
UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

2012-3-21
Professor Nelson Morgan
today’s lecture by John Lazzaro

EECS 225D
Audio Signal Processing in Humans and Machines

Lecture 18 – Music Signal Analysis

www.icsi.berkeley.edu/eecs225d/spr12/

http://www.icsi.berkeley.edu/eecs225d
http://www.icsi.berkeley.edu/eecs225d

UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

1. ABSTRACT
This paper presents a novel approach to visual-
izing the time structure of music and audio. The
acoustic similarity between any two instants of
an audio recording is calculated and displayed
as a two-dimensional representation. Similar or
repeating elements are visually distinct, allow-
ing identification of structural and rhythmic
characteristics. Visualization examples are pre-
sented for orchestral, jazz, and popular music.
Applications include content-based analysis
and segmentation, as well as tempo and struc-
ture extraction.
1.1 Keywords
music visualization, audio analysis, audio similarity
measure

2. INTRODUCTION
There has been considerable interest in making music
visible. Efforts include artistic attempts to realize
images elicited by sound, of which the Walt Disney
film Fantasia is perhaps the canonical example.
Another approach is to quantitatively render the time
and/or frequency content of the audio signal, using
methods such as the oscillograph and sound
spectrograph [1], [2]. These attempts are primarily for
scientific or quantitative analysis, (though it should be
noted that the work of artists like Mary Ellen Bute [3]
use quantitative methods such as the cathode ray
oscilloscope towards artistic ends). Other
visualizations are derived from note-based or score-
like representation of music, typically from MIDI note
events [4],[5].

Music is generally self-similar. With the possible

exception of a few avant-garde compositions, structure
and repetition is a general feature of nearly all music.
That is, the coda often resembles the introduction, the
second chorus sounds like the first, and a theme is more
or less similar to its variations. On a shorter time scale,
successive bars are often repetitive, especially in
popular music. This paper presents a novel method of
visualizing the structure of music by its acoustic
similarity or dissimilarity in time, rather than absolute
acoustic characteristics or note events. Self-similarity
is visualized in a two-dimensional representation of
time. This paper presents methods1 of displaying the
acoustic self-similarity of an audio file as an image like
Figure 1.
These images graphically depict the similarity between
two time regions in an audio file. An audio file is
represented as a square. Each side of the square is
proportional to the length of the piece, and time runs

1 This work was done at the Institute of Systems Science (now
KRDL), affiliated with the National University of Singapore.

Figure 1. Self-similarity visualization of drum pattern

Visualizing Music and Audio using Self-Similarity
Jonathan Foote

FX Palo Alto Laboratory, Inc.
3400 Hillview Ave., Building 4

Palo Alto, CA 94304 USA
+1 (650) 813-7071

foote@pal.xerox.com

Drum
pattern
self-
similarity.

(Foote,
1999)

t
t

from left to right as well as from bottom to top. In the
Figures, both axes are labeled with time in seconds.
Thus the bottom left corner of the square corresponds
to the beginning of the piece, while the top right
corresponds to the end. In the square, the brightness of
a point is proportional to the audio similarity at
times i and j. Similar regions are bright while
dissimilar regions are dark. Thus there is always a
bright diagonal line running from bottom left to top
right, because the audio is always the most similar to
itself at any particular time. (Technically, the
autocorrelation is always a maximum at a lag of zero.)
In this visualization, regions of self-similarity appear
as bright regions off the diagonal, as in Figure 1.
Relatively novel regions appear as dark squares.
Repetitive similarity, such as repeating notes or motifs,
show up as a checkerboard pattern. Long repeated
themes are visible as diagonal lines parallel to and
separated from the main diagonal by the time
difference between repetitions.

3. Similarity Analysis
To understand a visualization like Figure 1, it helps to
know how it is constructed. Consider the bottom row
of pixels (or the left column; images are symmetric).
This is colored by how similar the first instant of the
piece is to the rest. (For the visualizations here, an
“instant” is about 1/10 of a second). Thus the bottom
row’s halfway point is colored proportionally to the

similarity between the first instant and an instant
halfway through, and so forth. As we consider rows
progressively higher above the bottom row, we
consider instants progressively further into the piece,
and compare them with the audio from start to finish
across the row.

3.1 Audio parameterization
To calculate the similarity between two audio
“instants,” they are first parameterized into Mel-
frequency cepstral coefficients (MFCCs) plus an
energy term. Figure 2 shows the steps in
parameterizing an audio waveform.

First, the audio is Hamming-windowed in overlapping
steps. Each window is 25 mS wide and are overlapped
so there are 100 windows, hence feature vectors, in a
second of audio. The window width and overlap can
be fine-tuned to optimize the visualizations, but the
above values offer good results for most audio and are
used in the examples. For each window, the log of the
power spectrum is computed using a discrete Fourier
transform (DFT). The log spectral coefficients are
perceptually weighted by a non-linear map of the
frequency scale. This operation, called Mel-scaling,
emphasizes mid-frequency bands in proportion to their
perceptual importance. The final stage is to further
transform the Mel-weighted spectrum (using another
DFT) into “cepstral” coefficients. This results in
features that are reasonably dimensionally
uncorrelated, thus the final DFT is a good
approximation of the Karhunen-Loeve transformation
of the Mel spectra. The high-order MFC coefficients
are discarded, leaving the 12 lower-order MFCCs. The
audio waveform is thus transformed into 13-
dimensional feature vectors (12 MFC coefficients plus
energy) at a 100 Hz rate.

The MFCC parameterization was originally developed
for speech recognition applications, and has
continually out-performed nearly all other
parameterization methods. Other parameterizations
such as spectral or Perceptual Linear Predictive (PLP)
parameters could be used, but MFCCs result in the
generally good images shown in the examples of
Section 4. MFCCs have been demonstrated to work
for music retrieval by similarity [6]. Furthermore,
MFCCs have been shown to be better than spectral,
pitch, and zero-crossing measures for discriminating
between speech and music [7]. It can be objected that
using MFCCs for music analysis (as opposed to
speech) is “the wrong thing to do.” This objection
stems from the understanding that the MFCC

i j(,)

Window

DFT
Spectrum

Log Magnitude
log|•|

Mel
scaling

DFT
Cepstrum

Mel-frequency Cepstral Coefficients (MFCCs)

Audio
Waveform

Figure 2. Acoustic processing for similarity measure

Feature vector

parameterization discards pitch information. It one
sense it does this—the high-order MFCCs contain the
fine harmonic structure characteristic of the driving
function—but this is precisely why the MFCCs are
appropriate for measuring audio similarity. A better
way to characterize the MFCC transformation is as a
lowpass “lifter” or frequency-domain filter. In this
view, MFCCs are a smoothed representation of a
sound’s frequency spectrum. A single pitch in the
MFCC domain is represented by roughly the envelope
of the harmonics, not the harmonics themselves. Thus
MFCCs will tend to match similar timbres rather than
exact pitches; though single-pitched sounds will match
if they are present. Having said this, it is clear from the
examples of Section 4 that there may be better
representations; in particular, high prominent notes
appear to generate a higher similarity measure than
other subjectively similar audio. Clearly, work is
needed on investigating parameterizations, similarity
measures, and the effect of window size on the
visualizations.

3.2 Similarity Measure
The similarity measure used here is based on vector
autocorrelation. Given two MFCC feature vectors
and derived from audio windows1 i and j, a simple
metric of vector similarity s is the scalar (dot) product
of the vectors

This will be large if the vectors are both large and
similarly oriented. Because windows, hence feature
vectors, occur at a rate much faster than typical
musical events, a better similarity measure S can be
obtained by computing the vector correlation over a
window w. Thus

This also captures the time dependence of the vectors.
To result in a high similarity score, vectors in a

1 As feature vectors come from discrete windows, we use
discrete time indexes throughout this discussion.

window must not only be similar but their sequence
must be similar as well. Considering a one-
dimensional example, the scalar sequence (1, 2, 3, 4,
5) has a much higher similarity score with itself than
with the sequence (5, 4, 3, 2, 1). This equation serves
as the similarity metric used for the images this paper.

3.3 Visualization Method
To visualize an audio file, a window with w is chosen,
and the similarity measure S(i,j) is calculated for all
window combinations, hence time indexes i and j.
Then an image is constructed so that each pixel at
location i, j is given a grayscale value proportional to
the similarity measure, by scaling the similarity values
such that the maximum value is given the maximum
brightness. Because of the rapid rate of feature vectors,
it is quite possible that a long audio files will result in
impracticably large images (a one minute file at a
resolution of 100 vectors per second results in a 6000 x
6000-pixel image). To reduce the image size, the
similarity can be averaged over short intervals, or the
similarity calculated only for certain time indexes. The
latter approach is taken here. Because S is already
calculated over a window of size w, looking only at
indexes that are an integer multiple of w reduces the
image size by a that factor. Depending on the length of
the audio, the examples of Section use w in the range
of 5 to 10.These visualizations let us clearly see the
structure of an audio file. Regions of high audio
similarity, such as silence or long sustained notes,
appear as bright squares on the diagonal. Repeated
figures, such as themes, phrases, or choruses, will be
visible as bright off-diagonal rectangles. If the music
has a high degree of repetition, this will be visible as
diagonal stripes or checkerboards, offset from the
main diagonal by the repetition time. Below are some
examples; the time scales are seconds. For reasons of
resolution and space most images are from small
excerpts of longer works.

3.4 “Drum Solo” Example
Figure 1 is a sampled “drum solo” taken from an audio
test CD. The different drums are visually distinct. The
solo starts with a snare drum roll, followed by a
syncopated alternation of kick and snare hits and
cymbal accents. Figure 3 zooms in to the first ten
seconds. With the higher time resolution, the
individual snare hits in the beginning roll are visible.
The alternation of instruments is particularly visible in
this Figure. For example, the 2 x 2 “checkerboard”
between the second and third seconds of the recording

vi
vj

s i j,() vi vj•≡

Sw i(j),
1
w
---- vi k+ vj k+•()

k 0=

w 1–

∑≡

Similarity metric

A simple idea,
but very
effective
for pattern
discovery

Horizontal
slice

patterns
correspond

to
different

drums
in the kit.

is a snare drum hit followed by a kick drum hit. This
sequence is reversed (kick, then snare) between
seconds 3 and 4. To clarify the visualization, stripes
marked “snare,” “cymbal,” and “kick” have been
indicated on the Figure. These rows indicate the time
similarity of the audio to the indicated instruments
because they are the autocorrelations with reference
windows containing the respective instruments. For
example, the stripe marked “snare” starts brightly,
because the audio starts with a snare roll. The different
instruments can be clearly distinguished. Of course it
helps that they are spectrally very different; it is
generally more difficult to differentiate between
instruments of similar range and timbre, for example a
flute and a clarinet.

Figure 4 shows the autocorrelation stripes as a more
conventional plot. Looking at Figure 4, it is clear that a
simple maximum would do a very good job at both

segmenting the audio and classifying the different
drum hits Because both instrument and timing
information could be automatically derived from the
plot, this information could be used to generate a
MIDI representation of the source music, which is in
general a very difficult problem for unpitched
instruments. This plot highlights features that are not
so apparent in Figure 3; for example the kick-drum
syncopation clearly visible at 7 seconds. Note
particularly the way the high-hat (cymbal) accents are
visible at 4 and 7 seconds.

4. More Examples
This section presents additional visualizations across a
variety of musical genres. The Electronic Version of
this paper includes the playable source audio as well as
full-color versions of the annotated visualizations.

4.1 Bach Prelude
Figure 6 shows the first seconds of Bach’s Prelude No. 1 in
C Major, from The Well-Tempered Clavier, BVW 846. This
lovely 1924 piano performance is by Ferruccio
Busoni. The image is fuzzy due to the extremely poor
audio quality of the 1924 recording. (Indeed,
conventional audio analysis techniques would make
little headway due to the poor bandwidth and
extremely high noise level of this audio). The
striations at the very beginning are clicks and pops due
to surface noise from the 78 RPM recording. The
visualization makes both the structure of the piece and
details of performance visible. For an example of the

Figure 3. Self-similarity visualization of drum pattern

Figure 4. Graph of autocorrelation vs. time

Figure 5. First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier

is a snare drum hit followed by a kick drum hit. This
sequence is reversed (kick, then snare) between
seconds 3 and 4. To clarify the visualization, stripes
marked “snare,” “cymbal,” and “kick” have been
indicated on the Figure. These rows indicate the time
similarity of the audio to the indicated instruments
because they are the autocorrelations with reference
windows containing the respective instruments. For
example, the stripe marked “snare” starts brightly,
because the audio starts with a snare roll. The different
instruments can be clearly distinguished. Of course it
helps that they are spectrally very different; it is
generally more difficult to differentiate between
instruments of similar range and timbre, for example a
flute and a clarinet.

Figure 4 shows the autocorrelation stripes as a more
conventional plot. Looking at Figure 4, it is clear that a
simple maximum would do a very good job at both

segmenting the audio and classifying the different
drum hits Because both instrument and timing
information could be automatically derived from the
plot, this information could be used to generate a
MIDI representation of the source music, which is in
general a very difficult problem for unpitched
instruments. This plot highlights features that are not
so apparent in Figure 3; for example the kick-drum
syncopation clearly visible at 7 seconds. Note
particularly the way the high-hat (cymbal) accents are
visible at 4 and 7 seconds.

4. More Examples
This section presents additional visualizations across a
variety of musical genres. The Electronic Version of
this paper includes the playable source audio as well as
full-color versions of the annotated visualizations.

4.1 Bach Prelude
Figure 6 shows the first seconds of Bach’s Prelude No. 1 in
C Major, from The Well-Tempered Clavier, BVW 846. This
lovely 1924 piano performance is by Ferruccio
Busoni. The image is fuzzy due to the extremely poor
audio quality of the 1924 recording. (Indeed,
conventional audio analysis techniques would make
little headway due to the poor bandwidth and
extremely high noise level of this audio). The
striations at the very beginning are clicks and pops due
to surface noise from the 78 RPM recording. The
visualization makes both the structure of the piece and
details of performance visible. For an example of the

Figure 3. Self-similarity visualization of drum pattern

Figure 4. Graph of autocorrelation vs. time

Figure 5. First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier

t
t

is a snare drum hit followed by a kick drum hit. This
sequence is reversed (kick, then snare) between
seconds 3 and 4. To clarify the visualization, stripes
marked “snare,” “cymbal,” and “kick” have been
indicated on the Figure. These rows indicate the time
similarity of the audio to the indicated instruments
because they are the autocorrelations with reference
windows containing the respective instruments. For
example, the stripe marked “snare” starts brightly,
because the audio starts with a snare roll. The different
instruments can be clearly distinguished. Of course it
helps that they are spectrally very different; it is
generally more difficult to differentiate between
instruments of similar range and timbre, for example a
flute and a clarinet.

Figure 4 shows the autocorrelation stripes as a more
conventional plot. Looking at Figure 4, it is clear that a
simple maximum would do a very good job at both

segmenting the audio and classifying the different
drum hits Because both instrument and timing
information could be automatically derived from the
plot, this information could be used to generate a
MIDI representation of the source music, which is in
general a very difficult problem for unpitched
instruments. This plot highlights features that are not
so apparent in Figure 3; for example the kick-drum
syncopation clearly visible at 7 seconds. Note
particularly the way the high-hat (cymbal) accents are
visible at 4 and 7 seconds.

4. More Examples
This section presents additional visualizations across a
variety of musical genres. The Electronic Version of
this paper includes the playable source audio as well as
full-color versions of the annotated visualizations.

4.1 Bach Prelude
Figure 6 shows the first seconds of Bach’s Prelude No. 1 in
C Major, from The Well-Tempered Clavier, BVW 846. This
lovely 1924 piano performance is by Ferruccio
Busoni. The image is fuzzy due to the extremely poor
audio quality of the 1924 recording. (Indeed,
conventional audio analysis techniques would make
little headway due to the poor bandwidth and
extremely high noise level of this audio). The
striations at the very beginning are clicks and pops due
to surface noise from the 78 RPM recording. The
visualization makes both the structure of the piece and
details of performance visible. For an example of the

Figure 3. Self-similarity visualization of drum pattern

Figure 4. Graph of autocorrelation vs. time

Figure 5. First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier

latter, note the slow first notes and the gradual
accelerando (speedup) as the checkerboard patterns
get closer together. The musical structure is clear from
the repetitive motifs; multiples of the repetition time
can be seen in the off-diagonal stripes parallel to the
main diagonal. Figure 6 shows the first few bars of the
score: the repetitive nature of the piece should be clear
even to those unfamiliar with musical notation.

4.2 Brubeck’s Take 5
Figure 7 shows the beginning of the Dave Brubeck
composition Take 5 as performed by the Dave Brubeck
Quartet. The eponymous 5/4 time signature is visible
as a 3-2 subdivision, particularly in the lower left
corner. The especially bright regions are due to high
notes from the alto saxophone.

5. Mozart’s Horn Concerto
Figure 8 shows the start of the Rondo movement from
W. A. Mozart’s Horn Concerto No. 4. The statement of
the theme by the horn and tutti restatement by the
ensemble are visible in the lower left. While the two
statements are melodically identical, they appear
dissimilar because of the different timbres. The
sustained high horn note causes the bright quartet near
the 20-second mark.

5.1 Day Tripper by the Beatles.
Figure 9 shows the entire song Day Tripper by the

Beatles. The image has been annotated to show the
canonical pop song structure, which is: intro verse,
chorus, second verse, chorus, bridge, third verse and
chorus, coda, and “outro.” Vocals in the first verse start

Figure 6. Visualization of Bach’s Prelude No. 1 Figure 7. Take 5 by the Dave Brubeck Quartet

Figure 8. Rondo from Mozart’s Horn Concerto No. 4

t
t

Chord
modulation
of repetitive
piano
pattern
revealed by
similarities
and
differences.

latter, note the slow first notes and the gradual
accelerando (speedup) as the checkerboard patterns
get closer together. The musical structure is clear from
the repetitive motifs; multiples of the repetition time
can be seen in the off-diagonal stripes parallel to the
main diagonal. Figure 6 shows the first few bars of the
score: the repetitive nature of the piece should be clear
even to those unfamiliar with musical notation.

4.2 Brubeck’s Take 5
Figure 7 shows the beginning of the Dave Brubeck
composition Take 5 as performed by the Dave Brubeck
Quartet. The eponymous 5/4 time signature is visible
as a 3-2 subdivision, particularly in the lower left
corner. The especially bright regions are due to high
notes from the alto saxophone.

