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A Neural Map of Auditory Space in the Owl 
Abstract. Auditory units that responded to sound only when it originated from a 

limited area of space were found in the lateral and anterior portions of the midbrain 
auditory nucleus of the owl (Tyto alba). The areas of space to which these units 
responded (their receptive fields) were largely independent of the nature and in- 
tensity of the sound stimulus. The units were arranged systematically within the mid- 
brain auditory nucleus according to the relative locations of their receptive fields, 
thus creating a physiological map of auditory space. 

One of the primary functions of the 
auditory system is to locate sound 
sources in space. How space is repre- 
sented in the auditory system, however, 
is not known. One theory originally put 
forth by von Bekesy (1) assumes that 
sound location is encoded by the relative 
activation of two populations of neurons, 
one population sensitive to sound on the 
right and the other to sound on the left. 
An alternative theory (2) proposes that 
sound location is encoded as "place" in 
the nervous system, with individual neu- 
rons being sensitive only to restricted 
portions of auditory space. Neurons 
which respond best to particular inter- 

aural time or intensity disparities have 
been found at several levels in the audi- 
tory pathway (3). However, the inter- 
aural disparities to which these units are 
"tuned" are too great and the tuning is 
too crude to account for the auditory an- 
gular acuity of animals measured behav- 
iorally. Consequently, some researchers 
have rejected the proposition that the 
auditory system encodes space in terms 
of receptive fields and neural maps, as in 
the visual and somatosensory systems, 
and have opted for the population theory 
of sound localization (4). On the other 
hand, recent neurophysiological studies, 
in which sound stimuli were presented in 

real space, have shown that auditory 
units can have restricted receptive fields 
(5), a finding that tends to support the 
place theory of sound localization. 

We have begun to explore the influ- 
ence of sound source location on the re- 
sponse properties of central auditory 
neurons by using a movable speaker to 
deliver sound stimuli under free-field 
conditions. With this approach we have 
found a region in the owl's midbrain 
auditory area, nucleus mesencephalicus 
lateralis dorsalis (MLD), that contains 
units that respond to sound only when it 
originates from a small area of auditory 
space (receptive field) (6). Furthermore, 
these units are systematically arranged 
within the nucleus according to the azi- 
muth and elevation of their receptive 
fields so that they form a physiological 
map of auditory space. 

Four barn owls (Tyto alba) were used 
in these experiments. Light anesthesia 
was maintained with intramuscular injec- 
tions of Ketamine (4 mg per kilogram of 
body weight). The experiments were 

Fig. 1. The representation of 
auditory space in the MLD, as30 .- .''* .. 30i 
defined by the centers of unit ." ...... '.. 
best areas. In the upper left, * . 90. 
the coordinates of auditory ..'- *" 
space are depicted as a dotted0 .6 . .60 i 
globe surrounding the owl. ................ 
Projected onto the globe are . * * 
the best areas (solid-lined rec- 
tangles) of 14 units that were / / 
recorded in four separate pen- / MLD 
etrations. The large numbers / -20 
backed by similar symbols 90C : 0 90 
represent units from the same - 
penetration; the numbers _ _ : 
themselves signify the order in \ 
which the units were encoun- '. 
tered and are placed at the .'30: v 
centers of their best areas. The ? 
penetrations were made with 
the electrode oriented parallel . . - o ansv e Trans'verse to the transverse plane at the. . 
positions indicated in the hori- \ . .. .' 
zontal section by the solid ar- / 
rows. Below and to the right of... .. 
the globe are illustrated three 
histological sections through S 

- 
the MLD in the horizontal, / _- \% 
transverse, and sagittal OT OT--- 
planes. The stippled portion of 
the MLD corresponds to the/ Hr Iz \ t -20 
region that contains only neu- Sagittal H orizo nt a - 40 

rons with small receptive ....2 .c 5 
fields. Isoazimuth contours,\ 40' i:' / \5 0c 

c I 10c based on best-area centers, MLD / - 25C 2Oc15C are shown as solid lines in the 
horizontal and sagittal sec- 4 Id 
tions; isoelevation contours\ p a 
are represented by dashed 
lines in the transverse and sag- m 
ittal sections. On each sectiont- 
dashed arrows indicate the Horizontal Sagittal 
planes of the other two sections. Solid, crossed arrows to the lower right of each section define the orientation of the section: a, anterior; d, 
dorsal; 1, lateral; m, medial; p, posterior; v, ventral. The length of the arrows corresponds to 600 tLm. The optic tectum (OT) is labeled on each 
section. 
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conducted in a large anechoic chamber 
(7) specially equipped with a remotely 
controlled movable speaker (8) that 
could be positioned almost anywhere on 
a sphere centered at the owl's head (9). 
The owl was oriented so that the inter- 
section of its visual plane and its median 
plane corresponded to 0? of elevation, 0? 
azimuth of the speaker (10). Sound stim- 
uli included clicks, noise, and tone 
bursts (11). Although the units were test- 
ed for sensitivity to visual stimuli (12), all 
auditory tests were conducted with the 
owl in total darkness. 

The auditory units described in this re- 
port were recorded from a functionally 
specialized region of the midbrain that 
was histologically identified as belonging 
to the MLD, the avian homolog of the 
inferior colliculus (13). The region forms 
the lateral and anterior borders of the 
main, tonotopic portion of the MLD, and 
extends in a continuous L-shaped strip 
from the posterolateral to the anterome- 
dial corner of the nucleus (Fig. 1). In all, 
182 units were recorded from this region 
on 47 separate penetrations (14). 

Units in this region of the MLD shared 
three salient response properties: (i) they 
responded only when a sound was lo- 
cated within a well-defined area of space, 
which was virtually independent of the 
nature and the intensity of the sound 
stimulus; (ii) they responded well to 
clicks, noises, and tone bursts; and (iii) 
they were tuned to the high-frequency 
end (5 to 8.7 kHz) of the owl's audible 
range (15). 

Auditory receptive fields were plotted 
in the following manner. After a single 
unit was isolated, the speaker, while 
emitting noise bursts, was moved to a lo- 
cation to which the unit responded vigor- 
ously. With the speaker at this location 
the threshold of the unit to noise bursts 
was determined (16). The intensity of the 
noise bursts was then increased to 10 dB 
above threshold, and the speaker was 
moved in azimuth and elevation to posi- 
tions where the unit just failed to re- 
spond. The coordinates of these posi- 
tions defined the borders of the unit's 
receptive field (Fig. 2). The same proce- 
dure was followed when plotting a field 
with clicks or tone bursts. 

The receptive fields of these MLD 
units were in the shape of vertically ori- 
ented ellipsoids (86 units out of 92) or 
bands (six units), and ranged in size from 
7? to 40? (mean, 25?) in azimuth and from 
23? to "unrestricted" in elevation. Both 
ellipsoidal and band-shaped receptive 
fields contained a small distinct area 
within which a sound would induce a 
maximum response from the unit. This 
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area, which was highly restricted in azi- 
muth and elevation, will be termed the 
unit's best area. Although a unit's best 
area could be accurately determined by 
monitoring spike activity as a test stimu- 
lus was moving through its receptive 
field, more precise measurements of best 
area were made with the aid of peri- 
stimulus time (PST) histograms. The 
PST histograms were generated through 
the use of a sound 10 dB above thresh- 
old, and were routinely collected at 5? in- 
tervals in azimuth and at 10? intervals in 
elevation, although smaller receptive 
fields were often sampled at smaller in- 
tervals. The extent of a unit's best area 
was defined by those speaker locations 
at which the unit first gave a sub- 
maximum response (Fig. 2). 

Sound intensity had no effect on the 
location of a unit's best area and had 
little effect on the size of many receptive 
fields. When receptive fields plotted with 
a sound 30 dB above threshold were 
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Fig. 2. The receptive field and best area of an 
MLD unit. Dashed lines mark the borders of 
the unit's receptive field as projected from ac- 
tual measurement sites (open circles). The re- 
ceptive field was plotted using noise bursts 10 
dB above threshold. The unit's best area (di- 
agonal lines) was derived from the peri- 
stimulus time (PST) histograms shown in the 
figure. Best-area borders were defined by the 
first test locations that resulted in a sub- 
maximum response. Each PST histogram rep- 
resents a 200-msec sample of the unit's re- 
sponses to 16 repetitions of a 100-msec noise 
burst, presented 10 dB above threshold. The 
position of each histogram corresponds to the 
location of the speaker during the accumula- 
tion of that histogram. Negative degrees in- 
dicate locations in the inferior auditory 
hemifield; subscript c, contralateral and sub- 
script i, ipsilateral. 

compared with those plotted with a 
sound 10 dB above threshold for 63 
units, 27 (or 0.4) changed by ?2? or less 
in azimuth and 14 (or 0.2) changed by 
?5? or less in elevation. Twenty-three 
(or 0.4) expanded in azimuth by 3? to 11? 
and 13 (or 0.2) contracted by 3? to 18?. 

