.7 Example of CASA signal separation via time-frequency masking. Left pane
is a spectrogram of a two-voice mixture. Middle pane shows the mask indicating cells
dominated by the target voice on the basis of detected harmonicity cues by Hu & Wang
[21]. Right pane shows reconstructed target voice.



Other approaches to auditory scene analysis use
machine learning techniques, such as factorial HMMs.

Model 2 state

Observations X( )
FIGURE 39.8 lllustration of a factorial HMM. The observed mixture is modeled as the
combination of two, independent hidden Markov models; the best state sequence is thus a
trajectory in a 3-dimensional volume with axes model 1 state, model 2 state, and time.

(Figure drawn by Ron Weiss.)
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(Close-micd voices, different L/R panning for each voice)

jay-Z & Kanye
from headphone outs




Jay-Z @ an/azi/aiz/az:
)))w are derived

%) from panpot

12 and volume
Kanye @/ settings.

To separate:
S = Wx
Where:
W=A"

What's the catch?




Whats the catch? | W=A"!

o .. Wil Wiz 1 ayy —dap
What if matrix inverse of A

, . Wai Wz ~ detA —ay arp

doesnt exist?

Also numencal s’rablln‘y issues, e’(c

011/021/012/022 are generally not
known. We need to "learn” them
from the signals over time.
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Whm‘s the cafch?

Real world v0|ces combine S
“in the air”, not a mixer.
The speed of sound is finite,
and so each mic hears each O
voice with a (relative) delay.
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Off-axis The main lobe has a flat
response frequency response, but the
side lobes are comb filters ...

yielding an unnatural off-axis sound
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The weight
values can be
chosen to
minimize

the combing

effects ... see
book for details.



Adaptive A more flexible approach is to add an
filters ... adaptive filter to the architecture,
so that signal quality can be optimized on-line.

Fixed Filter —»@——» 5(9)

/

Adaptive Filter

A

Adaptive Filter

/

mics
O— ’Cl >
s(0) O— T - Fixed
: Beamformer
I
O— Ty, >
delays
X
L X
S ——
— | Blocking ™
| Matrix |
X
X, M1
e

Adaptive Filter

z FIGURE 39.4 The Generalized Sidelobe Canceller.
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Far-field noise, > 50 cm

LMV1091 Pure analog solution

provides superior
performance over DSP
solutions

Analog
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by up to 20 dB in properly
configured and using
+/-0.5 dB - = +/-0.5 dB matched
matched microphones

omnidirectional
microphones




Today’s lecture: Source Separation

9|é Two approaches to the problem ...

9|é Auditory scene analysis

9|é Microphone array techniques

9|é Research project ideas ...

Auditory scene analysis ... why isnt the future here yet?
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The

Recognizer -
Representation
Gap.

Multi-Converter System

Sound Input
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Auditory Models

Speech Recognition

Adaptive Sampling
Specialized Features
Multiple Representations

High-Dimensional

Correlated Features

Uniform Sampling
General-Purpose Features
Single Representation
Low-Dimensional

Uncorrelated Features