5. Mozart’s Horn Concerto
Figure 8 shows the start of the Rondo movement from
W. A. Mozart’s Horn Concerto No. 4. The statement of
the theme by the horn and tutti restatement by the
ensemble are visible in the lower left. While the two
statements are melodically identical, they appear
dissimilar because of the different timbres. The
sustained high horn note causes the bright quartet near
the 20-second mark.

5.1 Day Tripper by the Beatles.
Figure 9 shows the entire song Day Tripper by the

Beatles. The image has been annotated to show the
canonical pop song structure, which is: intro verse,
chorus, second verse, chorus, bridge, third verse and
chorus, coda, and “outro.” Vocals in the first verse start

Figure 6. Visualization of Bach’s Prelude No. 1 Figure 7. Take 5 by the Dave Brubeck Quartet

Figure 8. Rondo from Mozart’s Horn Concerto No. 4

t
t

Take 5
Dave
Brubeck
Quartet.

Alto sax
solo.

latter, note the slow first notes and the gradual
accelerando (speedup) as the checkerboard patterns
get closer together. The musical structure is clear from
the repetitive motifs; multiples of the repetition time
can be seen in the off-diagonal stripes parallel to the
main diagonal. Figure 6 shows the first few bars of the
score: the repetitive nature of the piece should be clear
even to those unfamiliar with musical notation.

4.2 Brubeck’s Take 5
Figure 7 shows the beginning of the Dave Brubeck
composition Take 5 as performed by the Dave Brubeck
Quartet. The eponymous 5/4 time signature is visible
as a 3-2 subdivision, particularly in the lower left
corner. The especially bright regions are due to high
notes from the alto saxophone.

5. Mozart’s Horn Concerto
Figure 8 shows the start of the Rondo movement from
W. A. Mozart’s Horn Concerto No. 4. The statement of
the theme by the horn and tutti restatement by the
ensemble are visible in the lower left. While the two
statements are melodically identical, they appear
dissimilar because of the different timbres. The
sustained high horn note causes the bright quartet near
the 20-second mark.

5.1 Day Tripper by the Beatles.
Figure 9 shows the entire song Day Tripper by the

Beatles. The image has been annotated to show the
canonical pop song structure, which is: intro verse,
chorus, second verse, chorus, bridge, third verse and
chorus, coda, and “outro.” Vocals in the first verse start

Figure 6. Visualization of Bach’s Prelude No. 1 Figure 7. Take 5 by the Dave Brubeck Quartet

Figure 8. Rondo from Mozart’s Horn Concerto No. 4

Horn
Concerto
No. 4
(Rondo)
Mozart.

High horn
note that
starts and
ends a
section.

at about 18 seconds; the 4 vocal phrases (“Got a good
reason/For taking the easy way out.”) can be seen
echoed in the second verse (“She's a big teaser...”)
about 20 seconds later. The chorus (“She was a day
tripper”) starts at about 30 seconds; the prominent
feature at 40 seconds is the sustained “so” (“it took me
so long/to find out”) which is recapitulated halfway
through the second verse at 75 seconds. Note that the
“so” of the third chorus (130 seconds) is not similar to
the preceding choruses; it is sung in falsetto,
approximately an octave plus a minor third higher than

the first two. The first half of the bridge is instrumental
while the second contains background vocals (“ah”),
the last half can be seen to be similar to first and
second “so’s” from the chorus. The repetitive 11-note
guitar/bass riff is particularly clear in both the
introduction and its note-for-note recapitulation in the
coda, and is also visible in the verses and outro, which
fades out. The bar-by-bar and section-by-section
periodicity are evident in the diagonal lines prevalent
throughout the image.

Figure 9. Day Tripper by Lennon/McCartney, performed by the Beatles

Day Tripper
The
Beatles

Song
sections
are easy to
segment,
identify.

Time (Seconds)

Figure 1: The similarity matrix, C, for Jimmy Buffet’s Margar-
itaville, showing the similarity between individual frames of the
song.

son [7] suggested that one could decompose frequency into similar
attributes.

We have found it useful to employ the musical relevance of
chroma in the development of features for our structural pattern
recognition. Suppose that we restructure the frequency spectrum
into a chroma spectrum [5]. This forms the basis for the chroma-
gram. Under such a restructuring, a harmonic series is mapped, in
a many-to-one fashion, onto a relatively small number of chroma
values. The first twenty harmonics of a harmonic series fall on only
ten different chroma values, while thirteen of those twenty occupy
only four distinct chroma values. This energy compaction is an
important property of the chromagram. Furthermore, all but four
of these first twenty harmonics fall within 15 cents of the clos-
est “ideal” chroma value of the equal tempered scale. This sug-
gests that we might discretize the chromagram into twelve distinct
chroma “bins” corresponding to the twelve pitch classes without a
significant loss of fidelity in the representation.

Performing this mapping procedure on the spectrum of a frame
of audio data provides us with a highly reduced representation of
the frame, consisting of a single twelve-element feature vector.
One of the most useful properties of this feature vector is its abil-
ity to encode the harmony within a given song. Thus, two audio
frames with similar harmonic content will have similar feature vec-
tors. Of course, other aspects of the audio signal are also encoded
(instrumentation, for instance, affects the chroma vector as well as
can changes in the “timbre” of an instrument’s sound). With this
feature vector, we can measure the similarity between two audio
frames simply by measuring the correlation between their feature
vectors. Then, we can further measure the correlation between ex-
tended regions by summing the correlation between their individ-
ual frames. This procedure forms the basis for our thumbnailing
algorithm, which is presented in the next section.

3. ALGORITHM DESCRIPTION

3.1. Frame Segmentation

Before the algorithm begins, we must first define a frame seg-
mentation for the song. We have found that using a dynamic,

35

30

15

10

5

0

Lag (Seconds)

Figure 2: The time-lag surface, T, for Jimmy Buffet’s Margari-
taville, showing the similarity between one segment of the song
and a segment lag seconds ahead of it.

beat-synchronous frame segmentation improves the system’s per-
formance. Thus, as a preprocessing step we apply a beat-tracking
algorithm developed by Simon Dixon [SI to the selection under
consideration. While not perfect, the beat-tracking algorithm per-
forms well for a wide variety of popular music. Typically, the
resulting frames are on the order of one-quarter to one-half of a
second in length.

3.2. Feature Calculation

For each frame of audio data, we compute a feature vector by cal-
culating the logarithmic magnitude of a zero-padded DFT, label-
ing each DFT bin with the appropriate pitch class, and then taking
the arithmetic mean of all similarly-classified bins. In the label-
ing process, we restrict the frequency range to 20 Hz to 2000 Hz.
We have found that this frequency range provides a sufficiently
rich description of the musical sounds that we are considering. We
also subtract the mean of the resulting vector, which normalizes
the feature vector with respect to the original signal’s amplitude.

33. Correlation Calculation

After feature calculation, we compute the correlation between each
pair of vectors calculated in step one. We place the results in a
similarity matrix that has lines of constant lag oriented along the
diagonals of the matrix. Thus, an extended region of similarity
between two portions of a song will show up as an extended area
of high correlation along one of the diagonals. One example of
such a similarity matrix is shown in Figure 1.

3.4. Correlation Filtering

In the next step, we filter along the diagonals of the similarity ma-
trix to compute similarity between extended regions of the song.
The size of these regions is dependent upon the length of the filter’s
impulse response. We use a uniform moving average filter where
the length of the impulse response is left as a design parameter of
the system. The filtering results are placed in a restructured time-
lag matrix, in which the lines of constant lag are oriented along the

16 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2001

Alternative
visualization:

Running time
on y axis,
correlation
lag time on
x axis.

UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Musical pitch has
two aspects:

Height: Octave

Chroma: Note name

And so, we can
draw the notes
on a piano
keyboard like a
spiral ...

If note timbres only
has octave harmonics ...

... if notes are in tune
to a reference.

A histogram can map waveforms to chords.
(Chroma algorithm, Fujishima, 1999)

Real-world histogram: Note timbres with arbitrary
harmonics ... imperfect instrument tuning ...

A histogram can map waveforms to chords.
(Chroma algorithm, Fujishima, 1999)

Non-octave harmonics?

3rd harmonic is @ 196.2 Hz,
lies between G and G#.

5th harmonic is @ 327 Hz,
lies between D# and E.

Example: C0 = 65.40 Hz

6th harmonic is @ 392.4 Hz,
lies between G and G#.

In practice, energy in octave
harmonics yields a good SNR.

The first 10 partials ... octaves The Definitive Guide to Evolver

This chart gives you settings for
most possible whole-number ratios.
Pitch/note values (C1, C2, etc.)
assume your carrier is set to C1.

Bring up the basic patch.

! OSC 1, 2, and 4 Level = 0

! Verify OSC 3 and 4 shapes =
01

! Verify OSC 3 frequency = C1

! FM 4!3 = 12

! Using the chart to the right,
set OSC 4’s values to each of
the ratios in turn, and play a
few notes up and down the
keyboard

Use the “Freq” parameter for the
basic semi-tones tuning. Adjust the
“Fine” parameter for cents, and note that all cents
values had to be rounded up or down a little to the
nearest cent, since Evolver doesn’t do fractional cents.

Modulator is… Ratio

The same note (C1) 1:1
One octave higher (C2, 12 semi-tones) 2:1
An octave and a 5th (G2, 19 semi-
tones),
+2 cents

3:1

Two octaves higher (C3, 24 semi-tones) 4:1
Two octaves higher plus a major 3rd
(E3, 28 semi-tones),
-14 cents

5:1

Two octaves and a 5th (G3, 31 semi-
tones),
+2 cents

6:1

Two octaves and a 7th (B3, 34 semi-
tones),
-31 cents

7:1

Three octaves higher (C4, 36 semi-
tones)

8:1

Three octaves and a 2nd (B5, 38 semi-
tones), +4 cents

9:1

Three octaves and a major 3rd, (C#5, 40
semi-tones) -14 cents

10:1

Keeping the ratios as whole numbers between 1 and 4
means you will be able to hear/perceive the frequency
of the modulator. This in turn means the resulting
timbre always has a distinctive pitch.

If you use whole-number ratios greater than 4, you
probably just hear the modulator as harmonics
(unless you are playing very low notes).

If your ratios aren’t whole numbers, you’re going to
get “non-harmonic partials” – stuff that sounds like
bells, or noise to some degree. It may not be as
“musically useful” as whole-number ratios, but it can
be very cool.

The amount of FM you apply makes a big difference in
the sound as well. The more FM applied, the heavier
the “warping” of the basic waveform. The settings for
this exercise are pretty tame but do a good job of
showing how changing the ratio alters the harmonic
structure.

Pick a couple of ratios and try stepping up the amount
of FM a bit while still using sine waves. You can hear

 29

Chord changes
correspond to
changes in
pitch class profile
histogram

576 CHAPTER 37 MUSIC SIGNAL ANALYSIS

fre
q

/ H
z

C Major, two inversions (twin = 128ms)

0.5 1 1.5 2 2.5
0

0

500

1000

1500

2000

250

750

1250

1750

-60

-50

-40

-30

-20

-10

0

time / sec

level / dB intensity
0.5 1 1.5 2 2.50

time / sec

ch
ro

m
a

bin

C Major - chromagram

C

D

E

G

A

B

0

0.02

0.04

0.06

0.08

C Major, two inversions

FIGURE 37.5 The two C major chord inversions described in the text, synthesized with a
piano voice. Left: Score notation; Middle: Spectrogram analysis; Right: Equivalent chroma
representation (or ‘chromagram’).

stay the same in successive time frames, and the probability that any particular chord will
be followed by any other, can be captured in a state transition matrix. Put together, these
constitute a hidden Markov model for chord recognition, and this can even be trained
using the same EM procedure used in speech recognition if, for instance, the label data is
available only as a chord sequence for a given training audio example, but without detailed
time alignments [23]. Much recent work has looked at refinements to this basic chord
transcription framework, with corresponding improvements in performance [2, 14, 3].

37.6 STRUCTURE DETECTION

Above the level of individual chords and notes, music has further levels of structure, such
as phrases and sections. Such structures comprise coherent sequences of chords and/or
notes that often repeat, with or without variations. A listener, particularly one with some
musical training, can easily identify phrases and sections, and might segment a pop song
into ‘intro’, ‘verse’, ‘chorus’, etc., or a piece of classical music into ‘theme 1’, ‘bridge’,
‘development’, etc. As we might expect, there has also been a substantial body of work
that attempts a similar segmentation using automatic analysis.

The problem of detecting musical structure is unusual because it constitutes a combi-
nation of local factors (e.g., a change in chord sequence or instrumentation between verse
and chorus) and global factors (e.g., one definition of a chorus is a segment that repeats
periodically with little or no variation). Thus, to successfully recover structure, we should
expect to involve both local and larger-scale comparisons, and need some way to com-
bine these measurements. Another complicating aspect is that, while music listeners will
generally agree that it makes sense to divide a piece of music into segments that relate to
one another in various ways, it is harder to get listeners to agree on exactly where those

Chroma is invariant to note order of the chord

576 CHAPTER 37 MUSIC SIGNAL ANALYSIS

fre
q

/ H
z

C Major, two inversions (twin = 128ms)

0.5 1 1.5 2 2.5
0

0

500

1000

1500

2000

250

750

1250

1750

-60

-50

-40

-30

-20

-10

0

time / sec

level / dB intensity
0.5 1 1.5 2 2.50

time / sec

ch
ro

m
a

bin

C Major - chromagram

C

D

E

G

A

B

0

0.02

0.04

0.06

0.08

C Major, two inversions

FIGURE 37.5 The two C major chord inversions described in the text, synthesized with a
piano voice. Left: Score notation; Middle: Spectrogram analysis; Right: Equivalent chroma
representation (or ‘chromagram’).

stay the same in successive time frames, and the probability that any particular chord will
be followed by any other, can be captured in a state transition matrix. Put together, these
constitute a hidden Markov model for chord recognition, and this can even be trained
using the same EM procedure used in speech recognition if, for instance, the label data is
available only as a chord sequence for a given training audio example, but without detailed
time alignments [23]. Much recent work has looked at refinements to this basic chord
transcription framework, with corresponding improvements in performance [2, 14, 3].

37.6 STRUCTURE DETECTION

Above the level of individual chords and notes, music has further levels of structure, such
as phrases and sections. Such structures comprise coherent sequences of chords and/or
notes that often repeat, with or without variations. A listener, particularly one with some
musical training, can easily identify phrases and sections, and might segment a pop song
into ‘intro’, ‘verse’, ‘chorus’, etc., or a piece of classical music into ‘theme 1’, ‘bridge’,
‘development’, etc. As we might expect, there has also been a substantial body of work
that attempts a similar segmentation using automatic analysis.

The problem of detecting musical structure is unusual because it constitutes a combi-
nation of local factors (e.g., a change in chord sequence or instrumentation between verse
and chorus) and global factors (e.g., one definition of a chorus is a segment that repeats
periodically with little or no variation). Thus, to successfully recover structure, we should
expect to involve both local and larger-scale comparisons, and need some way to com-
bine these measurements. Another complicating aspect is that, while music listeners will
generally agree that it makes sense to divide a piece of music into segments that relate to
one another in various ways, it is harder to get listeners to agree on exactly where those

However, for some types of chords, the
same note list in different note orders
produces different musical effects, and
thus are given different chord names.

Usually, a desirable property.

Input Signal

G#
G
F#
F
E
D#
D
C#
C
B
A#
A

STFT normalized
 sum EM

DFT frames PCP frames

Am

E7

C

Transcription / Alignment

Viterbi

0

11kHz

Chord Models

C C C AmAmAmC
440Hz

.

.

.

.

.

.

.

Figure 1: System Overview

recognize these labels; in forced alignment, observations are
aligned to a composed HMM whose transitions are limited to
those dictated by a specific chord sequence, as in training i.e.
only the chord-change times are being recovered, since the
chord sequence is known. In recognition, the HMM is uncon-
strained, in that any chord may follow any other, subject only to
the Markov constraints in the trained transition matrix. We per-
form both sets of experiments to demonstrate that even when
pure recognition performance is quite poor, a reasonable ac-
curacy under forced alignments indicates that the models have
succeeded in learning the desired chord characteristics to some
extent. The output of the Viterbi algorithm is the single state-
path labeling with the highest likelihood given the model pa-
rameters. This best-path assigns a chord to every 100ms time
slice, resulting in a time-aligned song transcription.

2.5 Weighted Averaging of Rotated PCP Vectors

The outcome of the EM training is a set of model parameters
including means and variances in PCP feature space for each of
the defined chord states. These values define our initial chord
models, however, an improvement can be made by calculating a
weighted average of the models for every chord family (major,
minor, maj7 etc.) across all root chromas (A, A#, B, C, etc.).
This involves rotating the PCP vectors from each chroma until
PCP[0] is the root pitch class, computing a weighted average
across all the chromas (weighted by frequency of chord occur-
rence), then un-rotating the weighted average PCP vectors back
to their original positions to construct new, regularized models
for each chord. Thus, if f indexes across chord families and c
is the numerical offset of each chroma relative to A in quarter
tones (e.g. A !→ 0, A# !→ 2, B !→ 4 etc.), then the mean vector
for the parent model of chord family f in PCP space is

µ̄f [p] =

∑
c µf,c[(p− c) mod 24] ·Nf,c∑

cNf,c
(5)

where µf,c is the original mean vector for one specific chord
family/chroma combination, Nf,c is the number of frames as-
signed to that state in forced alignment of the training data, and
p indexes the 24 PCP bins. The rotated models then replace the
individual family/chroma state models with

¯µf,c[p] = µ̄f [(p+ c) mod 24] (6)

(Variances are similarly pooled). Themotivation is that by using
values characteristic to the entire family, a derived state model
avoids overfitting its particular chord data. There is also the
advantage of increasing each individual chord’s training set to

Album Song Set
Beatles for Sale Eight days a week test

Every little thing test
I don’t want to spoil
the party

train

I’ll follow the sun train
I’m a loser train

Help Help train
I’ve just seen a face train
It’s only love train
Ticket to ride train
Yesterday train
You’re going to lose
that girl

train

You’ve got to hide
your love away

train

A Hard Day’s Night A hard day’s night train
And I love her train
Can’t buy me love train
I should’ve known
better

train

I’m happy just to
dance with you

train

If I fell train
Tell me why train
Things we said today train

Table 1: Corpus of 20 early Beatles songs used in the experi-
ments.

the union of all chord family members. The results below show
that this simple approach gave very significant improvements.