Changing the test stimulus from noise 
bursts to clicks or tone bursts did not al- 
ter a unit's best area, and usually exerted 
little influence on its receptive field 
boundaries. Thus, these MLD units 
sensed a limited area of space that was 
largely independent of the intensity or 
the nature of the sound stimulus. 

In plotting the receptive fields of these 
units, it became apparent that the fields 
of neighboring units were superimposed 
and that advancement of the electrode 
resulted in a systematic shift in receptive 
field location. During a typical pene- 
tration, made dorsoventrally and parallel 
to the transverse plane (17), sequential 
receptive fields would shift continuously 
in elevation from high to low while mov- 
ing little in azimuth. 

The impression that the units in this 
region of the MLD were organized ac- 
cording to the location of their receptive 
fields was confirmed in a series of three 
experiments in which both the left and 
right MLD regions were mapped. In 
these experiments, a total of 19 pene- 
trations traversed the region, sampling 
units throughout most of its anteroposte- 
rior extent. Lesions placed at the sites of 
the first- and last-mapped units designat- 
ed the trajectory of each track. The loca- 
tions of intervening units were recon- 
structed from their depths with respect 
to the two lesion sites, as measured by a 
hydraulic microdrive. 

An ordered representation of auditory 
space was manifest in both the receptive 
fields and the best areas of these MLD 
units. However, variations in receptive 
field size frequently caused irregularities 
in the spatial transition of the receptive 
field borders of sequential units. In con- 
trast, unit best areas shifted smoothly 
and predictably as the electrode ad- 
vanced. For this reason, and because the 
center of a unit's best area could be ex- 
pressed as a single azimuth-elevation 
term, best-area centers were correlated 
with unit location to arrive at the detailed 
map of auditory space representation 
(Fig. 1). 

Sound azimuths were arrayed in the 
horizontal plane of the MLD, with most 
of the region devoted to contralateral 
auditory space. Best-area centers ex- 
tended from 60? contralateral (60?c), rep- 
resented in the posterolateral corner, to 
15? ipsilateral (15?i), represented in the 
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parallels are found using MRI with humans30,31 as shown in Figure 1:
optimal rates of 32–256 Hz in the cochlear nucleus and lower brain stem
decrease to 2–4 Hz in secondary auditory cortex.
At the mid-brain and cortex, maps of best modulation frequency that

might serve pitch perception have been reported8,32,33. The existence and
significance of these maps is controversial, however34. Similarly, only
one imaging study, using MEG35, has provided evidence of a map of
modulation sensitivity in human cortex, and the results are equivocal.
Other imaging studies show a postero-lateral region of the superior
temporal gyrus to be activated selectively by frequency and amplitude
modulated sounds36–38. Within the auditory region responsive to modulated
signals, there appears to be a clustering of responsiveness to different
modulation frequencies, but no systematic topographic organisation30.

The number of neurophysiological studies of responses in auditory
cortex to species-specific vocalisations peaked in the 1970s. Interest has
revived recently with the development of techniques for studying awake
behaving primates. The decline occurred because early expectations of
populations of cortical feature-detector neurones were not sustained.
Clearly, in primary auditory cortex, large numbers of cells are not

Auditory physiology and imaging

British Medical Bulletin 2002;63

Human modulation
sensitivity from fMRI

Animal modulation
sensitivity from physiology

4–8 Hz

8 Hz

16 Hz

32–256 Hz

256 Hz

2–4 Hz

1–40 Hz

2–128 Hz

10–120 Hz

170–700 Hz

~2000 Hz

Secondary auditory cortex

Primary auditory cortex

Medial geniculate body

Inferior colliculus

Lateral lemniscus

Cochlea

Cochlear nucleus

Superior olive

Fig. 1 Sensit ivity to different rates o f amplitude modulation at different nuclei along the
auditory pathway. The animal data are taken from a variety of different studies using
pure tone carriers and represent the range of best modulation frequencies. The human
data are from an f MRI study30 using broad-band noise and represent the modulation
frequencies that best activated those regions.
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THE PERIPHERAL AUDITORY SYSTEM 195

TABLE 14.1 Cells in the Auditory Nuclei of the
Monkeya

Central Auditory Nucleus Number of Cells

Cochlear nuclei 88,000
Superior olivary complex 34,000
Nuclei of lateral lemniscus 38,000
Inferior colliculus 392,000
Medial geniculate body (pars principalis) 364,000
Auditory cortex 10,000,000

aFrom [12].

There are approximately 30,000 auditory neurons associated with each cochlea in
humans. About 1000 of these neurons connect to around 20,000 outer hair cells. The 3500
inner hair cells connect to the roughly 29,000 neurons remaining. Table 14.1 is a list of
cells in the auditory nuclei of the monkey. From the numbers in this table, it seems that the
knowledge still to be obtained vastly exceeds the knowledge presently known.

Although the anatomy of the auditory path is fairly well understood, the physiology
is still only partly understood. Many measurements on cats and other mammals have
been made at the periphery, the nerve bundle leading from the inner ear into the cochlear
nucleus. The cochlear nucleus (the next stage of neural processing beyond the peripheral
auditory nerve) is only partially understood. There is a much greater variety of functions
in this neural nucleus than there is in the auditory nerve, and if this pattern continues as
we work our way up through all the pathways, it will be many years before sufficient
physiological information is available so that scientists can propose a plausible model of
auditory function. For these reasons, most of this chapter focuses on the peripheral auditory
system; in particular, it focuses on the inner ear, which contains the cochlea.

14.3 THE PERIPHERAL AUDITORY SYSTEM

Figure 14.3 shows the three components of the peripheral auditory system: the outer,
middle, and inner ears. The input is an acoustic signal and the output is a collection of
neural spikes that enter the brain, as indicated in Figs. 14.1 and 14.2.

The auditory canal is an acoustic tube that transmits sound to the eardrum, where
acoustic energy is transduced to vibrational mechanical energy of the middle ear. The
middle ear consists of three very small bones (ossicles); the malleus is attached to the
other side of the eardrum and its vibration is transmitted through the incus to the stapes .
The stapes motion impinges on the oval window of the inner ear. The oval window is a
flexible membrane, and its motion sets the fluid within the cochlea in motion. This motion is
transmitted to the basilar membrane within the cochlea. The final transducing medium is the
collection of hair cells sitting atop the basilar membrane that implement the transformation
to the neural spikes of the auditory nerve bundle. The semicircular canals (not shown in
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Dual Input, Far Field Noise Suppression Microphone
Amplifier
General Description
The LMV1091 is a fully analog dual differential input, differ-
ential output, microphone array amplifier designed to reduce
background acoustic noise, while delivering superb speech
clarity in voice communication applications.
The LMV1091 preserves near-field voice signals within 4cm
of the microphones while rejecting far-field acoustic noise
greater than 50cm from the microphones. Up to 20dB of far-
field rejection is possible in a properly configured and using
±0.5dB matched micropohones.
Part of the Powerwise™ family of energy efficient solutions,
the LMV1091 consumes only 600˩A of supply current pro-
viding superior performance over DSP solutions consuming
greater than ten times the power.
The dual microphone inputs and the processed signal output
are differential to provide excellent noise immunity. The mi-
crophones are biased with an internal low-noise bias supply.

Key Specifications
႑ Far Field Noise Suppression Electrical * 34dB (typ)
႑ SNRIE 26dB (typ)
႑ Supply voltage 2.7V to 5.5V
႑ Supply current ���˩A (typ)
႑ Standby current ���˩A (typ)
႑ Signal-to-Noise Ratio (Voice band) 65dB (typ)
႑ Total Harmonic Distortion + Noise 0.1% (typ)
႑ PSRR (217Hz) 99dB (typ)
ಘಘ*FFNSE at f = 1kHz

Features
႑ No loss of voice intelligibility
႑ Low power consumption
႑ Shutdown function
႑ No added processing delay
႑ Differential outputs
႑ Adjustable 12 - 54dB gain
႑ Excellent RF immunity
႑ Available in a 25–bump micro SMD package

Applications
႑ Mobile headset
႑ Mobile and handheld two-way radios
႑ Bluetooth and other powered headsets
႑ Hand-held voice microphones

System Diagram
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and issued to the steering circuitry in 600/•s. This speed for 
positioning the beam is much faster than the measurements 
on the speech signals needed to decide where to point the 
array. This speed is also fast enough to permit forming of two 
beams, with two separate sets of delay circuitry. This allows 
one beam to act as a continually searching beam, while the 
second, or main beam, is positioned on the dominant active 
talker. Three typical beam positions are shown for a frequen- 
cy of 1000 Hz in Fig. 14. 

IV. SOFTWARE FOR AUTOMATIC BEAM CONTROL 

A. Speech characteristics 
One fundamental problem in automatic beam control is 

separating speech sources from nonspeech sources. A simple 
speech detection algorithm can be formed by exploiting a 
priori knowledge of unique characteristics of speech. Voiced 
speech sounds are produced by the vibratory action of the 
vocal cords. Most of the acoustic energy radiated in speech is 
contained in these voiced sounds. Their waveforms typically 
exhibit periodicity at the vocal-cord rate {nominal period of 
about 10 ms for men and 5 ms for women), and a high peak 
factor. Their spectrum is low pass in character, falling off at 
about 8-10 dB/oct above approximately 500 Hz. Speech 
also tends to be bursty in time. All of these characteristics aid 
in distinguishing between speech and continuous back- 
ground noise. 

FIG. 7. Spatial responses [H (ro)[ vs • for prescribed frequencies and for 
steering direction • = 90 ø. Responses are calculated from Eq. (17). Ampli- 
tude is relative to {2N q- 1} and is plotted on a linear scale. 

sent the value of delay to be incurred in that microphone 
channel. The input port (port A}, also 16 bits wide, receives a 
digitized version of the array output signal from an analog- 
to-digital (A/D} converter. This signal can be processed by a 
beam-steering program in the microprocessor. The program 
can be developed on a central general-purpose computer and 
loaded into the microprocessor over a telephone connection. 

In actuality, two sets of delay and summing hardware 
are implemented in order to form and process two beams 
simultaneously. This is to give the array equipment an auto- 
matic "track-while-scan" capability for sound pickup in 
large rooms. This is discussed further in Sec. IV. 

Each microphone channel also includes a preamplifier 
of gain 50 dB, an analog bandlimiting filter (4 kHz cutoff), 
the delay circuit, and digital logic to decode the 9-bit address 
and 7-bit delay words, as shown in Fig. 12. Delay is physical- 
ly set by setting the digital clock rate for stepping the charge- 
coupled device. All channel circuitry is implemented in inte- 
grated circuit components on a custom printed circuit 
board. Each board contains circuitry for four microphone 
channels. The microprocessor and channel hardware are 
mounted in a dual card cage, shown in Fig. 13. 

The positioning of the beam to desired directions 0 ', •' is 
accomplished with greatest speed by having precomputed 
tables of delay values •"{m,n}. A complete table can be read 
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FIG. 8. IH (ro)l vs • for •' = 60 ø. Linear amplitude scale. 
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with a unit amplitude arriving from can be expressed as
[13], [18]

(4)

where for an open sphere with pressure
microphones, with the spherical Bessel function [13], and
the radius of the spherical array. For other array configurations,
such as rigid sphere and cardioid microphones, is also avail-
able [12].

Array weights for beam patterns that are rotationally sym-
metric about the look direction can be written as [1]

(5)

where is the array look direction, and the dependence on
and has been omitted for notation simplicity. Array output,

or directivity, can now be calculated using (3)–(5) as

(6)

where is the angle between and , such that the
directivity depends only on the angle between the arriving wave
and the array look direction. The last term in (6) was derived
using the addition theorem for spherical harmonics, and is
the Legendre polynomial [14]. Due to the orthogonality of the
latter, we can write [14]

(7)

Beam-pattern design can now be performed by selecting any
order- beam pattern [16] and then using (7) to calcu-
late . Beam steering is then performed by controlling the look
direction, , as in (5). This is the advantage of this 1-D
beampatern design, the decoupling of the beam-pattern shape
from its look direction, and the ease of beam steering when per-
formed in the spherical-harmonics domain.

However, in some cases, we may be interested in beam pat-
terns which are not rotationally-symmetric about the look di-
rection. A situation may arise where the sound source occupies
a wide region in directional space, such as a stage in an audi-
torium, or few speakers positioned in proximity. In this case,
the main lobe should be wide over the azimuth and narrow over
the elevation, and so, beam patterns that are rotationally-sym-
metric about the look direction may not be suitable. In this case,
we may want to select more general array coefficients given by
[11]

(8)

Array directivity can now be calculated similar to (6), re-
placing with , as

(9)

Beam pattern of order and coefficients are related
simply through the spherical Fourier transform and complex-
conjugate operations

(10)

In other words, and are spherical Fourier transform
pair. Therefore, given any order- beam pattern, (10) can be
used to find the coefficients .

III. BEAM STEERING USING WIGNER-D WEIGHTING

The formulation provided in Section II for the general, not
necessarily symmetric, beam-pattern design does not include
any simple way for beam steering, and so, in the general case,
one would need to redesign and recalculate the beam-
pattern coefficients using (10) for each look direction. In
this section, we show how the stages of beam-pattern design
and beam steering can be decoupled for a general beam pattern.
We start by defining the Wigner-D function [19, Sec. 4.3, Eq.
(1)] as follows:

(11)

where , represent rotation angles, and
is the Wigner-d function, which is real and can be written in
terms of the Jacobi polynomial [19, Sec. 4.3.4, Eqs. (13)–(15)]
as follows:

(12)

with , , , and
given by

.
(13)

The Wigner-D functions form a basis for the rotational
Fourier transform, applied to functions defined over the rota-
tion group SO(3) [19], [20]. They become useful in this work
due to the property that a rotated spherical harmonics can be
represented using the following summation [20]:

(14)

where denotes rotation operation, which can be rep-
resented by Euler angles [14]. In this case, an initial counter-
clockwise rotation of angle is performed about the -axis,
followed by a counterclockwise rotation by angle about the

-axis, and completed by a counterclockwise rotation of angle
about the -axis. See, for example, [14] and [19] for more de-

tails on Euler angles and rotations.
Using (14) and (9), we are now ready to derive the general

expression for a rotated beam pattern, as follows:

(15)
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A Neural Map of Auditory Space in the Owl 
Abstract. Auditory units that responded to sound only when it originated from a 

limited area of space were found in the lateral and anterior portions of the midbrain 
auditory nucleus of the owl (Tyto alba). The areas of space to which these units 
responded (their receptive fields) were largely independent of the nature and in- 
tensity of the sound stimulus. The units were arranged systematically within the mid- 
brain auditory nucleus according to the relative locations of their receptive fields, 
thus creating a physiological map of auditory space. 

One of the primary functions of the 
auditory system is to locate sound 
sources in space. How space is repre- 
sented in the auditory system, however, 
is not known. One theory originally put 
forth by von Bekesy (1) assumes that 
sound location is encoded by the relative 
activation of two populations of neurons, 
one population sensitive to sound on the 
right and the other to sound on the left. 
An alternative theory (2) proposes that 
sound location is encoded as "place" in 
the nervous system, with individual neu- 
rons being sensitive only to restricted 
portions of auditory space. Neurons 
which respond best to particular inter- 

aural time or intensity disparities have 
been found at several levels in the audi- 
tory pathway (3). However, the inter- 
aural disparities to which these units are 
"tuned" are too great and the tuning is 
too crude to account for the auditory an- 
gular acuity of animals measured behav- 
iorally. Consequently, some researchers 
have rejected the proposition that the 
auditory system encodes space in terms 
of receptive fields and neural maps, as in 
the visual and somatosensory systems, 
and have opted for the population theory 
of sound localization (4). On the other 
hand, recent neurophysiological studies, 
in which sound stimuli were presented in 

real space, have shown that auditory 
units can have restricted receptive fields 
(5), a finding that tends to support the 
place theory of sound localization. 

We have begun to explore the influ- 
ence of sound source location on the re- 
sponse properties of central auditory 
neurons by using a movable speaker to 
deliver sound stimuli under free-field 
conditions. With this approach we have 
found a region in the owl's midbrain 
auditory area, nucleus mesencephalicus 
lateralis dorsalis (MLD), that contains 
units that respond to sound only when it 
originates from a small area of auditory 
space (receptive field) (6). Furthermore, 
these units are systematically arranged 
within the nucleus according to the azi- 
muth and elevation of their receptive 
fields so that they form a physiological 
map of auditory space. 

Four barn owls (Tyto alba) were used 
in these experiments. Light anesthesia 
was maintained with intramuscular injec- 
tions of Ketamine (4 mg per kilogram of 
body weight). The experiments were 

Fig. 1. The representation of 
auditory space in the MLD, as30 .- .''* .. 30i 
defined by the centers of unit ." ...... '.. 
best areas. In the upper left, * . 90. 
the coordinates of auditory ..'- *" 
space are depicted as a dotted0 .6 . .60 i 
globe surrounding the owl. ................ 
Projected onto the globe are . * * 
the best areas (solid-lined rec- 
tangles) of 14 units that were / / 
recorded in four separate pen- / MLD 
etrations. The large numbers / -20 
backed by similar symbols 90C : 0 90 
represent units from the same - 
penetration; the numbers _ _ : 
themselves signify the order in \ 
which the units were encoun- '. 
tered and are placed at the .'30: v 
centers of their best areas. The ? 
penetrations were made with 
the electrode oriented parallel . . - o ansv e Trans'verse to the transverse plane at the. . 
positions indicated in the hori- \ . .. .' 
zontal section by the solid ar- / 
rows. Below and to the right of... .. 
the globe are illustrated three 
histological sections through S 

- 
the MLD in the horizontal, / _- \% 
transverse, and sagittal OT OT--- 
planes. The stippled portion of 
the MLD corresponds to the/ Hr Iz \ t -20 
region that contains only neu- Sagittal H orizo nt a - 40 

rons with small receptive ....2 .c 5 
fields. Isoazimuth contours,\ 40' i:' / \5 0c 

c I 10c based on best-area centers, MLD / - 25C 2Oc15C are shown as solid lines in the 
horizontal and sagittal sec- 4 Id 
tions; isoelevation contours\ p a 
are represented by dashed 
lines in the transverse and sag- m 
ittal sections. On each sectiont- 
dashed arrows indicate the Horizontal Sagittal 
planes of the other two sections. Solid, crossed arrows to the lower right of each section define the orientation of the section: a, anterior; d, 
dorsal; 1, lateral; m, medial; p, posterior; v, ventral. The length of the arrows corresponds to 600 tLm. The optic tectum (OT) is labeled on each 
section. 
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conducted in a large anechoic chamber 
(7) specially equipped with a remotely 
controlled movable speaker (8) that 
could be positioned almost anywhere on 
a sphere centered at the owl's head (9). 
The owl was oriented so that the inter- 
section of its visual plane and its median 
plane corresponded to 0? of elevation, 0? 
azimuth of the speaker (10). Sound stim- 
uli included clicks, noise, and tone 
bursts (11). Although the units were test- 
ed for sensitivity to visual stimuli (12), all 
auditory tests were conducted with the 
owl in total darkness. 