3 Implementation and Experiments
The Hidden Markov Model Toolkit (Young et al., 1997) was
used to implement our chord recognition system. Twenty songs
from three early Beatles albums were selected for our experi-
ments (see table 1). The songs were read from CD then down-
sampled and mixed into mono files at 11025 Hz sampling rate.
The chord sequences for each song were produced by mapping
the progressions from a standard book of Beatles transcriptions
(Paperback Song Series: The Beatles, 1995) to a simpler set of
chords as shown in table 2. The twenty soundfiles and their as-
sociated chord sequences comprise the input to our system. Two
songs, “Eight Days a Week” and “Every Little Thing”, were

Chord Segmentation and Recognition using EM-Trained Hidden Markov Models

Alexander Sheh and Daniel P.W. Ellis
LabROSA, Dept. of Electrical Engineering,

Columbia University, New York NY 10027 USA
{asheh79,dpwe}@ee.columbia.edu

Abstract

Automatic extraction of content description from
commercial audio recordings has a number of impor-
tant applications, from indexing and retrieval through
to novel musicological analyses based on very large
corpora of recorded performances. Chord sequences
are a description that captures much of the charac-
ter of a piece in a compact form and using a mod-
est lexicon. Chords also have the attractive property
that a piece of music can (mostly) be segmented into
time intervals that consist of a single chord, much as
recorded speech can (mostly) be segmented into time
intervals that correspond to specific words. In this
work, we build a system for automatic chord tran-
scription using speech recognition tools. For features
we use “pitch class profile” vectors to emphasize the
tonal content of the signal, and we show that these
features far outperform cepstral coefficients for our
task. Sequence recognition is accomplished with hid-
den Markov models (HMMs) directly analogous to
subword models in a speech recognizer, and trained
by the same Expectation-Maximization (EM) algo-
rithm. Crucially, this allows us to use as input only
the chord sequences for our training examples, with-
out requiring the precise timings of the chord changes
— which are determined automatically during train-
ing. Our results on a small set of 20 early Beatles
songs show frame-level accuracy of around 75% on a
forced-alignment task.
Keywords: audio, music, chords, HMM, EM.

1 Introduction
The human auditory system is capable of extracting rich and
meaningful data from complex audio signals. Machine listening
research attempts to model this process using computers. In the
music domain, there has been limited success when the input
signal or analysis is relatively simple, i.e. single instrument,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

beat detection, etc. Unfortunately, for complex signals, such
as ensemble performances, or more complex analyses, such as
pitch transcription, the task rapidly increases in difficulty. In
this paper we investigate a problem with complexity in both
dimensions, chord recognition on unstructured, polyphonic, and
multi-timbre audio. A system able to transcribe an arbitrary
audio recording into an accurate chord sequence would have
many applications in finding particular examples or themes in
large audio databases, as well as enabling interesting new large-
scale statistical analyses of musical content.
Our specific approach uses the hidden Markov models (HMMs)
made popular in speech recognition (Gold and Morgan, 1999),
including the sophisticated Expectation-Maximization (EM) al-
gorithm used to train them. This is a statistical approach, in
which the wide variety of feature frames falling under a sin-
gle label is modeled as random variation that follows an esti-
mated distribution. By making a direct analogy between the
sequence of discrete, non-overlapping chord symbols used to
describe a piece of music, and the word sequence used to de-
scribe recorded speech, much of the speech recognition frame-
work can be used with minimal modification. In particular, no
timing alignment is required between the chord labels and the
training audio — using the constraints of the chord sequence
alone, the EM approach converges to find optimal segmenta-
tions.
We draw on the prior work of Fujishima (1999) who proposed a
representation of audio termed “pitch class profiles” (PCPs), in
which the Fourier transform intensities are mapped to the twelve
semitone pitch classes (chroma). This is very similar to the
“chroma spectrum” proposed by Bartsch and Wakefield (2001).
The assumption is that this representation captures harmonic in-
formation in a more meaningful way, thereby facilitating chord
recognition. Fujishima’s system uses nearest-neighbor classifi-
cation to chord templates, and performed well on samples con-
taining a single instrument.
Our system has parallels with the work by Raphael (2002), who
also uses HMMs trained by EM to transcribe music in terms of
chord labels. However, since his ultimate goal is note-level tran-
scription, his “chord” vocabulary distinguishes between each
different combination of simultaneous notes, in contrast to our
approach of having a single model for “A minor” etc. This huge
state space precludes direct training of models for each chord,
and instead structural information about the harmonics expected
for any given note combination are used to select among a rel-
atively small set of model ‘factors’, from which the desired

Chroma + the standard ASR algorithms

true E G D Bm G

align E G DBm G

recog E G Bm Am Em7 Bm Em7

16.27 24.84
time / sec

intensity

A

#

B

C

#

D

#

E

F

#

G

#

pi
tc

h
cl

as
s

Beatles - Beatles For Sale - Eight Days a Week (4096pt)

20

0

40

60

80

100

120

Figure 2: Illustration of PCP features vectors, ground truth labels, forced alignment output, and recognition output, for a brief
segment of “Eight Days a Week”.

cept, curiously, recognition based on train20. The strength of
the PCP representation, and the model averaging approach, is
clearly demonstrated, with the PCP ROT models performing as
much a four times better than the best MFCC counterparts.
Forced alignment always outperforms recognition, as expected
since the basic chord sequence is already known in forced align-
ment which then has only to determine the boundaries, whereas
recognition has to determine the chord labels too. Comparing
the performance of train18 and train20 (i.e. testing on examples
that are distinct from, or included in, the training set), we see a
mixed effect with MFCC features. For the PCP system, testing
on the training set (train20) gives a significant increase in ac-
curacy for both alignment and recognition, indicating that these
models are able to exploit the ‘cheating’ information of getting
a preview of the test cases. By contrast, PCP ROT achieves
no benefit from training on the test set (and even does signifi-
cantly worse on recognizing “Every Little Thing”, which may
reflect some pathological case in the local maximum found by
EM). As a general rule, if including the test data in the training
set does not significantly increase performance, we can at least
be confident that the models are not overfitting the data; thus,
for PCP ROT, we could try training with more model param-
eters, such as Gaussian mixtures rather than single Gaussians,
since we have not already overfit our models to the data—even
though this is already the best-performing system overall.

3.2 Chord Confusion

Greater insight into system performance can be obtained by ex-
amining the specific kinds of errors being made in terms of mis-
recognitions of particular chords into other classes. The case we
are most interested in is recognition (rather than alignment) us-

ing weight-averaged PCP HMMs (PCP ROT), trained without
using test songs (train18). Table 4 presents the confusion ma-
trices for every frame in “Eight Days a Week”, which we label
with only 5 chords plus “X”. Notice the frequent confusion be-
tween major chords and their minor version, which differ only
by the semitone between the major and minor third intervals.
Better discrimination of these chords might be achieved by in-
creasing the system’s frequency resolution.

3.3 Model Means

Figure 3 shows the actual PCP-domain ‘signatures’ — the
pooled chord family mean vectors — learned in the PCP ROT
train18 system. While it is difficult to make any strong inter-
pretation of this plot, it is interesting to see the similarities and
differences between the different chords.

3.4 Output Example

Figure 2 shows an eight-second segment of the song “Eight
Days aWeek” taken about 16 seconds into the song. The display
consists of the PCP feature vectors shown in a spectrogram-
like format. Underneath are three sets of chord labels:
the hand-marked ground truth, the labels obtained by forced
alignment, and the labels returned by recognition (using the
PCP ROT/train18 system). While this is only a small fragment,
it gives a flavor of the nature of the results obtained.

4 Future Work
4.1 Training Parameters

Our future work on this system will concentrate on the follow-
ing areas:

love babe, just like i need you, oh, hold me, love me

8 days a week, The Beatles

true E G D Bm G

align E G DBm G

recog E G Bm Am Em7 Bm Em7

16.27 24.84
time / sec

intensity

A

#

B

C

#

D

#

E

F

#

G

#

pi
tc

h
cl

as
s

Beatles - Beatles For Sale - Eight Days a Week (4096pt)

20

0

40

60

80

100

120

Figure 2: Illustration of PCP features vectors, ground truth labels, forced alignment output, and recognition output, for a brief
segment of “Eight Days a Week”.

cept, curiously, recognition based on train20. The strength of
the PCP representation, and the model averaging approach, is
clearly demonstrated, with the PCP ROT models performing as
much a four times better than the best MFCC counterparts.
Forced alignment always outperforms recognition, as expected
since the basic chord sequence is already known in forced align-
ment which then has only to determine the boundaries, whereas
recognition has to determine the chord labels too. Comparing
the performance of train18 and train20 (i.e. testing on examples
that are distinct from, or included in, the training set), we see a
mixed effect with MFCC features. For the PCP system, testing
on the training set (train20) gives a significant increase in ac-
curacy for both alignment and recognition, indicating that these
models are able to exploit the ‘cheating’ information of getting
a preview of the test cases. By contrast, PCP ROT achieves
no benefit from training on the test set (and even does signifi-
cantly worse on recognizing “Every Little Thing”, which may
reflect some pathological case in the local maximum found by
EM). As a general rule, if including the test data in the training
set does not significantly increase performance, we can at least
be confident that the models are not overfitting the data; thus,
for PCP ROT, we could try training with more model param-
eters, such as Gaussian mixtures rather than single Gaussians,
since we have not already overfit our models to the data—even
though this is already the best-performing system overall.

3.2 Chord Confusion

Greater insight into system performance can be obtained by ex-
amining the specific kinds of errors being made in terms of mis-
recognitions of particular chords into other classes. The case we
are most interested in is recognition (rather than alignment) us-

ing weight-averaged PCP HMMs (PCP ROT), trained without
using test songs (train18). Table 4 presents the confusion ma-
trices for every frame in “Eight Days a Week”, which we label
with only 5 chords plus “X”. Notice the frequent confusion be-
tween major chords and their minor version, which differ only
by the semitone between the major and minor third intervals.
Better discrimination of these chords might be achieved by in-
creasing the system’s frequency resolution.

3.3 Model Means

Figure 3 shows the actual PCP-domain ‘signatures’ — the
pooled chord family mean vectors — learned in the PCP ROT
train18 system. While it is difficult to make any strong inter-
pretation of this plot, it is interesting to see the similarities and
differences between the different chords.

3.4 Output Example

Figure 2 shows an eight-second segment of the song “Eight
Days aWeek” taken about 16 seconds into the song. The display
consists of the PCP feature vectors shown in a spectrogram-
like format. Underneath are three sets of chord labels:
the hand-marked ground truth, the labels obtained by forced
alignment, and the labels returned by recognition (using the
PCP ROT/train18 system). While this is only a small fragment,
it gives a flavor of the nature of the results obtained.

4 Future Work
4.1 Training Parameters

Our future work on this system will concentrate on the follow-
ing areas:

Evaluation techniques also borrowed from ASR

XIRTAMNOISUFNOC"ROJAMA"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

A 4 .71 . . 94 . .

bB/#A

bC/B

C/#B

bD/#C

D . 3

bE/#D

bF/E 71 5 . . 1 . .

F/#E 1

bG/#F . 9

G

bA/#G

XIRTAMNOISUFNOC"RONIMB"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

bC/B . 27

C/#B

bD/#C

D . 3

bE/#D

bF/E 8 15 . 14 . . .

F/#E 3 3

bG/#F . 21 . 6 . . .

G 2

bA/#G

A 1 . .

bB/#A . 9

XIRTAMNOISUFNOC"ROJAMD"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

D 03 911 . 5 94 . .

bE/#D

bF/E 81 43 . 14 . . .

F/#E 7

bG/#F . 24 . 51 . . .

G

bA/#G

A 91 6 . . 67 . .

bB/#A . . . 25 . . .

bC/B . 02

C/#B

bD/#C . 1

XIRTAMNOISUFNOC"ROJAME"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

bF/E 851 511 . 9 . . .

F/#E 9

bG/#F . . . 11 . . .

G 3

bA/#G

A 9 . . . 1 . .

bB/#A

bC/B 8 . . . , . .

C/#B

bD/#C . 02

D . 41

bE/#D

XIRTAMNOISUFNOC"ROJAMG"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

G 221 53

bA/#G

A 11

bB/#A

bC/B . 42 . 3 . . .

C/#B

bD/#C

D 31 71 . 2 1 . .

bE/#D

bF/E 1 401 . 62 . . .

F/#E

bG/#F . 21

XIRTAMNOISUFNOC"DROHCX"
keeWasyaDthgiE

jaM niM 7jaM 7niM 7moD guA miD

A 91

bB/#A

bC/B . 12

C/#B

bD/#C

D . 53

bE/#D

bF/E

F/#E

bG/#F . 1

G

bA/#G

Table 4: Confusion matrices for recognition of “Eight Days a Week”, PCP ROT, train18. Enharmonic equivalent chords have been
combined.

5 10 15 20 25 30 35 40 time / beats
@ 138 BPM

10
20
30
40

0

2 4 6 8 10 12 14 16 18 time / s

fre
q

/ M
el

on
se

t
st

re
ng

th

G
E
D
C
Ach

ro
m

a
bi

ns

G
E
D
C
Ach

ro
m

a
bi

ns

Fig. 1. Excerpt showing the Mel-scale spectrogram (top pane), the
smoothed onset strength envelope (second pane), per-frame chroma
vectors (third frame), and per-beat chroma vectors (bottom frame)
for the first 20 s of the Elliot Smith track. Chosen beats are shown as
vertical divisions. Notice the extensive syncopation (strong onsets
midway between perceived beats).

use dynamic programming. The description here is brief; for more
details please see [6].

The first stage of beat tracking converts the audio into an “onset
strength” value at a 250 Hz sampling rate. This is derived by taking
the first-order difference along time in a log-magnitude 40-channel
Mel-frequency spectrogram, throwing away negative values, then
summing across frequency. Slowly-varying offsets (corresponding
to variations in gain in the original signal) are removed by a high-
pass filter at about 0.5 Hz. Then, an approximate global tempo is
estimated by autocorrelating the onset strength, applying a ‘prefer-
ence window’ which is a Gaussian on a log-time axis, and choosing
the period with the largest windowed autocorrelation as the tempo.
As discussed in section 6, we varied the center of the preference
window between 0.25 and 0.5 s – i.e. between 240 and 120 beats per
minute (BPM) – to obtain beat segments at different points in the
metrical hierarchy of the music.

We then use dynamic programming to find the set of beat times
that optimize both the onset strength at each beat (to prefer the strongest
onsets as beats) and the spacing between beats (to reflect the global
tempo parameter set in the previous stage). Dynamic programming
is an efficient way to search all possible beat sequences to optimize a
total cost that can be broken down into a local score at each beat time
(the onset strength), and a transition cost. Conventionally, the tran-
sition cost is additive, but we implemented it as a scaling window,
again a Gaussian on a log-time axis, applied to the onset strength
envelope for 0.5 . . . 2.0× the tempo period prior to the current time,
with the maximum at the target period. For every possible beat time,
the best preceding beat time is located (as the maximum of the scaled
onset strength within the window), and the cumulative score up to
that beat is calculated. Then, the largest score close to the end of the
audio is located, and the entire sequence of beats leading to that beat
time is recovered through a ‘backtrace’ table storing the predecessor
for every beat time.

Figure 1 shows an example of the beats found in the first 20 s of
“Drink Up Baby” performed by Elliott Smith. This track consists of
guitar and vocals only, and includes significant syncopation, making

it a challenge for beat tracking. The advantage of dynamic program-
ming is that it effectively searches all possible sets of beat instants,
and is guaranteed to find the best-scoring sequence up to any point.
This allows the best global beat sequence to be found, even if it in-
volves some locally-poor matching: Beats that fall during pauses or
uninflected sustained notes are spaced evenly to “bridge” between
the clearer beats on either edge.

4. CHROMA FEATURES

If the beat tracking can identify the same main pulse in different
renditions of the same piece, then representing the audio against a
time base defined by the detected beats normalizes away variations in
tempo. We choose to record a single feature vector per beat, and use
twelve element ‘chroma’ features to capture both the dominant note
(typically melody) as well as the broad harmonic accompaniment
[7, 2]. Chroma features record the intensity associated with each of
the 12 semitones (e.g. piano keys) within one octave, but all octaves
are folded together. The idea of calculating harmonic features over
beat-length segments appears to have been developed several times;
we first became aware of it in [10].

Rather than using a coarse mapping of FFT bins to the chroma
classes they overlap (which is particularly blurry at low frequencies),
we use the phase-derivative (instantaneous frequency) within each
FFT bin both to identify strong tonal components in the spectrum
(indicated by spectrally-adjacent bins with close instantaneous fre-
quencies) and to get a higher-resolution estimate of the underlying
frequency [4, 1]. (This technique to remove nontonal components
and improve frequency resolution beyond FFT bin level has similar
motivation and impact to the sinusoid-modeling-based preprocess-
ing proposed by [8], but we argue it is conceptually and computa-
tionally simpler.) We found that using only components up to 1 kHz
in our chroma features worked best. An interesting aural rendition of
the extracted information can be generated by using the 12 chroma
bins to modulate Shepard tones (mixtures of harmonics in octave
relationships only).

In an effort to avoid problems when the a piece is played slightly
out of tune, the mapping of frequencies to chroma bins is adjusted
for each piece by up to ±0.5 semitones to make the single strongest
frequency peak from a long analysis window line up exactly with a
chroma bin center. The lower panes of figure 1 show chroma features
before and after averaging into beat-length segments.

5. MATCHING

From the processing so far, we have each recording represented by a
matrix of 12 chroma dimensions by however many beats are detected
in the entire piece. We expect cover versions to have long stretches
(verses, choruses, etc.) that match reasonably well, although we can-
not expect these to occur in exactly the same places, in absolute or
relative terms, in the two versions, for instance due to minor errors in
the beat tracking, or as a result of variations in the structure (number
of verses etc.). We initially experimented with chopping one piece
up into multiple fragments and looking for the best cross-correlation
of each fragment in the test piece, but in addition to being very slow
it was difficult to choose the best length of fragment size. In the
end, the simpler approach of cross-correlating the entirety of the two
feature matrices gave better results. Although this is unable to re-
ward the situation when multiple fragments align but at different rel-
ative alignments, it does have the nice property of rewarding both a
good correlation between the chroma vectors and a long sequence of

,9�������

Elliot Smith, “Between the Bars”.

Per-beat chroma vectors often work better

5 10 15 20 25 30 35 40 time / beats
@ 138 BPM

10
20
30
40

0

2 4 6 8 10 12 14 16 18 time / s

fre
q

/ M
el

on
se

t
st

re
ng

th

G
E
D
C
Ach

ro
m

a
bi

ns

G
E
D
C
Ach

ro
m

a
bi

ns

Fig. 1. Excerpt showing the Mel-scale spectrogram (top pane), the
smoothed onset strength envelope (second pane), per-frame chroma
vectors (third frame), and per-beat chroma vectors (bottom frame)
for the first 20 s of the Elliot Smith track. Chosen beats are shown as
vertical divisions. Notice the extensive syncopation (strong onsets
midway between perceived beats).

use dynamic programming. The description here is brief; for more
details please see [6].

The first stage of beat tracking converts the audio into an “onset
strength” value at a 250 Hz sampling rate. This is derived by taking
the first-order difference along time in a log-magnitude 40-channel
Mel-frequency spectrogram, throwing away negative values, then
summing across frequency. Slowly-varying offsets (corresponding
to variations in gain in the original signal) are removed by a high-
pass filter at about 0.5 Hz. Then, an approximate global tempo is
estimated by autocorrelating the onset strength, applying a ‘prefer-
ence window’ which is a Gaussian on a log-time axis, and choosing
the period with the largest windowed autocorrelation as the tempo.
As discussed in section 6, we varied the center of the preference
window between 0.25 and 0.5 s – i.e. between 240 and 120 beats per
minute (BPM) – to obtain beat segments at different points in the
metrical hierarchy of the music.

We then use dynamic programming to find the set of beat times
that optimize both the onset strength at each beat (to prefer the strongest
onsets as beats) and the spacing between beats (to reflect the global
tempo parameter set in the previous stage). Dynamic programming
is an efficient way to search all possible beat sequences to optimize a
total cost that can be broken down into a local score at each beat time
(the onset strength), and a transition cost. Conventionally, the tran-
sition cost is additive, but we implemented it as a scaling window,
again a Gaussian on a log-time axis, applied to the onset strength
envelope for 0.5 . . . 2.0× the tempo period prior to the current time,
with the maximum at the target period. For every possible beat time,
the best preceding beat time is located (as the maximum of the scaled
onset strength within the window), and the cumulative score up to
that beat is calculated. Then, the largest score close to the end of the
audio is located, and the entire sequence of beats leading to that beat
time is recovered through a ‘backtrace’ table storing the predecessor
for every beat time.

Figure 1 shows an example of the beats found in the first 20 s of
“Drink Up Baby” performed by Elliott Smith. This track consists of
guitar and vocals only, and includes significant syncopation, making

it a challenge for beat tracking. The advantage of dynamic program-
ming is that it effectively searches all possible sets of beat instants,
and is guaranteed to find the best-scoring sequence up to any point.
This allows the best global beat sequence to be found, even if it in-
volves some locally-poor matching: Beats that fall during pauses or
uninflected sustained notes are spaced evenly to “bridge” between
the clearer beats on either edge.

4. CHROMA FEATURES

If the beat tracking can identify the same main pulse in different
renditions of the same piece, then representing the audio against a
time base defined by the detected beats normalizes away variations in
tempo. We choose to record a single feature vector per beat, and use
twelve element ‘chroma’ features to capture both the dominant note
(typically melody) as well as the broad harmonic accompaniment
[7, 2]. Chroma features record the intensity associated with each of
the 12 semitones (e.g. piano keys) within one octave, but all octaves
are folded together. The idea of calculating harmonic features over
beat-length segments appears to have been developed several times;
we first became aware of it in [10].

Rather than using a coarse mapping of FFT bins to the chroma
classes they overlap (which is particularly blurry at low frequencies),
we use the phase-derivative (instantaneous frequency) within each
FFT bin both to identify strong tonal components in the spectrum
(indicated by spectrally-adjacent bins with close instantaneous fre-
quencies) and to get a higher-resolution estimate of the underlying
frequency [4, 1]. (This technique to remove nontonal components
and improve frequency resolution beyond FFT bin level has similar
motivation and impact to the sinusoid-modeling-based preprocess-
ing proposed by [8], but we argue it is conceptually and computa-
tionally simpler.) We found that using only components up to 1 kHz
in our chroma features worked best. An interesting aural rendition of
the extracted information can be generated by using the 12 chroma
bins to modulate Shepard tones (mixtures of harmonics in octave
relationships only).

In an effort to avoid problems when the a piece is played slightly
out of tune, the mapping of frequencies to chroma bins is adjusted
for each piece by up to ±0.5 semitones to make the single strongest
frequency peak from a long analysis window line up exactly with a
chroma bin center. The lower panes of figure 1 show chroma features
before and after averaging into beat-length segments.

5. MATCHING

From the processing so far, we have each recording represented by a
matrix of 12 chroma dimensions by however many beats are detected
in the entire piece. We expect cover versions to have long stretches
(verses, choruses, etc.) that match reasonably well, although we can-
not expect these to occur in exactly the same places, in absolute or
relative terms, in the two versions, for instance due to minor errors in
the beat tracking, or as a result of variations in the structure (number
of verses etc.). We initially experimented with chopping one piece
up into multiple fragments and looking for the best cross-correlation
of each fragment in the test piece, but in addition to being very slow
it was difficult to choose the best length of fragment size. In the
end, the simpler approach of cross-correlating the entirety of the two
feature matrices gave better results. Although this is unable to re-
ward the situation when multiple fragments align but at different rel-
ative alignments, it does have the nice property of rewarding both a
good correlation between the chroma vectors and a long sequence of

,9�������

-500 -400 -300 -200 -100 0 100 200 300 400
0

0.2
0.4
0.6

100 200 300 400 500 beats @281 BPM

-500 -400 -300 -200 -100 0 100 200 300 400 skew / beats

skew / beats

-5

0

+5

G
E
D
C
Ach

ro
m

a
bi

ns

G
E
D
C
Ach

ro
m

a
bi

ns
sk

ew
 /

se
m

ito
ne

s
Elliott Smith - Between the Bars

Glen Phillips - Between the Bars

Cross-correlation

Cross-correlation @ skew = +2 semitones

raw

filtered

Fig. 2. Illustration of cover song matching. Top two panes are beat-
chroma matrices for two versions of “Between the Bars”. Third pane
is two-dimensional cross correlation for all possible chroma rota-
tions out to ±500 beats skew. Bottom pane shows slice through the
cross-correlation at +2 semitones (indicated by line), plus result of
high-pass filtering to emphasize only peaks that result from precise
beat alignment. Note the subpeaks at around 290 beats relative to
the main peak, resulting from structural repetition in the song.

aligned beats, since the overall peak correlation is a product of both
of these. Chroma vectors are intrinsically non-negative; we scaled
them to have unit norm at each time slice. The cross-correlation is
further normalized by the length of the shorter segment, so the corre-
lation results are bounded to lie between zero and one. We perform
the cross-correlation twelve times, once for each possible relative
rotation (transposition) of the two feature matrices.

We observed, however, a number of spurious large correlations
from relatively long stretches dominated by a single chroma bin; this
occurs in many tracks. We found that genuine matches were indi-
cated not only by cross-correlations of large magnitudes, but that
these large values occurred in narrow local maxima in the cross-
correlations that fell off rapidly as the relative alignment changed
from its best value. To emphasize these sharp local maxima, we
choose the transposition that gives the largest peak correlation then
high-pass filter that cross-correlation function with a 3 dB point at
0.1 rad/sample. The ‘distance’ value measured between two pieces
is simply the reciprocal of the peak value of this high-pass filtered
cross-correlation; matching tracks typically score below 20, whereas
unrelated tracks are usually above 50.

Matching will fail if the feature extraction is based on beats with
different relations to the music i.e. if one version tracks twice as
many beats per song phrase. To accommodate this, we experimented
with including two representations of each track, the original plus
one using double the beat length (i.e. around 120 bpm) as reported
in our experiments below.

Figure 2 shows these stages in the matching of the Elliott Smith
track to a cover version recorded live by Glen Phillips. The top
two panes shows the normalized, beat-synchronous IF-based chroma
feature matrices for both tracks (which have tempos about 2% dif-
ferent). The third pane shows the raw cross-correlation for relative

timings of −500 . . . 500 beats, and all 12 possible relative chroma
skews. The bottom panel shows the slice through this cross-correlation
matrix for the most favorable relative tuning (Phillips transposed up
2 semitones) both before and after high-pass filtering; it is clear that
filtering removes the triangular baseline correlation but preserves the
sharp peak at around +20 beats indicating the match between the
versions. (The Phillips version includes some audience noise at the
start of the track, which causes this delay.) Note that the beat track-
ing in the live version is far from perfect, but the matching succeeds
anyway.

6. EVALUATION

We have developed and evaluated this system on three databases: a
small development set of contemporary pop music, a larger collec-
tion of pop music covers including live versions, and as part of the
independent international 2006 MIREX evaluation.

6.1. Development set

We developed the system on set of 15 pairs of pop-music tracks that
were versions of the same song by different artists. They were ex-
tracted from the uspop2002 dataset by making a list of all tracks
from the total set of 8764 tracks that had the duplicate names (yield-
ing about 600 tracks), then listening to each pair to see if they were
in fact the same piece; about 20% were. We stopped after we had
found 15 pairs. Interestingly, it was often hard to tell if two tracks
were the same until the verse began, at which point the lyrics quickly
indicated matching tracks.

We made two lists of tracks, each containing one of the two ver-
sions of each track. In the evaluation, each track in the first list was
compared to every track in the second list; the track that was most
similar was reported as the cover version. Thus, the task was to
identify the cover version knowing that one exists, rather than decid-
ing if two songs were similar enough to be considered covers. Our
best system (over variations in parameters such as filter breakpoints
for the chroma features and matching) correctly identified 10 of 15
tracks; typical performance varied between 6 and 9 correct (where
guessing would give one). Four of the pairs were clearly difficult for
our representation and were almost never correctly identified.

6.2. Test set

To get a finer-grained sense of the performance, and to make a test
that was independent of our development set, we identified a collec-
tion of 94 pairs from among our personal music collections. Many
of these consisted of comparing live performances of pieces with
the studio recordings by the same band; however, these live versions
often showed significant stylistic variations. Table 1 lists the per-
formance on this test set of several variants of our algorithm. We
see that using the instantaneous-frequency-based chroma features is
critical to the discriminability of the representation, but that using
multiple tempo candidates was not successful, indicating that the
“dominant” tempo is consistently chosen across different versions,
for the most part. Biasing towards a lower tempo (120 bpm) has a
slight negative impact on accuracy, but this may be acceptable given
the smaller and more efficient representation.

6.3. MIREX Evaluation

MIREX (Music Information Retrieval Evaluation eXchange) is an
international effort to develop formal, common evaluation standards

,9�������

Cover songs: Discover tempo & transposition

-500 -400 -300 -200 -100 0 100 200 300 400
0

0.2
0.4
0.6

100 200 300 400 500 beats @281 BPM

-500 -400 -300 -200 -100 0 100 200 300 400 skew / beats

skew / beats

-5

0

+5

G
E
D
C
Ach

ro
m

a
bi

ns

G
E
D
C
Ach

ro
m

a
bi

ns
sk

ew
 /

se
m

ito
ne

s
Elliott Smith - Between the Bars

Glen Phillips - Between the Bars

Cross-correlation

Cross-correlation @ skew = +2 semitones

raw

filtered

Fig. 2. Illustration of cover song matching. Top two panes are beat-
chroma matrices for two versions of “Between the Bars”. Third pane
is two-dimensional cross correlation for all possible chroma rota-
tions out to ±500 beats skew. Bottom pane shows slice through the
cross-correlation at +2 semitones (indicated by line), plus result of
high-pass filtering to emphasize only peaks that result from precise
beat alignment. Note the subpeaks at around 290 beats relative to
the main peak, resulting from structural repetition in the song.

aligned beats, since the overall peak correlation is a product of both
of these. Chroma vectors are intrinsically non-negative; we scaled
them to have unit norm at each time slice. The cross-correlation is
further normalized by the length of the shorter segment, so the corre-
lation results are bounded to lie between zero and one. We perform
the cross-correlation twelve times, once for each possible relative
rotation (transposition) of the two feature matrices.

We observed, however, a number of spurious large correlations
from relatively long stretches dominated by a single chroma bin; this
occurs in many tracks. We found that genuine matches were indi-
cated not only by cross-correlations of large magnitudes, but that
these large values occurred in narrow local maxima in the cross-
correlations that fell off rapidly as the relative alignment changed
from its best value. To emphasize these sharp local maxima, we
choose the transposition that gives the largest peak correlation then
high-pass filter that cross-correlation function with a 3 dB point at
0.1 rad/sample. The ‘distance’ value measured between two pieces
is simply the reciprocal of the peak value of this high-pass filtered
cross-correlation; matching tracks typically score below 20, whereas
unrelated tracks are usually above 50.

Matching will fail if the feature extraction is based on beats with
different relations to the music i.e. if one version tracks twice as
many beats per song phrase. To accommodate this, we experimented
with including two representations of each track, the original plus
one using double the beat length (i.e. around 120 bpm) as reported
in our experiments below.

Figure 2 shows these stages in the matching of the Elliott Smith
track to a cover version recorded live by Glen Phillips. The top
two panes shows the normalized, beat-synchronous IF-based chroma
feature matrices for both tracks (which have tempos about 2% dif-
ferent). The third pane shows the raw cross-correlation for relative

timings of −500 . . . 500 beats, and all 12 possible relative chroma
skews. The bottom panel shows the slice through this cross-correlation
matrix for the most favorable relative tuning (Phillips transposed up
2 semitones) both before and after high-pass filtering; it is clear that
filtering removes the triangular baseline correlation but preserves the
sharp peak at around +20 beats indicating the match between the
versions. (The Phillips version includes some audience noise at the
start of the track, which causes this delay.) Note that the beat track-
ing in the live version is far from perfect, but the matching succeeds
anyway.

6. EVALUATION

We have developed and evaluated this system on three databases: a
small development set of contemporary pop music, a larger collec-
tion of pop music covers including live versions, and as part of the
independent international 2006 MIREX evaluation.

6.1. Development set

We developed the system on set of 15 pairs of pop-music tracks that
were versions of the same song by different artists. They were ex-
tracted from the uspop2002 dataset by making a list of all tracks
from the total set of 8764 tracks that had the duplicate names (yield-
ing about 600 tracks), then listening to each pair to see if they were
in fact the same piece; about 20% were. We stopped after we had
found 15 pairs. Interestingly, it was often hard to tell if two tracks
were the same until the verse began, at which point the lyrics quickly
indicated matching tracks.

We made two lists of tracks, each containing one of the two ver-
sions of each track. In the evaluation, each track in the first list was
compared to every track in the second list; the track that was most
similar was reported as the cover version. Thus, the task was to
identify the cover version knowing that one exists, rather than decid-
ing if two songs were similar enough to be considered covers. Our
best system (over variations in parameters such as filter breakpoints
for the chroma features and matching) correctly identified 10 of 15
tracks; typical performance varied between 6 and 9 correct (where
guessing would give one). Four of the pairs were clearly difficult for
our representation and were almost never correctly identified.

6.2. Test set

To get a finer-grained sense of the performance, and to make a test
that was independent of our development set, we identified a collec-
tion of 94 pairs from among our personal music collections. Many
of these consisted of comparing live performances of pieces with
the studio recordings by the same band; however, these live versions
often showed significant stylistic variations. Table 1 lists the per-
formance on this test set of several variants of our algorithm. We
see that using the instantaneous-frequency-based chroma features is
critical to the discriminability of the representation, but that using
multiple tempo candidates was not successful, indicating that the
“dominant” tempo is consistently chosen across different versions,
for the most part. Biasing towards a lower tempo (120 bpm) has a
slight negative impact on accuracy, but this may be acceptable given
the smaller and more efficient representation.

6.3. MIREX Evaluation

MIREX (Music Information Retrieval Evaluation eXchange) is an
international effort to develop formal, common evaluation standards

,9�������

UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

3

spectra is to play the score through a music synthesizer and compute spectra from the resulting

audio. This also opens the possibility of audio-to-audio alignment of two different performances.

Figure 1. Audio is analyzed to obtain a transcription of pitch estimates. These

correspond to a sequence of states from the score model, which is derived from the

symbolic score. An alignment process relates the audio time position to the music

score position.

A popular technique for comparing spectra from scores to spectra in music audio is to reduce the

detailed spectrum to a 12-element chroma vector, where each element represents all the energy

in the spectrum associated with one of the 12 pitch classes (C, C-sharp, D, etc.). The Euclidean

distance between chroma vectors is a robust distance metric for score alignment. [6]

Armed with these essential ideas, we have made score matchers that handle realistic audio data,

such as that of Figure 2, in which we have indicated the recognized measure locations with

vertical lines. The recognition of this audio was achieved by augmenting the notion of “state”

discussed above to include both current note and time-varying tempo, leading to a simultaneous

estimate of both note onset times and the tempo process. [11] The audio file can be heard at

http://xavier.informatics.indiana.edu/~craphael/acm with clicks added to mark the measures.

3

spectra is to play the score through a music synthesizer and compute spectra from the resulting

audio. This also opens the possibility of audio-to-audio alignment of two different performances.

Figure 1. Audio is analyzed to obtain a transcription of pitch estimates. These

correspond to a sequence of states from the score model, which is derived from the

symbolic score. An alignment process relates the audio time position to the music

score position.

A popular technique for comparing spectra from scores to spectra in music audio is to reduce the

detailed spectrum to a 12-element chroma vector, where each element represents all the energy

in the spectrum associated with one of the 12 pitch classes (C, C-sharp, D, etc.). The Euclidean

distance between chroma vectors is a robust distance metric for score alignment. [6]

Armed with these essential ideas, we have made score matchers that handle realistic audio data,

such as that of Figure 2, in which we have indicated the recognized measure locations with

vertical lines. The recognition of this audio was achieved by augmenting the notion of “state”

discussed above to include both current note and time-varying tempo, leading to a simultaneous

estimate of both note onset times and the tempo process. [11] The audio file can be heard at

http://xavier.informatics.indiana.edu/~craphael/acm with clicks added to mark the measures.

3

spectra is to play the score through a music synthesizer and compute spectra from the resulting

audio. This also opens the possibility of audio-to-audio alignment of two different performances.