The auditory units described in this re- 
port were recorded from a functionally 
specialized region of the midbrain that 
was histologically identified as belonging 
to the MLD, the avian homolog of the 
inferior colliculus (13). The region forms 
the lateral and anterior borders of the 
main, tonotopic portion of the MLD, and 
extends in a continuous L-shaped strip 
from the posterolateral to the anterome- 
dial corner of the nucleus (Fig. 1). In all, 
182 units were recorded from this region 
on 47 separate penetrations (14). 

Units in this region of the MLD shared 
three salient response properties: (i) they 
responded only when a sound was lo- 
cated within a well-defined area of space, 
which was virtually independent of the 
nature and the intensity of the sound 
stimulus; (ii) they responded well to 
clicks, noises, and tone bursts; and (iii) 
they were tuned to the high-frequency 
end (5 to 8.7 kHz) of the owl's audible 
range (15). 

Auditory receptive fields were plotted 
in the following manner. After a single 
unit was isolated, the speaker, while 
emitting noise bursts, was moved to a lo- 
cation to which the unit responded vigor- 
ously. With the speaker at this location 
the threshold of the unit to noise bursts 
was determined (16). The intensity of the 
noise bursts was then increased to 10 dB 
above threshold, and the speaker was 
moved in azimuth and elevation to posi- 
tions where the unit just failed to re- 
spond. The coordinates of these posi- 
tions defined the borders of the unit's 
receptive field (Fig. 2). The same proce- 
dure was followed when plotting a field 
with clicks or tone bursts. 

The receptive fields of these MLD 
units were in the shape of vertically ori- 
ented ellipsoids (86 units out of 92) or 
bands (six units), and ranged in size from 
7? to 40? (mean, 25?) in azimuth and from 
23? to "unrestricted" in elevation. Both 
ellipsoidal and band-shaped receptive 
fields contained a small distinct area 
within which a sound would induce a 
maximum response from the unit. This 

796 

area, which was highly restricted in azi- 
muth and elevation, will be termed the 
unit's best area. Although a unit's best 
area could be accurately determined by 
monitoring spike activity as a test stimu- 
lus was moving through its receptive 
field, more precise measurements of best 
area were made with the aid of peri- 
stimulus time (PST) histograms. The 
PST histograms were generated through 
the use of a sound 10 dB above thresh- 
old, and were routinely collected at 5? in- 
tervals in azimuth and at 10? intervals in 
elevation, although smaller receptive 
fields were often sampled at smaller in- 
tervals. The extent of a unit's best area 
was defined by those speaker locations 
at which the unit first gave a sub- 
maximum response (Fig. 2). 

Sound intensity had no effect on the 
location of a unit's best area and had 
little effect on the size of many receptive 
fields. When receptive fields plotted with 
a sound 30 dB above threshold were 
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Fig. 2. The receptive field and best area of an 
MLD unit. Dashed lines mark the borders of 
the unit's receptive field as projected from ac- 
tual measurement sites (open circles). The re- 
ceptive field was plotted using noise bursts 10 
dB above threshold. The unit's best area (di- 
agonal lines) was derived from the peri- 
stimulus time (PST) histograms shown in the 
figure. Best-area borders were defined by the 
first test locations that resulted in a sub- 
maximum response. Each PST histogram rep- 
resents a 200-msec sample of the unit's re- 
sponses to 16 repetitions of a 100-msec noise 
burst, presented 10 dB above threshold. The 
position of each histogram corresponds to the 
location of the speaker during the accumula- 
tion of that histogram. Negative degrees in- 
dicate locations in the inferior auditory 
hemifield; subscript c, contralateral and sub- 
script i, ipsilateral. 

compared with those plotted with a 
sound 10 dB above threshold for 63 
units, 27 (or 0.4) changed by ?2? or less 
in azimuth and 14 (or 0.2) changed by 
?5? or less in elevation. Twenty-three 
(or 0.4) expanded in azimuth by 3? to 11? 
and 13 (or 0.2) contracted by 3? to 18?. 

Changing the test stimulus from noise 
bursts to clicks or tone bursts did not al- 
ter a unit's best area, and usually exerted 
little influence on its receptive field 
boundaries. Thus, these MLD units 
sensed a limited area of space that was 
largely independent of the intensity or 
the nature of the sound stimulus. 

In plotting the receptive fields of these 
units, it became apparent that the fields 
of neighboring units were superimposed 
and that advancement of the electrode 
resulted in a systematic shift in receptive 
field location. During a typical pene- 
tration, made dorsoventrally and parallel 
to the transverse plane (17), sequential 
receptive fields would shift continuously 
in elevation from high to low while mov- 
ing little in azimuth. 

The impression that the units in this 
region of the MLD were organized ac- 
cording to the location of their receptive 
fields was confirmed in a series of three 
experiments in which both the left and 
right MLD regions were mapped. In 
these experiments, a total of 19 pene- 
trations traversed the region, sampling 
units throughout most of its anteroposte- 
rior extent. Lesions placed at the sites of 
the first- and last-mapped units designat- 
ed the trajectory of each track. The loca- 
tions of intervening units were recon- 
structed from their depths with respect 
to the two lesion sites, as measured by a 
hydraulic microdrive. 

An ordered representation of auditory 
space was manifest in both the receptive 
fields and the best areas of these MLD 
units. However, variations in receptive 
field size frequently caused irregularities 
in the spatial transition of the receptive 
field borders of sequential units. In con- 
trast, unit best areas shifted smoothly 
and predictably as the electrode ad- 
vanced. For this reason, and because the 
center of a unit's best area could be ex- 
pressed as a single azimuth-elevation 
term, best-area centers were correlated 
with unit location to arrive at the detailed 
map of auditory space representation 
(Fig. 1). 

Sound azimuths were arrayed in the 
horizontal plane of the MLD, with most 
of the region devoted to contralateral 
auditory space. Best-area centers ex- 
tended from 60? contralateral (60?c), rep- 
resented in the posterolateral corner, to 
15? ipsilateral (15?i), represented in the 
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Where do we begin to understand how auditory 
spatial maps are computed in the brain?
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A Neural Map of Auditory Space in the Owl 
Abstract. Auditory units that responded to sound only when it originated from a 

limited area of space were found in the lateral and anterior portions of the midbrain 
auditory nucleus of the owl (Tyto alba). The areas of space to which these units 
responded (their receptive fields) were largely independent of the nature and in- 
tensity of the sound stimulus. The units were arranged systematically within the mid- 
brain auditory nucleus according to the relative locations of their receptive fields, 
thus creating a physiological map of auditory space. 

One of the primary functions of the 
auditory system is to locate sound 
sources in space. How space is repre- 
sented in the auditory system, however, 
is not known. One theory originally put 
forth by von Bekesy (1) assumes that 
sound location is encoded by the relative 
activation of two populations of neurons, 
one population sensitive to sound on the 
right and the other to sound on the left. 
An alternative theory (2) proposes that 
sound location is encoded as "place" in 
the nervous system, with individual neu- 
rons being sensitive only to restricted 
portions of auditory space. Neurons 
which respond best to particular inter- 

aural time or intensity disparities have 
been found at several levels in the audi- 
tory pathway (3). However, the inter- 
aural disparities to which these units are 
"tuned" are too great and the tuning is 
too crude to account for the auditory an- 
gular acuity of animals measured behav- 
iorally. Consequently, some researchers 
have rejected the proposition that the 
auditory system encodes space in terms 
of receptive fields and neural maps, as in 
the visual and somatosensory systems, 
and have opted for the population theory 
of sound localization (4). On the other 
hand, recent neurophysiological studies, 
in which sound stimuli were presented in 

real space, have shown that auditory 
units can have restricted receptive fields 
(5), a finding that tends to support the 
place theory of sound localization. 