Figure 1. Audio is analyzed to obtain a transcription of pitch estimates. These

correspond to a sequence of states from the score model, which is derived from the

symbolic score. An alignment process relates the audio time position to the music

score position.

A popular technique for comparing spectra from scores to spectra in music audio is to reduce the

detailed spectrum to a 12-element chroma vector, where each element represents all the energy

in the spectrum associated with one of the 12 pitch classes (C, C-sharp, D, etc.). The Euclidean

distance between chroma vectors is a robust distance metric for score alignment. [6]

Armed with these essential ideas, we have made score matchers that handle realistic audio data,

such as that of Figure 2, in which we have indicated the recognized measure locations with

vertical lines. The recognition of this audio was achieved by augmenting the notion of “state”

discussed above to include both current note and time-varying tempo, leading to a simultaneous

estimate of both note onset times and the tempo process. [11] The audio file can be heard at

http://xavier.informatics.indiana.edu/~craphael/acm with clicks added to mark the measures.

There is a “sub-symbolic” approach to this problem.

Ground-Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses

Robert J. Turetsky and Daniel P.W. Ellis
LabROSA, Dept. of Electrical Engineering,

Columbia University, New York NY 10027 USA
{rob,dpwe}@ee.columbia.edu

Abstract

Many modern polyphonic music transcription algo-
rithms are presented in a statistical pattern recognition
framework. But without a large corpus of real-world
music transcribed at the note level, these algorithms
are unable to take advantage of supervised learning
methods and also have difficulty reporting a quantita-
tive metric of their performance, such as a Note Error
Rate.
We attempt to remedy this situation by taking advan-
tage of publicly-available MIDI transcriptions. By
force-aligning synthesized audio generated from a
MIDI transcription with the raw audio of the song
it represents we can correlate note events within the
MIDI data with the precise time in the raw audio
where that note is likely to be expressed. Having these
alignments will support the creation of a polyphonic
transcription system based on labeled segments of
producedmusic. But because the MIDI transcriptions
we find are of variable quality, an integral step in the
process is automatically evaluating the integrity of the
alignment before using the transcription as part of any
training set of labeled examples.
Comparing a library of 40 published songs to freely
available MIDI files, we were able to align 31 (78%).
We are building a collection of over 500 MIDI tran-
scriptions matching songs in our commercial music
collection, for a potential total of 35 hours of note-
level transcriptions, or some 1.5 million note events.
Keywords: polyphonic transcription, MIDI align-
ment, dataset/corpus construction

1 Introduction
Amateur listeners have difficulty transcribing real-world poly-
phonic music, replete with complex layers of instrumentation,
vocals, drums and special effects. Indeed it takes an expert mu-
sician with a trained ear, a deep knowledge of music theory and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

exposure to a large amount of music to be able to accomplish
such a task. Given its uncertain nature, it is appropriate to pose
transcription as a statistical pattern recognition problem (Walm-
sley et al., 1999; Goto, 2000).
A fundamental obstacle in both the training and evaluation of
these algorithms is the lack of labeled ground-truth transcription
data from produced (i.e. “real”) music. The kind of information
we need is the kind of description present in a MIDI file: a se-
quence of note pitches and the precise time at which they occur.
However, exact MIDI transcriptions of specific recordings are
not available1.
One approach is to take existing MIDI files, which are often
constructed as musical performances in their own right, and
generate the corresponding audio by passing them to MIDI syn-
thesizer software. For this synthesizer output, the MIDI file pro-
vides a very accurate transcription, so this data would be useful
for system evaluation and/or classifier training (Klapuri et al.,
2001).
Ultimately this approach suffers because of the lack of expres-
sive capability available in MIDI files, and the corresponding
paucity of audio quality in MIDI-generated sound. The 128
General MIDI instruments pale in comparison to the limitless
sonic power of the modern recording studio, and MIDI is in-
trinsically unable to represent the richness of voice or special
effects. As a result, transcription performance measured on
MIDI syntheses is likely to be an over-optimistic indicator of
performance on real acoustic or studio recordings.
Our proposal is an attempt at getting the best of both worlds.
Vast libraries of MIDI transcriptions exist on the Internet, tran-
scribed by professionals for Karaoke machines, amateur musi-
cians paying deference to beloved artists, and music students
honing their craft. These transcriptions serve as a map of the
music, and when synthesized can create a reasonable approx-
imation of the song, although the intent is usually to create a
standalone experience, and not an accurate duplicate of the orig-
inal. In our experience, such transcriptions respect the general
rhythm of the original, but not precise timing or duration. How-
ever, we believe that we can achieve a more precise correlation
between the two disparate audio renditions - original and MIDI

1Although many contemporary recordings include many MIDI-
driven synthesizer parts, which could in theory be captured, this data is
unlikely to be released, and will only ever cover a subset of the instru-
ments in of the music. It is worth, however, noting the work of Goto
et al. (2002) to collect and release a corpus of unencumbered record-
ings along with MIDI transcriptions.

Ground-Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses

Robert J. Turetsky and Daniel P.W. Ellis
LabROSA, Dept. of Electrical Engineering,

Columbia University, New York NY 10027 USA
{rob,dpwe}@ee.columbia.edu

Abstract

Many modern polyphonic music transcription algo-
rithms are presented in a statistical pattern recognition
framework. But without a large corpus of real-world
music transcribed at the note level, these algorithms
are unable to take advantage of supervised learning
methods and also have difficulty reporting a quantita-
tive metric of their performance, such as a Note Error
Rate.
We attempt to remedy this situation by taking advan-
tage of publicly-available MIDI transcriptions. By
force-aligning synthesized audio generated from a
MIDI transcription with the raw audio of the song
it represents we can correlate note events within the
MIDI data with the precise time in the raw audio
where that note is likely to be expressed. Having these
alignments will support the creation of a polyphonic
transcription system based on labeled segments of
producedmusic. But because the MIDI transcriptions
we find are of variable quality, an integral step in the
process is automatically evaluating the integrity of the
alignment before using the transcription as part of any
training set of labeled examples.
Comparing a library of 40 published songs to freely
available MIDI files, we were able to align 31 (78%).
We are building a collection of over 500 MIDI tran-
scriptions matching songs in our commercial music
collection, for a potential total of 35 hours of note-
level transcriptions, or some 1.5 million note events.
Keywords: polyphonic transcription, MIDI align-
ment, dataset/corpus construction

1 Introduction
Amateur listeners have difficulty transcribing real-world poly-
phonic music, replete with complex layers of instrumentation,
vocals, drums and special effects. Indeed it takes an expert mu-
sician with a trained ear, a deep knowledge of music theory and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. c©2003 Johns Hopkins University.

exposure to a large amount of music to be able to accomplish
such a task. Given its uncertain nature, it is appropriate to pose
transcription as a statistical pattern recognition problem (Walm-
sley et al., 1999; Goto, 2000).
A fundamental obstacle in both the training and evaluation of
these algorithms is the lack of labeled ground-truth transcription
data from produced (i.e. “real”) music. The kind of information
we need is the kind of description present in a MIDI file: a se-
quence of note pitches and the precise time at which they occur.
However, exact MIDI transcriptions of specific recordings are
not available1.
One approach is to take existing MIDI files, which are often
constructed as musical performances in their own right, and
generate the corresponding audio by passing them to MIDI syn-
thesizer software. For this synthesizer output, the MIDI file pro-
vides a very accurate transcription, so this data would be useful
for system evaluation and/or classifier training (Klapuri et al.,
2001).
Ultimately this approach suffers because of the lack of expres-
sive capability available in MIDI files, and the corresponding
paucity of audio quality in MIDI-generated sound. The 128
General MIDI instruments pale in comparison to the limitless
sonic power of the modern recording studio, and MIDI is in-
trinsically unable to represent the richness of voice or special
effects. As a result, transcription performance measured on
MIDI syntheses is likely to be an over-optimistic indicator of
performance on real acoustic or studio recordings.
Our proposal is an attempt at getting the best of both worlds.
Vast libraries of MIDI transcriptions exist on the Internet, tran-
scribed by professionals for Karaoke machines, amateur musi-
cians paying deference to beloved artists, and music students
honing their craft. These transcriptions serve as a map of the
music, and when synthesized can create a reasonable approx-
imation of the song, although the intent is usually to create a
standalone experience, and not an accurate duplicate of the orig-
inal. In our experience, such transcriptions respect the general
rhythm of the original, but not precise timing or duration. How-
ever, we believe that we can achieve a more precise correlation
between the two disparate audio renditions - original and MIDI

1Although many contemporary recordings include many MIDI-
driven synthesizer parts, which could in theory be captured, this data is
unlikely to be released, and will only ever cover a subset of the instru-
ments in of the music. It is worth, however, noting the work of Goto
et al. (2002) to collect and release a corpus of unencumbered record-
ings along with MIDI transcriptions.

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

 ... a “cover song” MIDI file works fine ...

No “transcription” necessary: no need to
extract “symbolic” notes from audio.

“I
was
working
as a
waitress
in a
cocktail
bar”

Figure 1: Goal of MIDI Alignment. The upper graph is the transcription of the first verse of “Don’t You Want Me”, by the Human
League, extracted from a MIDI file placed on the web by an enthusiast. The MIDI file can be synthesized to create an approximation
of the song with a precise transcription, which can analyzed alongside the original song in order to create a mapping between note
events in the MIDI score and the original song, to approximate a transcription.

synthesis - through forced alignment. This goal is illustrated in
figure 1.
In order to align a song with its transcription, we create a sim-
ilarity matrix, where each point gives the cosine distance be-
tween short-time spectral analyses of particular frames from
each version. The features of the analysis are chosen to high-
light pitch and beat/note onset times. Next, we use dynamic
programming to find the lowest-cost path between the starts and
ends of the sequences through the similarity matrix. Finally,
this path is used as a mapping to warp the timing of the MIDI
transcription to match that of the actual CD recording.
Because the downloaded MIDI files vary greatly in quality, it is
imperative that we judge the fitness of any alignments that we
plan to use as ground truth transcriptions. Given a good evalu-
ation metric, we could automatically search through thousands
of available MIDI files to find the useful ones, and hence gen-
erate enough alignments to create a substantial corpus of real,
well-known pop music recordings with almost complete note-
level transcriptions aligned to an accuracy of milliseconds. This
could be used for many purposes, such as training a robust non-
parametric classifier to perform note transcriptions from real au-
dio.
The remainder of this paper is organizes as follows: In section
2 we present the methodology used to create MIDI/raw forced
alignments. Following that is a discussion on evaluation of the
features used and an estimate of the fitness of the alignments.
In the final section, we detail the next steps of this work.

2 Methodology
In this section we describe the technique used for aligning songs
with their MIDI syntheses. A system overview is shown in fig-
ure 2. First, the MIDI file is synthesized to create an audio
file (syn). Second, the short-time spectral features (e.g. spec-
trogram) are computed for both the syn and the original music
audio file (raw). A similarity matrix is then created, provid-
ing the cosine distance between each frame i in raw and frame

j in syn. We then employ dynamic programming to search
for the “best” path through the similarity matrix. To improve
our search, we designed a two-stage alignment process, which
effectively searches for high-order structure and then for fine-
grain details. The alignment is then interpolated, and each note
event in the MIDI file is warped to obtain corresponding on-
set/offset pairs in the raw audio. Each stage of the process is
described below.

2.1 Audio File Preparation

To begin we start with two files, the raw audio of the song we
wish to align, and a MIDI file corresponding to the song. Raw
audio files are taken from compact disc, and MIDI files have
been downloaded from of user pages found through the MIDI
search engine http://www.musicrobot.com. The MIDI file
is synthesized using WAVmaker III by Polyhedric Software.
Rather than simply recording the output of a hardware MIDI
synthesizer on a sound card, WAVmaker takes great care to en-
sure that there is a strict correspondence between MIDI ticks
(the base unit of MIDI timekeeping) and samples in the resyn-
thesis. We can move from ticks to samples using the following
conversion:

Ncur = Nbase + Fs · 106 · (Tcur − Tbase)(∆/PPQ) (1)

where Ncur and Nbase are the sample indices giving current
position and the time of the most recent tempo change, and Tcur
and Tbase are the corresponding times in MIDI ticks. ∆ is the
current tempo in quarters per microsecond, and PPQ is the
division parameter from the MIDI file, i.e. the number of ticks
per quarter note. Fs is the sampling rate.
Both the raw and syn are downsampled to 22.05kHz and nor-
malized, with both stereo channels scaled and combined into a
monophonic signal.

2.2 Feature Calculation

The next step is to compute short-time features for each window
of syn and raw. Since the pitch transcription is the strongest cue

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

The “alignment” task

Notes, synthesized audio, and the record ...

U
nc
on
st
ra
in
ed

G
re
ed
y

(a) (b) (c)

(d)
(e) (f)

Figure 3: Flavors of DP. The top row is for unconstrained DP, the bottom row is for greedy. The first column shows the allowable
directions of movement. The second column shows the alignment of raw/MIDI notes C5-C!5-D5, for unconstrained and greedy
respectively. The third column shows the alignment of raw as before, but with the last two notes of MIDI reversed.

(a) (b)

(c) (d)

500 1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

R
AW

 fr
am

es
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

R
AW

 fr
am

es

500

1000

1500

2000

2500

3000

3500

4000

R
AW

 fr
am

es

1000

2000

3000

4000

5000

6000

R
AW

 fr
am

es

Alignment: Temple of Love - Sisters of Mercy Alignment: 9pm Till I Come - ATB

Alignment: Don't You Want Me - Human League Alignment: Africa - Toto

Figure 4: Example alignments for four SMs: (a) Don’t You Want Me (Human League): straightforward alignment; (b) Africa
(Toto): bridge missing in transcription; (c) Temple of Love (Sisters of Mercy): Transcription out of order but we recover; (d) 9pm
’Till I Come (ATB): poor alignment mistakenly appears successful. White rectangles indicate the diagonal regions found by the
median filter and passed to the second-stage alignment.

human
league
“don’t

you
want
me”

audio

t
t

Best alignment,
using dynamic
programming.

Alignment lets us map audio time to score position.

synthesized audio from MIDI file

synthesized audio from MIDI file

toto
“africa”

audio

t
t

Best alignment,
using dynamic
programming.

U
nc
on
st
ra
in
ed

G
re
ed
y

(a) (b) (c)

(d)
(e) (f)

Figure 3: Flavors of DP. The top row is for unconstrained DP, the bottom row is for greedy. The first column shows the allowable
directions of movement. The second column shows the alignment of raw/MIDI notes C5-C!5-D5, for unconstrained and greedy
respectively. The third column shows the alignment of raw as before, but with the last two notes of MIDI reversed.

(a) (b)

(c) (d)

500 1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
SYN frames

R
AW

 fr
am

es

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

R
AW

 fr
am

es

500

1000

1500

2000

2500

3000

3500

4000

R
AW

 fr
am

es
1000

2000

3000

4000

5000

6000

R
AW

 fr
am

es

Alignment: Temple of Love - Sisters of Mercy Alignment: 9pm Till I Come - ATB

Alignment: Don't You Want Me - Human League Alignment: Africa - Toto

Figure 4: Example alignments for four SMs: (a) Don’t You Want Me (Human League): straightforward alignment; (b) Africa
(Toto): bridge missing in transcription; (c) Temple of Love (Sisters of Mercy): Transcription out of order but we recover; (d) 9pm
’Till I Come (ATB): poor alignment mistakenly appears successful. White rectangles indicate the diagonal regions found by the
median filter and passed to the second-stage alignment.

Alignment recovers from missing MIDI file section.

Vertical line: dynamic
programming skipping over

audio.

Audio
on a
movie
set ...

Audio quality may leave
something to be desired ...

Redo
audio
in the
studio

Problem: Re-recorded audio must synchronize
tightly to visuals (lip-sync, footsteps, etc).

VocALign Project User Manual 16

F. Quick Start Guide

Operating VocALign is easy and has three basic steps:

A. Identify the "Guide Audio"
B. Identify the "Dub Audio"

C. Create a new "Aligned Audio" sound file (which can be automatically positioned

in certain audio editors)

To demonstrate this, make sure that you can hear the sound output of your

Macintosh (use the "Sound" Control Panel).

Also, you will need the audio files that come with the VocALign Tutorial. This can be

found in the "Tutorial" folder on the install CD (if you have one), or can be

downloaded from www.synchroarts.com/downloads

1. First, launch VocALign Project:

2. Now, using the finder, drag-and-

drop the file "Steve Guide2" from
the installed Tutorial Session

"Audio Files" folder onto the upper

black panel in VocALign Project:

3. Then, using the finder, drag-and-

drop the file "Twit Dub" from the
installed Tutorial Session "Audio

Files" folder onto the lower black

panel in VocALign Project:

You may need to zoom out and

move the dub audio in order to
make it visible in the same screen

as the Guide.

You have now selected the Guide and Dub audio files.

4. You can now audition the files that

you have selected, using the
PLAY menu:

You can also use the "f" key on
most Macintosh keyboards.

Line re-recorded
in the studio.

RMS
Energy

Will not lip-sync well.

10 s

VocALign Project User Manual 16

F. Quick Start Guide

Operating VocALign is easy and has three basic steps:

A. Identify the "Guide Audio"
B. Identify the "Dub Audio"

C. Create a new "Aligned Audio" sound file (which can be automatically positioned

in certain audio editors)

To demonstrate this, make sure that you can hear the sound output of your

Macintosh (use the "Sound" Control Panel).

Also, you will need the audio files that come with the VocALign Tutorial. This can be

found in the "Tutorial" folder on the install CD (if you have one), or can be

downloaded from www.synchroarts.com/downloads

1. First, launch VocALign Project:

2. Now, using the finder, drag-and-

drop the file "Steve Guide2" from
the installed Tutorial Session

"Audio Files" folder onto the upper

black panel in VocALign Project:

3. Then, using the finder, drag-and-

drop the file "Twit Dub" from the
installed Tutorial Session "Audio

Files" folder onto the lower black

panel in VocALign Project:

You may need to zoom out and

move the dub audio in order to
make it visible in the same screen

as the Guide.

You have now selected the Guide and Dub audio files.

4. You can now audition the files that

you have selected, using the
PLAY menu:

You can also use the "f" key on
most Macintosh keyboards.

Line spoken
on the set.

RMS
Energy

VocALign Project User Manual 16

F. Quick Start Guide

Operating VocALign is easy and has three basic steps:

A. Identify the "Guide Audio"
B. Identify the "Dub Audio"

C. Create a new "Aligned Audio" sound file (which can be automatically positioned

in certain audio editors)

To demonstrate this, make sure that you can hear the sound output of your

Macintosh (use the "Sound" Control Panel).

Also, you will need the audio files that come with the VocALign Tutorial. This can be

found in the "Tutorial" folder on the install CD (if you have one), or can be

downloaded from www.synchroarts.com/downloads

1. First, launch VocALign Project:

2. Now, using the finder, drag-and-

drop the file "Steve Guide2" from
the installed Tutorial Session

"Audio Files" folder onto the upper

black panel in VocALign Project:

3. Then, using the finder, drag-and-

drop the file "Twit Dub" from the
installed Tutorial Session "Audio

Files" folder onto the lower black

panel in VocALign Project:

You may need to zoom out and

move the dub audio in order to
make it visible in the same screen

as the Guide.

You have now selected the Guide and Dub audio files.

4. You can now audition the files that

you have selected, using the
PLAY menu:

You can also use the "f" key on
most Macintosh keyboards.

VocALign Project User Manual 5

I. TIMEMODTM 33
Overview of TimeMod 33
TimeMod Setup 34
Handles: 34

The TimeMod Window and Controls 35
Using TimeMod 36
Completing the Processing 36

J. TROUBLE-SHOOTING 37
General Trouble Shooting 37
Trouble Shooting for Digital Performer Users 37

VocAlign: A plug-in that automatically
aligns “dub” audio with “guide” audio.

“dub”

“guide”

Setup: User selects segments of dub and guide
audio tracks for alignment.

VocALign Project User Manual 17

5. Press the "Align" button.

VocALign will now create another

track, the "Aligned" audio, which is
the Dub audio, modified so that

that the peaks and troughs in the

energy match that of the Guide.
The "Aligned" audio appears as a

yellow trace above the Guide

waveform. Check that it follows

the shape of the Guide's energy:

6. You can now audition the Aligned
and Guide files together, using the

PLAY menu:

You can also use the "e" key on
most Macintosh keyboards.

7. Finally, to Edit the Aligned Audio

into a sound file, press the EDIT
button.

This creates a sound file on your

hard disk (normally in the same
folder as the Dub audio is located)

In this case it is called "VA Twit

Dub.1":

Congratulations - You have successfully "VocALigned" your first audio track!

VocALign Project User Manual 5

I. TIMEMODTM 33
Overview of TimeMod 33
TimeMod Setup 34
Handles: 34

The TimeMod Window and Controls 35
Using TimeMod 36
Completing the Processing 36

J. TROUBLE-SHOOTING 37
General Trouble Shooting 37
Trouble Shooting for Digital Performer Users 37

Result: Blue line shows envelope of
aligned dub audio (user can also listen).

Fine-tuning: User can choose different algorithms
to improve fit, then “print” best one.

UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

568 CHAPTER 37 MUSIC SIGNAL ANALYSIS

Soprano

Alto

Tenor

Bass

Allegro
3

3

3

3

1

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

le - lu- jah,

le - lu- jah,

le - lu- jah,

le - lu- jah,

George Frideric Handel

Hallelujah
From Messiah

1685-1759
Revelation 11:15, 19:6, 16

FIGURE 37.1 Beginning of the musical score of Handel’s Hallelujah chorus.

37.2 MUSIC TRANSCRIPTION

Figure 37.1 shows a musical score, the conventional documentary representation of a
musical piece in the western classical tradition. A musical score has a similar relationship
to music audio that actors’ scripts have to their speech: A musician (or group of musicians)
can use the score to recreate an acoustic rendition of the piece, and the composer of
the piece attempts to specify all the relevant information in the score, although different

time / sec

fre
q

/ k
Hz

Hallelujah Chorus (Vocal opening)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

-40

-20

0

20

40

FIGURE 37.2 Spectrogram of a recording of the music of Figure 37.1.

568 CHAPTER 37 MUSIC SIGNAL ANALYSIS

Soprano

Alto

Tenor

Bass

Allegro
3

3

3

3

1

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah!

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

Hal - le- lu- jah! Hal- le -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

lu- jah! Hal- le- lu- jah! Hal -

le - lu- jah,

le - lu- jah,

le - lu- jah,

le - lu- jah,

George Frideric Handel

Hallelujah
From Messiah

1685-1759
Revelation 11:15, 19:6, 16

FIGURE 37.1 Beginning of the musical score of Handel’s Hallelujah chorus.

37.2 MUSIC TRANSCRIPTION

Figure 37.1 shows a musical score, the conventional documentary representation of a
musical piece in the western classical tradition. A musical score has a similar relationship
to music audio that actors’ scripts have to their speech: A musician (or group of musicians)
can use the score to recreate an acoustic rendition of the piece, and the composer of
the piece attempts to specify all the relevant information in the score, although different

time / sec

fre
q

/ k
Hz

Hallelujah Chorus (Vocal opening)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

-40

-20

0

20

40

FIGURE 37.2 Spectrogram of a recording of the music of Figure 37.1.

Musical
audio signals

Hierarchical
beat structure

Chord change
possibility

Drum pattern

Melody line

Bass line

Bass
drum

Snare
drum

time

only limited properties of audio signals. For example,
they discard nonsymbolic properties such as the expres-
siveness of music performances (the deviation of pitch,
loudness, and timing) and the prosody of spontaneous
speeches. To take such properties into account, we need
to introduce a subsymbolic description represented as
continuous quantitative values. At the same time, we
need to choose an appropriate level of abstraction for
the description, because even though descriptions such
as raw waveforms and spectra have continuous values
they are too concrete. The appropriateness of the ab-
straction level will of course depend on the purpose of
the description and on the use to which it will be put.

In this paper we address the problem of music scene
description, auditory scene description in music, for
monaural complex real-world audio signals such as those
sampled from commercially distributed compact discs.
We deal with various musical genres, such as popular
music, jazz music, and classical works. The audio sig-
nals thus contain simultaneous sounds of various instru-
ments (even drums). This real-world oriented approach
with realistic assumptions is important to address the
scaling-up problem and facilitate the implementation of
practical applications [Goto and Muraoka, 1996; 1998a;
1998b].

The main contribution of this paper is to propose a
predominant-pitch estimation method that makes it pos-
sible to detect the melody and bass lines in such audio
signals. On the basis of the method, a real-time system
detecting those lines has been implemented as a sub-
system of the entire music-scene-description system. In
the following sections, we first discuss the description
used in our music scene description system and difficul-
ties encountered in detecting the melody and bass lines.
We then describe the algorithm of the predominant-pitch
estimation method that is a core part of our system. Fi-
nally, we show experimental results obtained using our
system.

2 Music Scene Description Problem

We first specify the entire music-scene-description prob-
lem and present the main difficulties in detecting the
melody and bass lines, which is the subproblem that we
are dealing with in this paper.

2.1 Problem Specification

Music scene description is defined as a process that ob-
tains a description representing the input musical audio
signal. Since various levels of description are possible, it
is necessary to decide a description that is appropriate as
the first step toward the ultimate description in human
brains. We think that the music score is not adequate
because, as we have already pointed out [Goto and Mu-
raoka, 1999], an untrained listener understands music to

Figure 1: Description in our music scene description system.

some extent without mentally representing audio signal-
s as musical scores. Music transcription, identifying the
names (symbols) of musical notes and chords, is in fact a
skill mastered only by trained musicians. We think that
the appropriate description should satisfy the following
requirements:

1. It is an intuitive description which can easily be ob-
tained by untrained listeners.

2. It is a basic description which trained musicians can
use as a basis for higher-level music understanding.

3. It is a useful description facilitating the development
of various practical applications.

According to these requirements, we propose a de-
scription consisting of the following five subsymbolic rep-
resentations shown in Figure 1:

(1) Hierarchical beat structure

This represents the fundamental temporal structure
of music and comprises three hierarchical levels.

(2) Chord change possibility

This represents possibilities of chord changes and in-
dicates how much dominant frequency components
included in chord tones and their harmonic over-
tones change.

(3) Drum pattern

This represents temporal patterns of how two prin-
cipal drums, a bass drum and a snare drum, are
played.

(4) Melody line

This represents the temporal trajectory of melody,
which is a series of single tones and is more distinctly
heard than the rest. Note that this is not a series of

−32−

 Masataka Goto’s transcription system

Musical
audio signals

Hierarchical
beat structure

Chord change
possibility

Drum pattern

Melody line

Bass line

Bass
drum

Snare
drum

time

only limited properties of audio signals. For example,
they discard nonsymbolic properties such as the expres-
siveness of music performances (the deviation of pitch,
loudness, and timing) and the prosody of spontaneous
speeches. To take such properties into account, we need
to introduce a subsymbolic description represented as
continuous quantitative values. At the same time, we
need to choose an appropriate level of abstraction for
the description, because even though descriptions such
as raw waveforms and spectra have continuous values
they are too concrete. The appropriateness of the ab-
straction level will of course depend on the purpose of
the description and on the use to which it will be put.

In this paper we address the problem of music scene
description, auditory scene description in music, for
monaural complex real-world audio signals such as those
sampled from commercially distributed compact discs.
We deal with various musical genres, such as popular
music, jazz music, and classical works. The audio sig-
nals thus contain simultaneous sounds of various instru-
ments (even drums). This real-world oriented approach
with realistic assumptions is important to address the
scaling-up problem and facilitate the implementation of
practical applications [Goto and Muraoka, 1996; 1998a;
1998b].

The main contribution of this paper is to propose a
predominant-pitch estimation method that makes it pos-
sible to detect the melody and bass lines in such audio
signals. On the basis of the method, a real-time system
detecting those lines has been implemented as a sub-
system of the entire music-scene-description system. In
the following sections, we first discuss the description
used in our music scene description system and difficul-
ties encountered in detecting the melody and bass lines.
We then describe the algorithm of the predominant-pitch
estimation method that is a core part of our system. Fi-
nally, we show experimental results obtained using our
system.

2 Music Scene Description Problem

We first specify the entire music-scene-description prob-
lem and present the main difficulties in detecting the
melody and bass lines, which is the subproblem that we
are dealing with in this paper.

2.1 Problem Specification

Music scene description is defined as a process that ob-
tains a description representing the input musical audio
signal. Since various levels of description are possible, it
is necessary to decide a description that is appropriate as
the first step toward the ultimate description in human
brains. We think that the music score is not adequate
because, as we have already pointed out [Goto and Mu-
raoka, 1999], an untrained listener understands music to

Figure 1: Description in our music scene description system.

some extent without mentally representing audio signal-
s as musical scores. Music transcription, identifying the
names (symbols) of musical notes and chords, is in fact a
skill mastered only by trained musicians. We think that
the appropriate description should satisfy the following
requirements:

1. It is an intuitive description which can easily be ob-
tained by untrained listeners.

2. It is a basic description which trained musicians can
use as a basis for higher-level music understanding.

3. It is a useful description facilitating the development
of various practical applications.

According to these requirements, we propose a de-
scription consisting of the following five subsymbolic rep-
resentations shown in Figure 1:

(1) Hierarchical beat structure

This represents the fundamental temporal structure
of music and comprises three hierarchical levels.

(2) Chord change possibility

This represents possibilities of chord changes and in-
dicates how much dominant frequency components
included in chord tones and their harmonic over-
tones change.

(3) Drum pattern

This represents temporal patterns of how two prin-
cipal drums, a bass drum and a snare drum, are
played.

(4) Melody line

This represents the temporal trajectory of melody,
which is a series of single tones and is more distinctly
heard than the rest. Note that this is not a series of

−32−

Monophonic
transcription

Musical
audio signals

Hierarchical
beat structure

Chord change
possibility

Drum pattern

Melody line

Bass line

Bass
drum

Snare
drum

time

only limited properties of audio signals. For example,
they discard nonsymbolic properties such as the expres-
siveness of music performances (the deviation of pitch,
loudness, and timing) and the prosody of spontaneous
speeches. To take such properties into account, we need
to introduce a subsymbolic description represented as
continuous quantitative values. At the same time, we
need to choose an appropriate level of abstraction for
the description, because even though descriptions such
as raw waveforms and spectra have continuous values
they are too concrete. The appropriateness of the ab-
straction level will of course depend on the purpose of
the description and on the use to which it will be put.

In this paper we address the problem of music scene
description, auditory scene description in music, for
monaural complex real-world audio signals such as those
sampled from commercially distributed compact discs.
We deal with various musical genres, such as popular
music, jazz music, and classical works. The audio sig-
nals thus contain simultaneous sounds of various instru-
ments (even drums). This real-world oriented approach
with realistic assumptions is important to address the
scaling-up problem and facilitate the implementation of
practical applications [Goto and Muraoka, 1996; 1998a;
1998b].

The main contribution of this paper is to propose a
predominant-pitch estimation method that makes it pos-
sible to detect the melody and bass lines in such audio
signals. On the basis of the method, a real-time system
detecting those lines has been implemented as a sub-
system of the entire music-scene-description system. In
the following sections, we first discuss the description
used in our music scene description system and difficul-
ties encountered in detecting the melody and bass lines.
We then describe the algorithm of the predominant-pitch
estimation method that is a core part of our system. Fi-
nally, we show experimental results obtained using our
system.

2 Music Scene Description Problem

We first specify the entire music-scene-description prob-
lem and present the main difficulties in detecting the
melody and bass lines, which is the subproblem that we
are dealing with in this paper.

2.1 Problem Specification

Music scene description is defined as a process that ob-
tains a description representing the input musical audio
signal. Since various levels of description are possible, it
is necessary to decide a description that is appropriate as
the first step toward the ultimate description in human
brains. We think that the music score is not adequate
because, as we have already pointed out [Goto and Mu-
raoka, 1999], an untrained listener understands music to

Figure 1: Description in our music scene description system.

some extent without mentally representing audio signal-
s as musical scores. Music transcription, identifying the
names (symbols) of musical notes and chords, is in fact a
skill mastered only by trained musicians. We think that
the appropriate description should satisfy the following
requirements:

1. It is an intuitive description which can easily be ob-
tained by untrained listeners.

2. It is a basic description which trained musicians can
use as a basis for higher-level music understanding.

3. It is a useful description facilitating the development
of various practical applications.

According to these requirements, we propose a de-
scription consisting of the following five subsymbolic rep-
resentations shown in Figure 1:

(1) Hierarchical beat structure

This represents the fundamental temporal structure
of music and comprises three hierarchical levels.

(2) Chord change possibility

This represents possibilities of chord changes and in-
dicates how much dominant frequency components
included in chord tones and their harmonic over-
tones change.

(3) Drum pattern

This represents temporal patterns of how two prin-
cipal drums, a bass drum and a snare drum, are
played.

(4) Melody line

This represents the temporal trajectory of melody,
which is a series of single tones and is more distinctly
heard than the rest. Note that this is not a series of

−32−

Similar to
“similarity”
& “chroma”
techniques

Figure 6: Scrolling-window snapshots of candidate frequen-
cy components (left) and the corresponding detected melody
and bass lines (right) for a popular-music excerpt with
drum-sounds.

Table 2: Test songs sampled from compact discs.

title genre
My Heart Will Go On (Celine Dion) popular
Vision of Love (Mariah Carey) popular
Always (Bon Jovi) popular
Time Goes By (Every Little Thing) popular
Spirit of Love (Sing Like Talking) popular
Hoshi no Furu Oka (Misia) popular
Scarborough Fair (Herbie Hancock) jazz
Autumn Leaves (Julian “Cannonball” Adderley) jazz
On Green Dolphin Street (Miles Davis) jazz
Violin Concerto in D, Op. 35 (Tchaikovsky) classical

outputs the detected melody and bass lines in several
forms: computer graphics for visualization, audio sig-
nals for auralization, and continuous quantitative values
(with time stamps) for use in applications. The graph-
ics output shows a window representing the scrolling F0
trajectories on a time-frequency plane and an adjacent
interlocking window representing the candidate frequen-
cy components (Figure 6). The output audio signals are
generated by sinusoidal synthesis on the basis of the har-
monics that are tracked by a 2nd-order autoregressive
tracking model [Aikawa et al., 1996] guided by the de-
tected Di(t).

The system has been implemented using a distributed-
processing technique so that different system functions
— such as audio input and output (I/O), main calcula-
tion, and intermediate-state and output visualization —
are performed by different processes distributed over a
LAN (Ethernet). To facilitate system expansion and ap-
plication development, those processes are implemented
on the basis of a network protocol called RACP (Remote
Audio Control Protocol), which is an extension of the
RMCP (Remote Music Control Protocol) [Goto, ICM-
C97]. The main signal processing is performed on a per-
sonal computer with two Pentium II 450 MHz CPUs
(Linux 2.2), and the audio I/O and visualization pro-
cessing is performed on a workstation, the SGI Octane
with R10000 250 MHz CPU (Irix 6.4).

We tested the system on excerpts of 10 songs in pop-
ular, jazz, and orchestral genres (Table 2). The input
monaural audio signals were sampled from commercially
distributed compact discs and each contained a single-
tone melody with sounds of several instruments.

In our experiment the system correctly detected, for
the most part of each audio sample, melody lines pro-
vided by a voice or a single-tone mid-range instrument
and bass lines provided by a bass guitar or a contrabass.
It tended to perform best on jazz music in which a wind
instrument such as a trumpet and a saxophone provid-
ed the melody line because the tones of such instruments
tended to be more dominant and salient in a jazz ensem-
ble than in other genres. In the absence of the main vocal
part or the solo part, the system detected the F0 trajec-
tory of a dominant accompaniment part, because our
method simply estimates the most predominant F0 tra-
jectory every moment and does not discriminate sound
sources.

The detected line, however, sometimes switched from
the main vocal part to another obbligato part for a while
even when the previously tracked main vocal part con-
tinued. Furthermore, a short-term trajectory around the
onset of the main vocal part was sometimes missing be-
cause of the delay in switching from another part to the
vocal part. These errors are due to the absence of a
mechanism for selecting just the target part from sever-
al simultaneous streams; this issue should be addressed
in our future implementation. Other typical errors were
half-pitch or double-pitch errors in which the F0 was es-
timated as half or twice the actual F0.