We have begun to explore the influ- 
ence of sound source location on the re- 
sponse properties of central auditory 
neurons by using a movable speaker to 
deliver sound stimuli under free-field 
conditions. With this approach we have 
found a region in the owl's midbrain 
auditory area, nucleus mesencephalicus 
lateralis dorsalis (MLD), that contains 
units that respond to sound only when it 
originates from a small area of auditory 
space (receptive field) (6). Furthermore, 
these units are systematically arranged 
within the nucleus according to the azi- 
muth and elevation of their receptive 
fields so that they form a physiological 
map of auditory space. 

Four barn owls (Tyto alba) were used 
in these experiments. Light anesthesia 
was maintained with intramuscular injec- 
tions of Ketamine (4 mg per kilogram of 
body weight). The experiments were 

Fig. 1. The representation of 
auditory space in the MLD, as30 .- .''* .. 30i 
defined by the centers of unit ." ...... '.. 
best areas. In the upper left, * . 90. 
the coordinates of auditory ..'- *" 
space are depicted as a dotted0 .6 . .60 i 
globe surrounding the owl. ................ 
Projected onto the globe are . * * 
the best areas (solid-lined rec- 
tangles) of 14 units that were / / 
recorded in four separate pen- / MLD 
etrations. The large numbers / -20 
backed by similar symbols 90C : 0 90 
represent units from the same - 
penetration; the numbers _ _ : 
themselves signify the order in \ 
which the units were encoun- '. 
tered and are placed at the .'30: v 
centers of their best areas. The ? 
penetrations were made with 
the electrode oriented parallel . . - o ansv e Trans'verse to the transverse plane at the. . 
positions indicated in the hori- \ . .. .' 
zontal section by the solid ar- / 
rows. Below and to the right of... .. 
the globe are illustrated three 
histological sections through S 

- 
the MLD in the horizontal, / _- \% 
transverse, and sagittal OT OT--- 
planes. The stippled portion of 
the MLD corresponds to the/ Hr Iz \ t -20 
region that contains only neu- Sagittal H orizo nt a - 40 

rons with small receptive ....2 .c 5 
fields. Isoazimuth contours,\ 40' i:' / \5 0c 

c I 10c based on best-area centers, MLD / - 25C 2Oc15C are shown as solid lines in the 
horizontal and sagittal sec- 4 Id 
tions; isoelevation contours\ p a 
are represented by dashed 
lines in the transverse and sag- m 
ittal sections. On each sectiont- 
dashed arrows indicate the Horizontal Sagittal 
planes of the other two sections. Solid, crossed arrows to the lower right of each section define the orientation of the section: a, anterior; d, 
dorsal; 1, lateral; m, medial; p, posterior; v, ventral. The length of the arrows corresponds to 600 tLm. The optic tectum (OT) is labeled on each 
section. 

SCIENCE, VOL. 200 19 MAY 1978 00368075/78/05 19-075$00.5010 Copyrigt ? 1978 AAAS779 

n 

SCIENCE, VOL. 200, 19 MAY 1978 0036-8075/78/0519-0795$00.50/0 Copyright ? 1978 AAAS 795 

Q. How does the brain 
compute neural maps 

of space from 
acoustic 

cues ?

A. By processing the 
data coded by the 
auditory nerve.



Cycle-by-cycle 
acoustic
waveform 
shape 
can be 
reconstructed 
from the 
spike trains of 
multiple 
auditory 
nerve 
fibers.
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 Auditory Nerve: A “neural microphone” up to multi-kHz.
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To compute the 
time delay, 
cross-correlate 
the waveforms 
encoded by the 
auditory nerve 
of the left and 
right cochlea.
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Nucleus Laminaris: 
Neural structure in owl 
auditory pathway that  
appears to be a spike 
cross-correlation module
(Jeffress model).



Carr and Konishi

Anatomy (left) and 
neurophysiology (below) 
that show the plausibility 
of cross-correlation 
structures in the auditory 
brainstem for interaural 
time delay computation.

Fujita and Konishi



Engineers borrowed this concept, and built 
computational auditory maps of 
interaural time differences ...
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parallels are found using MRI with humans30,31 as shown in Figure 1:
optimal rates of 32–256 Hz in the cochlear nucleus and lower brain stem
decrease to 2–4 Hz in secondary auditory cortex.
At the mid-brain and cortex, maps of best modulation frequency that

might serve pitch perception have been reported8,32,33. The existence and
significance of these maps is controversial, however34. Similarly, only
one imaging study, using MEG35, has provided evidence of a map of
modulation sensitivity in human cortex, and the results are equivocal.
Other imaging studies show a postero-lateral region of the superior
temporal gyrus to be activated selectively by frequency and amplitude
modulated sounds36–38. Within the auditory region responsive to modulated
signals, there appears to be a clustering of responsiveness to different
modulation frequencies, but no systematic topographic organisation30.

The number of neurophysiological studies of responses in auditory
cortex to species-specific vocalisations peaked in the 1970s. Interest has
revived recently with the development of techniques for studying awake
behaving primates. The decline occurred because early expectations of
populations of cortical feature-detector neurones were not sustained.
Clearly, in primary auditory cortex, large numbers of cells are not

Auditory physiology and imaging

British Medical Bulletin 2002;63

Human modulation
sensitivity from fMRI

Animal modulation
sensitivity from physiology

4–8 Hz

8 Hz

16 Hz

32–256 Hz

256 Hz

2–4 Hz

1–40 Hz

2–128 Hz

10–120 Hz

170–700 Hz

~2000 Hz

Secondary auditory cortex

Primary auditory cortex

Medial geniculate body

Inferior colliculus

Lateral lemniscus

Cochlea

Cochlear nucleus

Superior olive

Fig. 1 Sensit ivity to different rates o f amplitude modulation at different nuclei along the
auditory pathway. The animal data are taken from a variety of different studies using
pure tone carriers and represent the range of best modulation frequencies. The human
data are from an f MRI study30 using broad-band noise and represent the modulation
frequencies that best activated those regions.
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TABLE 14.1 Cells in the Auditory Nuclei of the
Monkeya

Central Auditory Nucleus Number of Cells

Cochlear nuclei 88,000
Superior olivary complex 34,000
Nuclei of lateral lemniscus 38,000
Inferior colliculus 392,000
Medial geniculate body (pars principalis) 364,000
Auditory cortex 10,000,000

aFrom [12].

There are approximately 30,000 auditory neurons associated with each cochlea in
humans. About 1000 of these neurons connect to around 20,000 outer hair cells. The 3500
inner hair cells connect to the roughly 29,000 neurons remaining. Table 14.1 is a list of
cells in the auditory nuclei of the monkey. From the numbers in this table, it seems that the
knowledge still to be obtained vastly exceeds the knowledge presently known.

Although the anatomy of the auditory path is fairly well understood, the physiology
is still only partly understood. Many measurements on cats and other mammals have
been made at the periphery, the nerve bundle leading from the inner ear into the cochlear
nucleus. The cochlear nucleus (the next stage of neural processing beyond the peripheral
auditory nerve) is only partially understood. There is a much greater variety of functions
in this neural nucleus than there is in the auditory nerve, and if this pattern continues as
we work our way up through all the pathways, it will be many years before sufficient
physiological information is available so that scientists can propose a plausible model of
auditory function. For these reasons, most of this chapter focuses on the peripheral auditory
system; in particular, it focuses on the inner ear, which contains the cochlea.

14.3 THE PERIPHERAL AUDITORY SYSTEM

Figure 14.3 shows the three components of the peripheral auditory system: the outer,
middle, and inner ears. The input is an acoustic signal and the output is a collection of
neural spikes that enter the brain, as indicated in Figs. 14.1 and 14.2.

The auditory canal is an acoustic tube that transmits sound to the eardrum, where
acoustic energy is transduced to vibrational mechanical energy of the middle ear. The
middle ear consists of three very small bones (ossicles); the malleus is attached to the
other side of the eardrum and its vibration is transmitted through the incus to the stapes .
The stapes motion impinges on the oval window of the inner ear. The oval window is a
flexible membrane, and its motion sets the fluid within the cochlea in motion. This motion is
transmitted to the basilar membrane within the cochlea. The final transducing medium is the
collection of hair cells sitting atop the basilar membrane that implement the transformation
to the neural spikes of the auditory nerve bundle. The semicircular canals (not shown in
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ble performance to standard techniques for an applica-
tion, an analog auditory model implementation may be
the best choice for front-end processing, if the system
requires microwatt operation (for example, size limita-
tions dictate a lithiumwatch battery power source). For
such micropower systems to become a reality, microp-
ower implementations of pattern-recognition functions
must also be available: a recent report on a nanopower
neural-network recognition structure [17], used in an
implantable cardiac morphology classification system,
is an example of progress in this area.
Standard analog performance measurements (S/N

ratio, dynamic range, ect.) aren’t sufficient for de-
termining the suitability of analog implementations of
non-linear, multi-stage auditory models for a partic-
ular application. This paper documents a more di-
rect approach to evaluating analog auditory models:
we have integrated a multi-representation analog au-
ditory model with a speech recognition system, and
measured the performance of the system on a speaker-
independent, telephone-quality 13-word recognition
task.
The structure of the paper is as follows. We be-

gin with a brief description of our multi-representation
auditory model hardware implementation. We then
describe in detail the specific auditory representations
we use in our speech recognition experiments, and the
techniques we use for generating a feature vector suit-
able for speech recognition systems. Next, we assess
word recognition performance of the system, and com-
pare the results with state-of-the-art feature extraction
systems. The paper concludeswith discussion and sug-
gestions for further research.