5 Conclusion

We have described the problem of music scene descrip-
tion for complex real-world audio signals and have ad-
dressed the problem of detecting the melody and bass
lines. Our method for estimating the most predominant
F0 trajectory in monaural audio signals does not presup-
pose the existence of the F0’s frequency component and
uses partial information in an intentionally limited fre-
quency range. Using the EM algorithm without assum-
ing the number of sound sources, the method evaluates
the probability density function of the F0 which repre-
sents the relative dominance of every possible harmonic
structure. It also uses a multiple-agent architecture to
determine the most predominant and stable F0 trajec-
tory from the viewpoint of global temporal continuity of
the F0. Experimental results show that our system im-
plementing the method can estimate, in real time, the
predominant F0s of the melody and bass lines in audio
signals sampled from compact discs.

We plan to extend the method to track several streams
simultaneously and form more complete melody and bass
lines from them by using a selective-attention mechanis-
m. That extension will also address the issues of sound

−39−

 Screenshot of the system in action

Harmonic partials Pitch tracks

Limiting frequency regions

Interaction Agent

Agent
Agent

D
etecting

m
elody

line
D
etecting

bass
line

Audio signals

Instantaneous frequency calculation

Extracting candidate frequency components

Candidate frequency components

Salience
detector

Melody line Bass line

BPF for melody line BPF for bass line

Most predominant F0 trajectory

Forming F0's probability density function

F0's probability density function

= LPF (0.45 fs) + 1/2 down-sampler

Decimator

FFT

FFT
FFT
FFT
FFT

16 kHz
8 kHz

4 kHz
2 kHz

1kHz

2 Decimator
Decimator

Decimator 0-0.45
kHz

0.45-0.9
kHz

0.9-1.8
kHz

1.8-3.6
kHz

3.6-7.2
kHz

Decimator

Audio signals

Figure 2: Overview of our predominant-pitch estimation
method.

tone models and estimates their weights by us-
ing the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], which is an iterative tech-
nique for computing maximum likelihood estimates
from incomplete data. The method then considers
the maximum-weight model as the most predomi-
nant harmonic structure and obtains its F0.

• Since the local F0 estimation is not reliable, the
method supports sequential F0 tracking on the ba-
sis of a multiple-agent architecture in which agents
track different temporal trajectories of the F0.

In particular, it is important to deemphasize a frequency
region around the F0 in estimating the F0 of the melody
line, because its frequency region is typically very crowd-
ed with other frequency components.

The strategy of this method is related to the singing
formant, a high spectrum-envelope peak near 2.8 kHz
of vowel sounds produced in male opera singing, though
the application of the method is not limited to opera
singing. Although sounds from an orchestral accompa-
niment tend to mask the singer’s voice around a peak
(about 450 Hz) of their long-time-average spectrum, the
singing formant enables listeners to hear the voice over
the high level of sounds from the orchestra because it has
predominant frequency components in the higher limited
range [Richards, 1988]. While we do not intend to build
a psychoacoustical model of human perception, our s-
trategy also has likely relevance to the following psy-
choacoustical results: Ritsma [1967] reported that the
ear uses a rather limited spectral region in producing

Figure 3: Overview of multirate filter bank.

a well-defined pitch perception; Plomp [1967] concluded
that for fundamental frequencies up to about 1400 Hz,
the pitch of a complex tone is determined by the second
and higher harmonics rather than by the fundamental.
We need to note, however, that those results do not di-
rectly support our strategy since they were obtained by
using the pitch of a single sound.

Figure 2 shows an overview of the method. It first
calculates instantaneous frequencies by using multi-
rate signal processing techniques. Candidate frequen-
cy components are then extracted on the basis of an
instantaneous-frequency-related measure. Those com-
ponents are filtered with two bandpass filters, one for
the melody line and the other for the bass line. Each set
of the filtered frequency components is utilized to form
a probability density function (PDF) of the F0, and the
salient promising peaks in the F0’s PDF are sequentially
tracked by a multiple-agent architecture, where each a-
gent forms an F0 trajectory and evaluates its reliability.
Finally, the most predominant F0 trajectory of the most
reliable agent is selected as the output.

3.1 Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency
[Flanagan and Golden, 1966; Cohen, 1989; Boashash,
1992], the rate of change of the phase of a signal, of filter-
bank outputs. Instead of calculating the phase directly,
it utilizes an efficient calculation method [Flanagan and
Golden, 1966] based on the short-time Fourier transform
(STFT) whose output can be interpreted as a collection
of uniform-filter outputs. When the STFT of a signal
x(t) is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ (3)

= a + jb, (4)

the instantaneous frequency λ(ω, t) is given by

λ(ω, t) = ω +
a∂b

∂t
− b ∂a

∂t

a2 + b2
. (5)

We use the STFT window function h(t) obtained by
convolving a basis function of the 2nd-order cardinal
B-spline with an isometric Gaussian window function
[Kawahara et al., 1998b]. Although the importance of
the appropriate choice of h(t) is discussed in [Kawahara
et al., 1998b], our window function is not optimized to

−34−

 The front end

Limiting frequency regions

Interaction Agent

Agent
Agent

D
etecting

m
elody

line
D
etecting

bass
line

Audio signals

Instantaneous frequency calculation

Extracting candidate frequency components

Candidate frequency components

Salience
detector

Melody line Bass line

BPF for melody line BPF for bass line

Most predominant F0 trajectory

Forming F0's probability density function

F0's probability density function

= LPF (0.45 fs) + 1/2 down-sampler

Decimator

FFT

FFT
FFT
FFT
FFT

16 kHz
8 kHz

4 kHz
2 kHz

1kHz

2 Decimator
Decimator

Decimator 0-0.45
kHz

0.45-0.9
kHz

0.9-1.8
kHz

1.8-3.6
kHz

3.6-7.2
kHz

Decimator

Audio signals

Figure 2: Overview of our predominant-pitch estimation
method.

tone models and estimates their weights by us-
ing the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], which is an iterative tech-
nique for computing maximum likelihood estimates
from incomplete data. The method then considers
the maximum-weight model as the most predomi-
nant harmonic structure and obtains its F0.

• Since the local F0 estimation is not reliable, the
method supports sequential F0 tracking on the ba-
sis of a multiple-agent architecture in which agents
track different temporal trajectories of the F0.

In particular, it is important to deemphasize a frequency
region around the F0 in estimating the F0 of the melody
line, because its frequency region is typically very crowd-
ed with other frequency components.

The strategy of this method is related to the singing
formant, a high spectrum-envelope peak near 2.8 kHz
of vowel sounds produced in male opera singing, though
the application of the method is not limited to opera
singing. Although sounds from an orchestral accompa-
niment tend to mask the singer’s voice around a peak
(about 450 Hz) of their long-time-average spectrum, the
singing formant enables listeners to hear the voice over
the high level of sounds from the orchestra because it has
predominant frequency components in the higher limited
range [Richards, 1988]. While we do not intend to build
a psychoacoustical model of human perception, our s-
trategy also has likely relevance to the following psy-
choacoustical results: Ritsma [1967] reported that the
ear uses a rather limited spectral region in producing

Figure 3: Overview of multirate filter bank.

a well-defined pitch perception; Plomp [1967] concluded
that for fundamental frequencies up to about 1400 Hz,
the pitch of a complex tone is determined by the second
and higher harmonics rather than by the fundamental.
We need to note, however, that those results do not di-
rectly support our strategy since they were obtained by
using the pitch of a single sound.

Figure 2 shows an overview of the method. It first
calculates instantaneous frequencies by using multi-
rate signal processing techniques. Candidate frequen-
cy components are then extracted on the basis of an
instantaneous-frequency-related measure. Those com-
ponents are filtered with two bandpass filters, one for
the melody line and the other for the bass line. Each set
of the filtered frequency components is utilized to form
a probability density function (PDF) of the F0, and the
salient promising peaks in the F0’s PDF are sequentially
tracked by a multiple-agent architecture, where each a-
gent forms an F0 trajectory and evaluates its reliability.
Finally, the most predominant F0 trajectory of the most
reliable agent is selected as the output.

3.1 Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency
[Flanagan and Golden, 1966; Cohen, 1989; Boashash,
1992], the rate of change of the phase of a signal, of filter-
bank outputs. Instead of calculating the phase directly,
it utilizes an efficient calculation method [Flanagan and
Golden, 1966] based on the short-time Fourier transform
(STFT) whose output can be interpreted as a collection
of uniform-filter outputs. When the STFT of a signal
x(t) is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ (3)

= a + jb, (4)

the instantaneous frequency λ(ω, t) is given by

λ(ω, t) = ω +
a∂b

∂t
− b ∂a

∂t

a2 + b2
. (5)

We use the STFT window function h(t) obtained by
convolving a basis function of the 2nd-order cardinal
B-spline with an isometric Gaussian window function
[Kawahara et al., 1998b]. Although the importance of
the appropriate choice of h(t) is discussed in [Kawahara
et al., 1998b], our window function is not optimized to

−34−

Filterbank

Limiting frequency regions

Interaction Agent

Agent
Agent

D
etecting

m
elody

line
D
etecting

bass
line

Audio signals

Instantaneous frequency calculation

Extracting candidate frequency components

Candidate frequency components

Salience
detector

Melody line Bass line

BPF for melody line BPF for bass line

Most predominant F0 trajectory

Forming F0's probability density function

F0's probability density function

= LPF (0.45 fs) + 1/2 down-sampler

Decimator

FFT

FFT
FFT
FFT
FFT

16 kHz
8 kHz

4 kHz
2 kHz

1kHz

2 Decimator
Decimator

Decimator 0-0.45
kHz

0.45-0.9
kHz

0.9-1.8
kHz

1.8-3.6
kHz

3.6-7.2
kHz

Decimator

Audio signals

Figure 2: Overview of our predominant-pitch estimation
method.

tone models and estimates their weights by us-
ing the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], which is an iterative tech-
nique for computing maximum likelihood estimates
from incomplete data. The method then considers
the maximum-weight model as the most predomi-
nant harmonic structure and obtains its F0.

• Since the local F0 estimation is not reliable, the
method supports sequential F0 tracking on the ba-
sis of a multiple-agent architecture in which agents
track different temporal trajectories of the F0.

In particular, it is important to deemphasize a frequency
region around the F0 in estimating the F0 of the melody
line, because its frequency region is typically very crowd-
ed with other frequency components.

The strategy of this method is related to the singing
formant, a high spectrum-envelope peak near 2.8 kHz
of vowel sounds produced in male opera singing, though
the application of the method is not limited to opera
singing. Although sounds from an orchestral accompa-
niment tend to mask the singer’s voice around a peak
(about 450 Hz) of their long-time-average spectrum, the
singing formant enables listeners to hear the voice over
the high level of sounds from the orchestra because it has
predominant frequency components in the higher limited
range [Richards, 1988]. While we do not intend to build
a psychoacoustical model of human perception, our s-
trategy also has likely relevance to the following psy-
choacoustical results: Ritsma [1967] reported that the
ear uses a rather limited spectral region in producing

Figure 3: Overview of multirate filter bank.

a well-defined pitch perception; Plomp [1967] concluded
that for fundamental frequencies up to about 1400 Hz,
the pitch of a complex tone is determined by the second
and higher harmonics rather than by the fundamental.
We need to note, however, that those results do not di-
rectly support our strategy since they were obtained by
using the pitch of a single sound.

Figure 2 shows an overview of the method. It first
calculates instantaneous frequencies by using multi-
rate signal processing techniques. Candidate frequen-
cy components are then extracted on the basis of an
instantaneous-frequency-related measure. Those com-
ponents are filtered with two bandpass filters, one for
the melody line and the other for the bass line. Each set
of the filtered frequency components is utilized to form
a probability density function (PDF) of the F0, and the
salient promising peaks in the F0’s PDF are sequentially
tracked by a multiple-agent architecture, where each a-
gent forms an F0 trajectory and evaluates its reliability.
Finally, the most predominant F0 trajectory of the most
reliable agent is selected as the output.

3.1 Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency
[Flanagan and Golden, 1966; Cohen, 1989; Boashash,
1992], the rate of change of the phase of a signal, of filter-
bank outputs. Instead of calculating the phase directly,
it utilizes an efficient calculation method [Flanagan and
Golden, 1966] based on the short-time Fourier transform
(STFT) whose output can be interpreted as a collection
of uniform-filter outputs. When the STFT of a signal
x(t) is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ (3)

= a + jb, (4)

the instantaneous frequency λ(ω, t) is given by

λ(ω, t) = ω +
a∂b

∂t
− b ∂a

∂t

a2 + b2
. (5)

We use the STFT window function h(t) obtained by
convolving a basis function of the 2nd-order cardinal
B-spline with an isometric Gaussian window function
[Kawahara et al., 1998b]. Although the importance of
the appropriate choice of h(t) is discussed in [Kawahara
et al., 1998b], our window function is not optimized to

−34−

 “Agent” system

Limiting frequency regions

Interaction Agent

Agent
Agent

D
etecting

m
elody

line
D
etecting

bass
line

Audio signals

Instantaneous frequency calculation

Extracting candidate frequency components

Candidate frequency components

Salience
detector

Melody line Bass line

BPF for melody line BPF for bass line

Most predominant F0 trajectory

Forming F0's probability density function

F0's probability density function

= LPF (0.45 fs) + 1/2 down-sampler

Decimator

FFT

FFT
FFT
FFT
FFT

16 kHz
8 kHz

4 kHz
2 kHz

1kHz

2 Decimator
Decimator

Decimator 0-0.45
kHz

0.45-0.9
kHz

0.9-1.8
kHz

1.8-3.6
kHz

3.6-7.2
kHz

Decimator

Audio signals

Figure 2: Overview of our predominant-pitch estimation
method.

tone models and estimates their weights by us-
ing the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], which is an iterative tech-
nique for computing maximum likelihood estimates
from incomplete data. The method then considers
the maximum-weight model as the most predomi-
nant harmonic structure and obtains its F0.

• Since the local F0 estimation is not reliable, the
method supports sequential F0 tracking on the ba-
sis of a multiple-agent architecture in which agents
track different temporal trajectories of the F0.

In particular, it is important to deemphasize a frequency
region around the F0 in estimating the F0 of the melody
line, because its frequency region is typically very crowd-
ed with other frequency components.

The strategy of this method is related to the singing
formant, a high spectrum-envelope peak near 2.8 kHz
of vowel sounds produced in male opera singing, though
the application of the method is not limited to opera
singing. Although sounds from an orchestral accompa-
niment tend to mask the singer’s voice around a peak
(about 450 Hz) of their long-time-average spectrum, the
singing formant enables listeners to hear the voice over
the high level of sounds from the orchestra because it has
predominant frequency components in the higher limited
range [Richards, 1988]. While we do not intend to build
a psychoacoustical model of human perception, our s-
trategy also has likely relevance to the following psy-
choacoustical results: Ritsma [1967] reported that the
ear uses a rather limited spectral region in producing

Figure 3: Overview of multirate filter bank.

a well-defined pitch perception; Plomp [1967] concluded
that for fundamental frequencies up to about 1400 Hz,
the pitch of a complex tone is determined by the second
and higher harmonics rather than by the fundamental.
We need to note, however, that those results do not di-
rectly support our strategy since they were obtained by
using the pitch of a single sound.

Figure 2 shows an overview of the method. It first
calculates instantaneous frequencies by using multi-
rate signal processing techniques. Candidate frequen-
cy components are then extracted on the basis of an
instantaneous-frequency-related measure. Those com-
ponents are filtered with two bandpass filters, one for
the melody line and the other for the bass line. Each set
of the filtered frequency components is utilized to form
a probability density function (PDF) of the F0, and the
salient promising peaks in the F0’s PDF are sequentially
tracked by a multiple-agent architecture, where each a-
gent forms an F0 trajectory and evaluates its reliability.
Finally, the most predominant F0 trajectory of the most
reliable agent is selected as the output.

3.1 Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency
[Flanagan and Golden, 1966; Cohen, 1989; Boashash,
1992], the rate of change of the phase of a signal, of filter-
bank outputs. Instead of calculating the phase directly,
it utilizes an efficient calculation method [Flanagan and
Golden, 1966] based on the short-time Fourier transform
(STFT) whose output can be interpreted as a collection
of uniform-filter outputs. When the STFT of a signal
x(t) is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ (3)

= a + jb, (4)

the instantaneous frequency λ(ω, t) is given by

λ(ω, t) = ω +
a∂b

∂t
− b ∂a

∂t

a2 + b2
. (5)

We use the STFT window function h(t) obtained by
convolving a basis function of the 2nd-order cardinal
B-spline with an isometric Gaussian window function
[Kawahara et al., 1998b]. Although the importance of
the appropriate choice of h(t) is discussed in [Kawahara
et al., 1998b], our window function is not optimized to

−34−

Agent system
decides the
temporal extant
and spectral
makeup of
each note in a
melody line.

Limiting frequency regions

Interaction Agent

Agent
Agent

D
etecting

m
elody

line
D
etecting

bass
line

Audio signals

Instantaneous frequency calculation

Extracting candidate frequency components

Candidate frequency components

Salience
detector

Melody line Bass line

BPF for melody line BPF for bass line

Most predominant F0 trajectory

Forming F0's probability density function

F0's probability density function

= LPF (0.45 fs) + 1/2 down-sampler

Decimator

FFT

FFT
FFT
FFT
FFT

16 kHz
8 kHz

4 kHz
2 kHz

1kHz

2 Decimator
Decimator

Decimator 0-0.45
kHz

0.45-0.9
kHz

0.9-1.8
kHz

1.8-3.6
kHz

3.6-7.2
kHz

Decimator

Audio signals

Figure 2: Overview of our predominant-pitch estimation
method.

tone models and estimates their weights by us-
ing the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], which is an iterative tech-
nique for computing maximum likelihood estimates
from incomplete data. The method then considers
the maximum-weight model as the most predomi-
nant harmonic structure and obtains its F0.

• Since the local F0 estimation is not reliable, the
method supports sequential F0 tracking on the ba-
sis of a multiple-agent architecture in which agents
track different temporal trajectories of the F0.

In particular, it is important to deemphasize a frequency
region around the F0 in estimating the F0 of the melody
line, because its frequency region is typically very crowd-
ed with other frequency components.

The strategy of this method is related to the singing
formant, a high spectrum-envelope peak near 2.8 kHz
of vowel sounds produced in male opera singing, though
the application of the method is not limited to opera
singing. Although sounds from an orchestral accompa-
niment tend to mask the singer’s voice around a peak
(about 450 Hz) of their long-time-average spectrum, the
singing formant enables listeners to hear the voice over
the high level of sounds from the orchestra because it has
predominant frequency components in the higher limited
range [Richards, 1988]. While we do not intend to build
a psychoacoustical model of human perception, our s-
trategy also has likely relevance to the following psy-
choacoustical results: Ritsma [1967] reported that the
ear uses a rather limited spectral region in producing

Figure 3: Overview of multirate filter bank.

a well-defined pitch perception; Plomp [1967] concluded
that for fundamental frequencies up to about 1400 Hz,
the pitch of a complex tone is determined by the second
and higher harmonics rather than by the fundamental.
We need to note, however, that those results do not di-
rectly support our strategy since they were obtained by
using the pitch of a single sound.