2. System Description

We have designed a special-purpose analog-to-digital
converter chip, that performs several stages of auditory
pre-processing in the analog domain before digitization
[18], [19]. Configurable parameters control the behav-
ior of each stage of signal processing. Figure 1 shows a
block diagram of a system that uses three copies of this
converter chip: by configuring each chip differently,
the system produces three different auditory represen-
tations in response to an analog input.
This system acts as a real-time audio input device

to a Sun workstation: a pre-amplified microphone in-
put can be connected directly to the converters for a
low-latency, real-time display of spontaneous speech.
Alternatively, the system can receive analog input from

Fig. 1. Block diagram of the multi-converter system.

the 8 Khz sampling rate, 8-bit mu-law audio output of
the workstation, for controlled experiments: all ex-
periments reported in this paper were done using this
method of sound presentation. The dynamic range of
the converter chip is 40 to 60 dB, depending on the sig-
nal processing configuration in use: input sensitivity
is 1 mV (peak), and maximum recommended signal
amplitude is 1 V (peak).
Figure 2 shows the analog signal path of the auditory

pre-processor in the converter chip. Processing begins
with a silicon cochlea circuit [8]. A silicon cochlea
is an analog circuit implementation of the differential
equations that describe the traveling wave motion of
physiological cochleas. The cochlea design used in this
chipmaps a linear, one-dimensional partial-differential
equation into circuits, as a cascade of continuous-time
filter sections with exponentially decreasing time con-
stants. The second-order filter sections have a low-
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ble performance to standard techniques for an applica-
tion, an analog auditory model implementation may be
the best choice for front-end processing, if the system
requires microwatt operation (for example, size limita-
tions dictate a lithiumwatch battery power source). For
such micropower systems to become a reality, microp-
ower implementations of pattern-recognition functions
must also be available: a recent report on a nanopower
neural-network recognition structure [17], used in an
implantable cardiac morphology classification system,
is an example of progress in this area.
Standard analog performance measurements (S/N

ratio, dynamic range, ect.) aren’t sufficient for de-
termining the suitability of analog implementations of
non-linear, multi-stage auditory models for a partic-
ular application. This paper documents a more di-
rect approach to evaluating analog auditory models:
we have integrated a multi-representation analog au-
ditory model with a speech recognition system, and
measured the performance of the system on a speaker-
independent, telephone-quality 13-word recognition
task.
The structure of the paper is as follows. We be-

gin with a brief description of our multi-representation
auditory model hardware implementation. We then
describe in detail the specific auditory representations
we use in our speech recognition experiments, and the
techniques we use for generating a feature vector suit-
able for speech recognition systems. Next, we assess
word recognition performance of the system, and com-
pare the results with state-of-the-art feature extraction
systems. The paper concludeswith discussion and sug-
gestions for further research.
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to a Sun workstation: a pre-amplified microphone in-
put can be connected directly to the converters for a
low-latency, real-time display of spontaneous speech.
Alternatively, the system can receive analog input from
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filter sections with exponentially decreasing time con-
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Fig. 7. Data from the multi-converter system, in response to the word “five” followed by the word “nine”.
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FIGURE 39.1 An example source separation problem. Top row: Spectrograms of
individual male and female voices. Bottom pane: Spectrogram of the mixture of the two
voices (as might occur at a cocktail party). It is difficult to discern the details of each
component in the mixture.

acoustic beamforming or other blind source separation techniques. Examination of the
behavior of human listeners when confronted with real or artificial mixture signals –
known as Auditory Scene Analysis [5] – can inspire biomimetic processing that earns
the name Computational Auditory Scene Analysis (CASA). Finally, more detailed prior
knowledge (or assumptions) about the nature of the target signals can accomplish model-
based separation even in the case when only a single recording channel is available.

39.2 EVALUATING SOURCE SEPARATION

Before looking at different techniques, it is worth spending a few moments considering
what we wish to achieve, and how we can measure our success. One obvious application of
successful acoustic signal separation would be for hearing instruments, i.e., to pick out and
amplify a single voice from a competing background in situations where a human listener
has difficulty understanding the voice unaided – the scenario dubbed the Cocktail Party
Problem by Cherry [7]. We could gauge performance by some measure of the distortion
between the isolated source signal and the signal recovered from the mixture (e.g., for
artificially-mixed test cases, where the true source signals are thus available).

Signal-to-noise ratio (SNR), i.e., the energy of the original target divided by the energy
of the difference between target and processed output, is clearly a sufficient condition, in
the sense that achieving high SNR is sufficient to guarantee high separation quality with

Computational Auditory Scene Analysis

Typical problem: Separate 2 voices captured by 1 microphone.
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FIGURE 39.6 Schematic of a Computational Auditory Scene Analysis (CASA) system [6].
Sound mixtures are broken up into time-frequency fragments, each associated with a
range of attributes such as onset time or compatible fundamental frequencies. Fragments
are then grouped into perceived sources on the basis of these “cues”, leading to a
segmentation of the time-frequency plane according to different sources.

and follows the ASA account from psychology quite closely: The input sound mixture is
first analyzed into different frequency bands by a simulation of the cochlear filterbank,
then a variety of cues are calculated on this time-frequency representation to extract points
of energy onset, spectral regions consistent with the same fundamental frequency, regions
exhibiting similar rates of frequency modulation, etc. The entire time-frequency plane is
carved up into small regions such that these properties are consistent for each region, then
a set of grouping rules are applied to form sources that favor the integration of energy that
has synchronized onset, can be regarded as harmonics of a single fundamental frequency,
etc. This results in a ‘labeling’ of the time-frequency plane that indicates which source is
considered dominant at each point.

This labeling leads naturally to an approach to separating the sources: Starting from an
invertible decomposition into time and frequency such as the short-time Fourier transform,
simply zero-out all energy outside the regions deemed belonging to a particular source, then
invert the transformation. This time-frequency “masking” has proven to be a remarkably
effective method for separating sources even when only a single channel recording is
available. In contrast to the stationary (or at best slowly-varying) processing of beamforming
or ICA, masking can be viewed as a time-varying filter that follows and extracts the rapidly
time-varying spectral structure of the target source.

The weakness of time-frequency masking is that energy cannot be separated below the
level of the individual time-frequency cells used in the initial analysis, since any mixed en-
ergy within those cells is not modified beyond a simple scaling. ICA and similar techniques
are not affected by such signal “collisions” in time and frequency, since their weighted
combinations can exactly cancel interference based on its spatial properties regardless of
its spectral characteristics. However, masking has no intrinsic dimensionality limits on the
number of channels needed to separate a certain number of sources. Moreover, it can be
startlingly successful, perhaps because of the sparsity of many natural sounds when dis-
tributed on a time-frequency plane, which is to say that source signal energy is often highly
concentrated in a subset of the cells (e.g., the frequencies of the harmonics) with little or
no energy in the remaining cells. This makes it relatively rare that two signals will have

... by using a auditory scene analysis pipeline that is 
inspired by the Gestalt school of visual processing.
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FIGURE 39.7 Example of CASA signal separation via time-frequency masking. Left pane
is a spectrogram of a two-voice mixture. Middle pane shows the mask indicating cells
dominated by the target voice on the basis of detected harmonicity cues by Hu & Wang
[21]. Right pane shows reconstructed target voice. Although the extracted energy is
successfully dominated by one voice, many regions contain no energy, corresponding to
deleted cells.

similar energy in a single time-frequency cell, the situation that masking cannot satisfacto-
rily handle. Figure 39.7 shows an example of separating one voice from a mixture of two
on the basis of local harmonicity cues, and reveals the “holes” left in the reconstruction in
regions where target voice energy was not easily identified, leading to muffled or distorted
reconstructions. Statistical models, however, can be used to infer the most likely values for
these cells based on marginalizing joint distributions of present and missing values [10].

A review-style comparison of human source separation with efforts to reproduce this
capacity by computer is presented by Cooke & Ellis [9], and a set of articles providing a
comprehensive view of CASA has been collected in Brown & Wang [36].

39.7 MODEL-BASED SEPARATION

The missing energy in Figure 39.7 highlights a problem with the CASA approach: it is
based more or less entirely on local signal features, yet sources often show structure at
much larger scales, and this structure is potentially useful for separation. To develop this
idea, let us pose signal separation as a probabilistic inference problem of identifying the
set of individual source reconstructions ŝ that have the greatest posterior probability given
the observed signals x, i.e.,

ŝ = argmax
ŝ

Pr(ŝ|x) (39.20)

= argmax
ŝ

Pr(x|ŝ)Pr(ŝ) (39.21)

= argmax
ŝ

Pr(x|ŝ)’
i

Pr(ŝi) (39.22)

Using Bayes rule we turn this into the product of two pieces: The first part is the likelihood
of the observations given the source signals, Pr(x|ŝ), which is typically a simple forward
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FIGURE 39.8 Illustration of a factorial HMM. The observed mixture is modeled as the
combination of two, independent hidden Markov models; the best state sequence is thus a
trajectory in a 3-dimensional volume with axes model 1 state, model 2 state, and time.
(Figure drawn by Ron Weiss.)

the sparsity of the speech signal will ensure that most cells encounter a large imbalance
between predicted source magnitudes, with one model predicting a signal much larger
than the other and thus dominating the combination in that dimension. This inspires the
“max-approximation” [34, 29], in which the combined observation model is built up as the
larger magnitude of the two component states in each dimension.

Given this new, larger, composed set of states, comprising observation distributions
and the full transition matrix, factorial decoding can now proceed exactly as for any other
HMM. However, because the state space is exponential in the number of models, various
computational tricks and approximations are generally employed.

In the “super-human” system, a couple of additional considerations were included.
Firstly, since the relative level of the two voices was not constant but varied over a
15 dB range, it was necessary to estimate this relative level for each test mixture, for
instance by trying a variety of composed models to see which gave the best match to the
observations. In single-voice recognition, overall variations in level are easily removed in
signal preprocessing, but the combined state observations obviously depend on the relative

Other approaches to auditory scene analysis use 
machine learning techniques, such as factorial HMMs.
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FIGURE 39.2 Two simultaneous speakers s1 and s2 being recorded by two microphones
x1 and x2. Each microphone records a mixture of both voices, but the mixtures are slightly
different due to the different coupling channels ai j between mic i and speaker j.

39.3 MULTI-CHANNEL APPROACHES

Consider the situation illustrated in Figure 39.2, where two people speaking simultaneously
are being recorded by two microphones. (The signal shown in Figure 39.1 could be from
one of these microphones.) Although both microphones will, in general, record a mixture of
both voices, the precise combination between the voices in each mixture will be different.
We can express this situation in matrix form,

"
x1(t)
x2(t)

#
=

"
a11 a12

a21 a22

#"
s1(t)
s2(t)

#
(39.1)

x = As (39.2)

where xi(t) is the mixture signal recorded by microphone i, s j(t) is the source signal
from speaker j, ai j represents the coupling between mic i and source j, and the bold
symbols indicate matrices. ai j could consist of simple direction-dependent gains, or, in
general, frequency-dependent gain and time (or phase) modification – in which case Eq.
39.1 should more properly be written in the Fourier transform domain.

The matrix formulation of Eq. 39.2 immediately suggests an approach to solving
the problem via an unmixing matrix W, with estimates of the original sources ŝ given by
ŝ = Wx. Making W = A

�1 will exactly undo the mixing observed by the microphones,
so that ŝ = s. The main difficulty with this, however, is that the mixing matrix A is usually
not known, and thus finding (or approximating) its inverse is a challenge. It is instructive,
however, to follow through this simple example: Applying both mixing and unmixing

a11/a21/a12/a22 
are derived 
from panpot
and volume 
settings.
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where xi(t) is the mixture signal recorded by microphone i, s j(t) is the source signal
from speaker j, ai j represents the coupling between mic i and source j, and the bold
symbols indicate matrices. ai j could consist of simple direction-dependent gains, or, in
general, frequency-dependent gain and time (or phase) modification – in which case Eq.
39.1 should more properly be written in the Fourier transform domain.

The matrix formulation of Eq. 39.2 immediately suggests an approach to solving
the problem via an unmixing matrix W, with estimates of the original sources ŝ given by
ŝ = Wx. Making W = A

�1 will exactly undo the mixing observed by the microphones,
so that ŝ = s. The main difficulty with this, however, is that the mixing matrix A is usually
not known, and thus finding (or approximating) its inverse is a challenge. It is instructive,
however, to follow through this simple example: Applying both mixing and unmixing
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matrices, we get:

ŝ = Wx = WAs (39.3)
"

ŝ1

ŝ2

#
=

"
w11 w12

w21 w22

#"
x1

x2

#
(39.4)

=

"
w11 w12

w21 w22

#"
a11s1 + a12s2

a21s1 + a22s2

#
(39.5)

=

"
(w11a11 + w12a21)s1 + (w11a12 + w12a22)s2

(w21a11 + w22a21)s1 + (w21a12 + w22a22)s2

#
(39.6)

Separation is achieved when the “cross terms” in Eq. 39.6 disappear, i.e.,

w11a12 + w12a22 = 0 and w21a11 + w22a21 = 0 (39.7)

This of course occurs when

W = A

�1 (39.8)
"

w11 w12

w21 w22

#
=

1
det A

"
a22 �a12

�a21 a11

#
(39.9)

The purpose of running through this familiar inverse of a 2⇥2 matrix is to highlight exactly
how the sources are separated: to remove the contribution of s2 in the reconstruction ŝ1, the
weights used to combine x1 and x2 (namely w11 and w12) are set in the precise ratio that
will balance the different proportions of s2 in each microphone signal, so that on summing
the two weighted microphone components together the contributions of s2 will cancel out
leaving only s1.

This cancellation (or “nulling-out”) provides the basis for rejection of point-source
interference in multichannel source separation techniques. It is important because, in ideal
circumstances, it can provide perfect removal of unwanted sources. However, notice that
it is very sensitive to the exact balance between the contributions of the interfering source
in each microphone: small errors in the corresponding weights will result in a failure to
completely cancel and rapid growth of the residual error. Moreover, if the proportions of
both sources are similar in the two microphones, then cancelling the interfering source
may nearly cancel the target source too, so any other components (such as independent
noise from the microphone preamplifiers) will become increasingly dominant. This is in
fact equivalent to an ill-conditioned mixing matrix, indicating likely numerical problems
in calculating its inverse.

39.4 BEAMFORMING WITH MICROPHONE ARRAYS

As a result of the finite speed of sound, sound emanating from a single point source will
arrive at different points in space at different times. A typical speed of sound (which varies

To separate:
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Dual Input, Far Field Noise Suppression Microphone
Amplifier
General Description
The LMV1091 is a fully analog dual differential input, differ-
ential output, microphone array amplifier designed to reduce
background acoustic noise, while delivering superb speech
clarity in voice communication applications.
The LMV1091 preserves near-field voice signals within 4cm
of the microphones while rejecting far-field acoustic noise
greater than 50cm from the microphones. Up to 20dB of far-
field rejection is possible in a properly configured and using
±0.5dB matched micropohones.
Part of the Powerwise™ family of energy efficient solutions,
the LMV1091 consumes only 600A˩ of supply current pro-
viding superior performance over DSP solutions consuming
greater than ten times the power.
The dual microphone inputs and the processed signal output
are differential to provide excellent noise immunity. The mi-
crophones are biased with an internal low-noise bias supply.

Key Specifications
႑Far Field Noise Suppression Electrical *34dB (typ)
႑SNRIE26dB (typ)
႑Supply voltage2.7V to 5.5V
႑Supply current���A˩ (typ)
႑Standby current���A˩ (typ)
႑Signal-to-Noise Ratio (Voice band)65dB (typ)
႑Total Harmonic Distortion + Noise0.1% (typ)
႑PSRR (217Hz)99dB (typ)
ಘಘ*FFNSE at f = 1kHz

Features
႑No loss of voice intelligibility
႑Low power consumption
႑Shutdown function
႑No added processing delay
႑Differential outputs
႑Adjustable 12 - 54dB gain
႑Excellent RF immunity
႑Available in a 25–bump micro SMD package

Applications
႑Mobile headset
႑Mobile and handheld two-way radios
႑Bluetooth and other powered headsets
႑Hand-held voice microphones

System Diagram
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What’s the catch?
 Real-world voices combine 
“in the air”, not a mixer. 

The speed of sound is finite, 
and so each mic hears each 
voice with a (relative) delay. 
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 Real rooms are not 
anechoic chambers.  

“Early reflections” of 
a source A act like 
“virtual sources,”
 (labelled A1...A6) 

that confuse simple 
unmixing algorithms.

dtDoing “un-mixing” AND “un-delaying” is harder ... 

Idea: Determine the  
position of source A,  
and “point” a directional 
microphone at it.
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Steerable 
beam ...  By changing the delays, 

we can steer the 
beam to track a target.



Hz

Off-axis 
response

 The main lobe has a flat 
frequency response, but the 
side lobes are comb filters ... 

yielding an unnatural off-axis sound

The weight 
values can be 
chosen to 
minimize 
the combing 
effects ... see 
book for details.
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FIGURE 39.4 The Generalized Sidelobe Canceller.

of arrival) of the desired sound source. This information is then used to select the most
appropriate beamformer from the collection.

39.4.3 Adaptive beamformers
If the environment contains discrete noise sources with unknown location, e.g., a radio or
interfering talker, it may be advantageous to use an adaptive beamformer. As the name
implies, adaptive beamformers update their parameters in an online manner as input sam-
ples are received. The Frost beamformer [15] is arguably the most well-known adaptive
beamforming algorithm. In this algorithm, the output power of the array is minimized for
the current noise conditions, while maintaining the same distortionless constraint described
earlier. The Frost beamformer is in essence an online implementation of the time-invariant
beamformer of Eq. 39.18 in which the power spectral density of the observed signals is
used directly. However, to make the beamformer adaptive, the PSD of the received signals
�xx = E[xx

H
] is replaced by an instantaneous estimate based solely on the current frame

xtx
H
t . The beamformer weights are incrementally updated at each frame by the LMS algo-

rithm, to minimize the instantaneous output power without distorting signal from the look
direction.

The Generalized Sidelobe Canceller (GSC) was proposed as an alternative architec-
ture to the Frost beamformer [18]. The GSC consists of two structures, a fixed beamformer
that produces a non-adaptive output, and an adaptive structure for sidelobe cancellation.
The adaptive structure of the GSC is preceded by a blocking matrix that blocks signals com-
ing from the desired look direction. The weights of the adaptive structure are then adjusted
to cancel any signal common to both structures, assumed to be noise. The architecture of
the GSC is shown in Figure 39.4. The advantage of the GSC is that it turns the constrained
optimization problem solved by Frost into a simpler unconstrained optimization problem.

Adaptive 
filters ...

 A more flexible approach is to add an 
adaptive filter to the architecture, 

so that signal quality can be optimized on-line. 
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Dual Input, Far Field Noise Suppression Microphone
Amplifier
General Description
The LMV1091 is a fully analog dual differential input, differ-
ential output, microphone array amplifier designed to reduce
background acoustic noise, while delivering superb speech
clarity in voice communication applications.
The LMV1091 preserves near-field voice signals within 4cm
of the microphones while rejecting far-field acoustic noise
greater than 50cm from the microphones. Up to 20dB of far-
field rejection is possible in a properly configured and using
±0.5dB matched micropohones.
Part of the Powerwise™ family of energy efficient solutions,
the LMV1091 consumes only 600˩A of supply current pro-
viding superior performance over DSP solutions consuming
greater than ten times the power.
The dual microphone inputs and the processed signal output
are differential to provide excellent noise immunity. The mi-
crophones are biased with an internal low-noise bias supply.

Key Specifications
႑ Far Field Noise Suppression Electrical * 34dB (typ)
႑ SNRIE 26dB (typ)
႑ Supply voltage 2.7V to 5.5V
႑ Supply current ���˩A (typ)
႑ Standby current ���˩A (typ)
႑ Signal-to-Noise Ratio (Voice band) 65dB (typ)
႑ Total Harmonic Distortion + Noise 0.1% (typ)
႑ PSRR (217Hz) 99dB (typ)
ಘಘ*FFNSE at f = 1kHz

Features
႑ No loss of voice intelligibility
႑ Low power consumption
႑ Shutdown function
႑ No added processing delay
႑ Differential outputs
႑ Adjustable 12 - 54dB gain
႑ Excellent RF immunity
႑ Available in a 25–bump micro SMD package

Applications
႑ Mobile headset
႑ Mobile and handheld two-way radios
႑ Bluetooth and other powered headsets
႑ Hand-held voice microphones

System Diagram
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Today’s lecture: Source Separation

Auditory scene analysis

Two approaches to the problem ...

Microphone array techniques

Research project ideas ...
Auditory scene analysis ... why isn’t the future here yet?
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Fig. 8. Comparison of auditory representations and current speech recognition technology.

properties reflect the statistical and architectural prop-
erties of recognition systems.
Figure 8 depicts a “representation-recognizer gap”

that complicates the use of auditory models for speech
recognition. We address this issue in two ways: by
transforming the representations shown in Figures 6
and 7 to have properties closer to conventional front-
end representations, and by choosing speech recogni-
tion technology that is more compatible with auditory
models. The method we used to extract a feature vec-
tor from our multi-representation system output is de-
scribed below.
The first step in feature extraction is to convert the

asynchronous, event-list representation into a sequence
of uniformly sampled frames. Each frame output con-
sists of 3 vectors (one for each representation) with 119
floating point elements (one for each output unit), and
codes the spike activity that occurs during a 25ms in-
terval. Subsequent frames overlap in time by 12.5ms.
To generate each frame element, the spiking pattern
during the 25ms interval is considered as a train of
delta functions with unit height: this function is mul-
tiplied by a Hamming window. After multiplication,
the heights of the delta functions are summed to yield
the final floating-point feature element value. These
operations are graphically shown in Figure 9.
To reduce the size of the spectral-shape and on-

set representations, we subsample the original 119-
element vectors using symmetrical triangular filters
with a 50-percent filter response overlap. This sub-
sampling produces a 5-element vector coding onsets,
and an 8-element vector coding spectral shape. The
subsampling procedure is graphically shown in Fig-
ure 10.
To reduce the size of the summary autocorrelogram,

we compute the discrete cosine transform of the 119-
element vector, and use the first two components of
the transform as the summary autocorrelogram feature

vector. We choose this reduction technique to enhance
the coding of voicing in the representation, while de-
emphasizing formant information.
These reduction techniques resolve the feature-size

table entries in Figure 8; they do not, however, address
the correlation between feature elements. As detailed
in the next section, we use recognition technologies
that are relatively insensitive to correlations between
feature elements to address this issue.
To complete our feature vector computations, we

compute temporal difference feature vectors (“delta”
features) for each primary representations, using a 5-
frame window to compute differences. The resulting
feature vector has 30 elements: 8 spectral-shape ele-
ments, 5 onset elements, 2 summary autocorrelogram

Fig. 9. Graphic description of algorithm for converting the asyn-
chronous event-list representation into uniformly sampled frames.
A 25ms series of unit-height events (a) is scaled by a Hamming win-
dow (b). The heights of the scaled events are added to form the frame
value.

Fig. 10. Graphic description of algorithm for subsampling full 119-
element representations into a reduced feature vector.
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ble performance to standard techniques for an applica-
tion, an analog auditory model implementation may be
the best choice for front-end processing, if the system
requires microwatt operation (for example, size limita-
tions dictate a lithiumwatch battery power source). For
such micropower systems to become a reality, microp-
ower implementations of pattern-recognition functions
must also be available: a recent report on a nanopower
neural-network recognition structure [17], used in an
implantable cardiac morphology classification system,
is an example of progress in this area.
Standard analog performance measurements (S/N

ratio, dynamic range, ect.) aren’t sufficient for de-
termining the suitability of analog implementations of
non-linear, multi-stage auditory models for a partic-
ular application. This paper documents a more di-
rect approach to evaluating analog auditory models:
we have integrated a multi-representation analog au-
ditory model with a speech recognition system, and
measured the performance of the system on a speaker-
independent, telephone-quality 13-word recognition
task.
The structure of the paper is as follows. We be-

gin with a brief description of our multi-representation
auditory model hardware implementation. We then
describe in detail the specific auditory representations
we use in our speech recognition experiments, and the
techniques we use for generating a feature vector suit-
able for speech recognition systems. Next, we assess
word recognition performance of the system, and com-
pare the results with state-of-the-art feature extraction
systems. The paper concludeswith discussion and sug-
gestions for further research.

2. System Description

We have designed a special-purpose analog-to-digital
converter chip, that performs several stages of auditory
pre-processing in the analog domain before digitization
[18], [19]. Configurable parameters control the behav-
ior of each stage of signal processing. Figure 1 shows a
block diagram of a system that uses three copies of this
converter chip: by configuring each chip differently,
the system produces three different auditory represen-
tations in response to an analog input.
This system acts as a real-time audio input device

to a Sun workstation: a pre-amplified microphone in-
put can be connected directly to the converters for a
low-latency, real-time display of spontaneous speech.
Alternatively, the system can receive analog input from

Fig. 1. Block diagram of the multi-converter system.

the 8 Khz sampling rate, 8-bit mu-law audio output of
the workstation, for controlled experiments: all ex-
periments reported in this paper were done using this
method of sound presentation. The dynamic range of
the converter chip is 40 to 60 dB, depending on the sig-
nal processing configuration in use: input sensitivity
is 1 mV (peak), and maximum recommended signal
amplitude is 1 V (peak).
Figure 2 shows the analog signal path of the auditory

pre-processor in the converter chip. Processing begins
with a silicon cochlea circuit [8]. A silicon cochlea
is an analog circuit implementation of the differential
equations that describe the traveling wave motion of
physiological cochleas. The cochlea design used in this
chipmaps a linear, one-dimensional partial-differential
equation into circuits, as a cascade of continuous-time
filter sections with exponentially decreasing time con-
stants. The second-order filter sections have a low-
pass response, with a slight resonant peak before cutoff.
The cascade acts as a discrete-space, continuous-time
finite-element approximation of the partial differential
equation.
Like wavelet filterbanks, the silicon cochlea outputs

balance temporal and spectral acuity. The cochlear out-

Fig. 2. Analog signal path of the silicon auditory model.

The 
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Representation
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