Figure 2 shows an overview of the method. It first
calculates instantaneous frequencies by using multi-
rate signal processing techniques. Candidate frequen-
cy components are then extracted on the basis of an
instantaneous-frequency-related measure. Those com-
ponents are filtered with two bandpass filters, one for
the melody line and the other for the bass line. Each set
of the filtered frequency components is utilized to form
a probability density function (PDF) of the F0, and the
salient promising peaks in the F0’s PDF are sequentially
tracked by a multiple-agent architecture, where each a-
gent forms an F0 trajectory and evaluates its reliability.
Finally, the most predominant F0 trajectory of the most
reliable agent is selected as the output.

3.1 Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency
[Flanagan and Golden, 1966; Cohen, 1989; Boashash,
1992], the rate of change of the phase of a signal, of filter-
bank outputs. Instead of calculating the phase directly,
it utilizes an efficient calculation method [Flanagan and
Golden, 1966] based on the short-time Fourier transform
(STFT) whose output can be interpreted as a collection
of uniform-filter outputs. When the STFT of a signal
x(t) is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)h(τ − t)e−jωτdτ (3)

= a + jb, (4)

the instantaneous frequency λ(ω, t) is given by

λ(ω, t) = ω +
a∂b

∂t
− b ∂a

∂t

a2 + b2
. (5)

We use the STFT window function h(t) obtained by
convolving a basis function of the 2nd-order cardinal
B-spline with an isometric Gaussian window function
[Kawahara et al., 1998b]. Although the importance of
the appropriate choice of h(t) is discussed in [Kawahara
et al., 1998b], our window function is not optimized to

−34−

 “Agent” systems

Figure 6: KS Activities

KS
2. this triggering context is used to activate the KS
3. the KS uses the triggering context to determine the

ranges of attribute values that are relevant to the trig-
gering context and looks on the blackboard to see what
additional blackboard objects have attributes within
those ranges

4. the KS uses the retrieved objects and the triggering con-
text information to perform its computations

5. the results of this computation are written onto the
blackboard

In this sequence, step 3 is the step associated with investiga-
tion.

Associative retrieval of blackboard data is central to the
blackboard paradigm. It is used to facilitate the indirect and
anonymous communication among KSs by allowing them to
look for relevant information on the blackboard rather than
receiving the information directly from other KSs. Objects
on the blackboard often have significant latency between the
time they are placed on the blackboard and the time they
are determined to be relevant for use by another KS. If it
were not for this latency between creation and use, the black-
board could be compiled away into direct calls among KSs
by a configuration-time compiler, and we would be back to
the directly connected modules of Figure 2(a). This latency
in blackboard objects supports the use of the blackboard as a
both a short-term scratchpad and a longer-term global mem-
ory for the KSs. Objects are held on the blackboard to be
used when and if they are needed by the KSs. It is support
for the temporal separation of creation and use that provides
blackboard systems with such flexibility in ordering KS execu-
tions. In order to obtain this same flexibility without a shared
blackboard, each KS module would have to maintain its own
copy of objects received from other modules. Furthermore,
whether the memory is globally shared (on the blackboard)
or private (within a KS), an efficient means of scanning for
remembered objects is required.

3.4 Interaction

Blackboard systems prohibit direct interaction among mod-
ules, as all communication is done via the blackboard. Tra-
ditional blackboard systems have only a single control thread
and execute only one KS activation at a time; once execution
is started, the KS activation runs to completion or until it is
aborted by the control shell. This means that all interaction
among KS activations is serial, is unidirectional (from earlier
to later executions), can have unbounded latency, and is indi-
rect via the blackboard. This severe restriction on interaction
greatly simplifies the development of blackboard applications,
but in certain situations this restriction can be a significant
collaborating-software limitation.

Assume that KS A and B both are interested in the same
event and can both do some initial work without interacting
with one another. However, the initial work of A is needed for
B to complete its work and vice versa. In this situation, the
blackboard-application designer must artificially split A into 2
KSs, APRE and APOST, and similarly, B is split into BPRE and
BPOST. Once APRE completes, BPOST can begin and, similarly,
once BPRE completes, APOST can begin. If a lot of interaction
is required, this KS-splitting approach can result in a large
number of artificial KS fragments. Alternatively, the same it-
erative form of interaction can be achieved by creating KSs
that are able to jump into later computations, based on the
information present on the blackboard. In this case, multiple
KS executions are still required to support the serial interac-
tion, but the number of KSs present in the system does not
need to be increased.

Parallel and distributed blackboard-system extensions of
the classic, single-threaded blackboard architecture allow
true concurrent KS executions, and this raises another impor-
tant interaction issue. If the KSs are to remain anonymous
and indirect in their interaction, then all interaction must still
occur via changes to the blackboard. Executing KSs must be
able to notice and respond to changes made to the blackboard
during their execution to support such indirect interaction.6

We could also extend the KS model to allow for direct com-
munication among co-executing KS activations. However, this
is a major departure from the blackboard-system model, and
it is problematic because of the uncertainty about which KS
activations will be executing concurrently at any moment.

3.5 Integration
Integration and representation are closely linked in

blackboard-system applications. The representation choices
that are made not only effect the ability of KSs to use the
results of others, but also how KS results are combined. In
a blackboard application, integration of results involves three
major activities: relationship management, attribute merging,
and value propagation.

The need for relationship management occurs when a KS ex-
ecution wants to create a new object on the blackboard and
the semantics of the blackboard representation requires that
the relationship between the new object and some existing
objects be represented. A simple example of this is the cre-
ation of a higher-level object as a result of identifying a set of
lower-level supporting objects, such as creating a platoon ob-
ject based on a set of individual unit objects. If this synthesis
activity is performed by a single KS execution, the relation-
ship between the new platoon object and the set of supporting
unit objects can be easily represented by also creating support
6This is a special case of the general problem of blackboard
changes occurring during KS execution.

Model: Humans
collaborating on
solving a math
program by taking
turns reading,
writing, and erasing
equations on a
black board.

Agents are small
programs that play
the “human” role.

Interaction
track

track
track

Agent
Agent

Agent

selective allocation
agent generationorSalience

detector

frequency

time

F0's PDF

To compute Equation (24), we need to assume the
PDF of a tone model p(x|F), which indicates where the
harmonics of the F0 F tend to occur. We according-
ly assume the following simple harmonic-structure tone
models for the melody line (i = m) and the bass line
(i = b):

p(x|F) = α

Ni
∑

h=1

c(h) G(x;F + 1200 log2 h, Wi), (25)

G(x; m,σ) = 1√
2πσ2

e−
(x−m)2

2σ2 , (26)

where α is a normalization factor, Ni is the number of
harmonics considered, W2

i is the variance of the Gaussian
distribution G(x; m, σ), and c(h) determines the ampli-
tude of the h-th harmonic component. For c(h) we use
G(h; 0, Hi) where Hi is a constant. Since these models
are very simple, there is a great deal of room for refining
them in future implementations. This could be done, for
example, by introducing tone memories.

A simple way of determining the frequency Fi(t) of the
most predominant F0 is to find the frequency that max-

imizes the F0’s PDF p
(t)
F0(F) (Equation (15)), which is

the final estimate obtained by the iterative computation
of Equation (24):

Fi(t) = argmax
F

p
(t)
F0(F). (27)

This result is not stable, however, because peaks corre-
sponding to the F0s of several simultaneous tones some-
times compete in the F0’s PDF for a moment and are
transiently selected, one after another, as the maximum
of the F0’s PDF. It is therefore necessary to consider
the global temporal continuity of the F0 peak. This is
addressed in the next section.

3.5 Sequential F0 Tracking by
Multiple-Agent Architecture

The method sequentially tracks peak trajectories in the
temporal transition of the F0’s PDF in order to selec-
t the most predominant and stable F0 trajectory from
the viewpoint of global F0 estimation.4 To perform this,
we introduce a multiple-agent architecture that enables
dynamic and flexible control of the tracking process. In
the multiple-agent architecture we proposed earlier [Go-
to and Muraoka, 1996] the number of agents was fixed
during the processing. Our new architecture, however,
generates and terminates agents dynamically by using a
mechanism similar to one in the residue-driven architec-
ture [Nakatani et al., 1995].

The architecture consists of a salience detector and
multiple agents. At each frame the salience detector

4Because the F0’s PDF is obtained without assuming the
number of sounds contained, our method can, by using an ap-
propriate sound-source discrimination method, be extended
to the problem of tracking multiple simultaneous sounds.

Figure 5: Sequential F0 tracking by multiple-agent architec-
ture.

picks up salient promising peaks in the F0’s PDF, and
agents driven by those peaks track their trajectories
(Figure 5). At the first of the processing, no agent has
been generated and there is only the salience detector.
They then behave at each frame as follows:

(1) After forming the F0’s PDF at each frame, the
salience detector picks up several salient peaks.

(2) If there are agents, they interact to allocate the
salient peaks to agents exclusively according to
peak-closeness criteria.

(3) If the most salient peak has not been allocated, a
new agent for tracking its peak is generated.

(4) Each agent has an accumulated penalty. An a-
gent whose accumulated penalty exceeds a certain
threshold is terminated.

(5) An agent to which a salient peak has not been allo-
cated is penalized a certain value and tries to find
its next peak in the F0’s PDF directly. When the
agent cannot find the peak even in the F0’s PDF, it
is further penalized a certain value. Otherwise, the
penalty is reset.

(6) Each agent evaluates its own reliability by using the
reliability at the previous frame and the degree of
the peak’s salience at the current frame.

(7) The output at t — the F0 f
(t)
0 and its reliability

r
(t)
0 — is determined on the basis of which agent

has the highest reliability and greatest total power
along the trajectory of the peak it is tracking.

Salience Detector

The salience detector picks up salient peaks Φ(t)
f of the

current F0’s PDF. To track peaks in the temporal tran-
sition of the F0’s PDF, we first define the F0 peak map

m
(t)
F0(F) considering the total power transition:

m
(t)
F0(F) =

Pow(t) p
(t)
F0(F) if ∂

∂F p
(t)
F0(F) = 0,

∂2

∂F2 p
(t)
F0(F) < 0

0 otherwise.
(28)

−37−

 “Agents” in action

Figure 6: Scrolling-window snapshots of candidate frequen-
cy components (left) and the corresponding detected melody
and bass lines (right) for a popular-music excerpt with
drum-sounds.

Table 2: Test songs sampled from compact discs.

title genre
My Heart Will Go On (Celine Dion) popular
Vision of Love (Mariah Carey) popular
Always (Bon Jovi) popular
Time Goes By (Every Little Thing) popular
Spirit of Love (Sing Like Talking) popular
Hoshi no Furu Oka (Misia) popular
Scarborough Fair (Herbie Hancock) jazz
Autumn Leaves (Julian “Cannonball” Adderley) jazz
On Green Dolphin Street (Miles Davis) jazz
Violin Concerto in D, Op. 35 (Tchaikovsky) classical

outputs the detected melody and bass lines in several
forms: computer graphics for visualization, audio sig-
nals for auralization, and continuous quantitative values
(with time stamps) for use in applications. The graph-
ics output shows a window representing the scrolling F0
trajectories on a time-frequency plane and an adjacent
interlocking window representing the candidate frequen-
cy components (Figure 6). The output audio signals are
generated by sinusoidal synthesis on the basis of the har-
monics that are tracked by a 2nd-order autoregressive
tracking model [Aikawa et al., 1996] guided by the de-
tected Di(t).

The system has been implemented using a distributed-
processing technique so that different system functions
— such as audio input and output (I/O), main calcula-
tion, and intermediate-state and output visualization —
are performed by different processes distributed over a
LAN (Ethernet). To facilitate system expansion and ap-
plication development, those processes are implemented
on the basis of a network protocol called RACP (Remote
Audio Control Protocol), which is an extension of the
RMCP (Remote Music Control Protocol) [Goto, ICM-
C97]. The main signal processing is performed on a per-
sonal computer with two Pentium II 450 MHz CPUs
(Linux 2.2), and the audio I/O and visualization pro-
cessing is performed on a workstation, the SGI Octane
with R10000 250 MHz CPU (Irix 6.4).

We tested the system on excerpts of 10 songs in pop-
ular, jazz, and orchestral genres (Table 2). The input
monaural audio signals were sampled from commercially
distributed compact discs and each contained a single-
tone melody with sounds of several instruments.

In our experiment the system correctly detected, for
the most part of each audio sample, melody lines pro-
vided by a voice or a single-tone mid-range instrument
and bass lines provided by a bass guitar or a contrabass.
It tended to perform best on jazz music in which a wind
instrument such as a trumpet and a saxophone provid-
ed the melody line because the tones of such instruments
tended to be more dominant and salient in a jazz ensem-
ble than in other genres. In the absence of the main vocal
part or the solo part, the system detected the F0 trajec-
tory of a dominant accompaniment part, because our
method simply estimates the most predominant F0 tra-
jectory every moment and does not discriminate sound
sources.

The detected line, however, sometimes switched from
the main vocal part to another obbligato part for a while
even when the previously tracked main vocal part con-
tinued. Furthermore, a short-term trajectory around the
onset of the main vocal part was sometimes missing be-
cause of the delay in switching from another part to the
vocal part. These errors are due to the absence of a
mechanism for selecting just the target part from sever-
al simultaneous streams; this issue should be addressed
in our future implementation. Other typical errors were
half-pitch or double-pitch errors in which the F0 was es-
timated as half or twice the actual F0.

5 Conclusion

We have described the problem of music scene descrip-
tion for complex real-world audio signals and have ad-
dressed the problem of detecting the melody and bass
lines. Our method for estimating the most predominant
F0 trajectory in monaural audio signals does not presup-
pose the existence of the F0’s frequency component and
uses partial information in an intentionally limited fre-
quency range. Using the EM algorithm without assum-
ing the number of sound sources, the method evaluates
the probability density function of the F0 which repre-
sents the relative dominance of every possible harmonic
structure. It also uses a multiple-agent architecture to
determine the most predominant and stable F0 trajec-
tory from the viewpoint of global temporal continuity of
the F0. Experimental results show that our system im-
plementing the method can estimate, in real time, the
predominant F0s of the melody and bass lines in audio
signals sampled from compact discs.

We plan to extend the method to track several streams
simultaneously and form more complete melody and bass
lines from them by using a selective-attention mechanis-
m. That extension will also address the issues of sound

−39−

 Screenshot of the system in action

Harmonic partials Pitch tracks

Klapuri’s
subtractive
system

570 CHAPTER 37 MUSIC SIGNAL ANALYSIS

Audio
frame

Harmonics enhancement Predominant f0 estimation

-20
0

20
40
60

0 1000 2000 3000 4000
frq / Hz

lev
el

/ d
B

-10
0

10
20 0 1000 2000 3000 frq / Hz

0

10

dB

0 100 200 300 f0 / Hz
0

f0 spectral smoothing

Stop when no more prominent f0s

Subtract
& iterate

0 1000 2000 3000 frq/Hz0

10

20

30

dB

FIGURE 37.3 Block diagram of the multiple-fundamental-frequency transcription
algorithm of Klapuri [12].

combinations lead to “interesting” effects when the coincident or close harmonics interfere
with one another. Thus, multiple-voice music audio is full of such collisions. None the less,
many note transcription systems have been developed based on fitting harmonic models to
the signals, and they have steadily increased the detail extracted (from one or two voices
through to higher-order polyphony) and the range of acoustic conditions in which they
can be applied (from small numbers of specific instruments, to instrument-independent
systems).

Interesting examples include Goto & Hayamizu [11] and Klapuri [12]. At the heart of
these approaches is an algorithm for accounting for the spectral peaks in a single frame of the
Fourier transform with a small number of fundamental frequencies. Figure 37.3 illustrates
the system of Klapuri [12]: First, spectral frames are normalized to reduce the impact
of aperiodic noise and interference and enhance the true harmonic peaks. The spectral
magnitude is smoothed across frequency, then this smoothed spectrum is subtracted, leaving
only the rapid variations in the spectrum such as the sharp spectral peaks. This is essentially
high-pass filtering the spectrum along the frequency axis. This enhanced spectrum is then
passed to the “predominant f0 estimation” block, which identifies the single fundamental
period most strongly present in the spectrum. This is done by correlating it against a template
that consists of an ideal set of harmonics of a given fundamental – effectively summing up
the enhanced energy at all the expected harmonic locations. An example template appears
as the grid of vertical lines in the upper graph in the Predominant f0 Estimation box.
By doing this for every value in a dense grid of candidate fundamental frequencies, the
approach derives a ‘strength’ function as a function of f0, shown in the lower graph. The
predominant fundamental is then chosen as the largest peak in this graph, and is reported
as one of the fundamentals present in the frame.

Other notes are found by iteratively removing the harmonics of the found notes
from the original spectrum, then repeating the search. However, it is not particularly

806 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 1. Overview of the proposed multiple-F0 estimation method.

A. Preprocessing
All calculations in the proposed system take place in the fre-

quency domain. A discrete Fourier transform is calculated for
a Hamming-windowed frame of an acoustic input signal, sam-
pled at 44.1 kHz rate and quantized to 16-bit precision. Frame
lengths of 93 ms and 190 ms were used in simulations. These
may seem long from the speech processing point of view, but
are actually not very long for musical chord identification tasks.
In such tasks, the pitch range is wide, mixtures of low sounds
produce very dense sets of frequency partials, and F0 precision
of 3% is required to distinguish adjacent notes (see Appendix).
Preprocessing the spectrum before the actual multiple-F0

analysis is an important factor in the performance of the system.
It provides robustness in additive noise and ensures that sounds
with varying spectral shapes can be handled. The signal model
assumed by the proposed system is

(1)

where is the discrete power spectrum of an incoming
acoustic signal and is the power spectrum of a vibrating
system whose fundamental frequency should be measured. The
factor represents the frequency response of the operating
environment and the body of a musical instrument which fil-
ters the signal of the vibrating source. Elimination of is
often referred to as pre-whitening. The term represents
the power spectrum of additive noise. In music signals, the ad-
ditive interference is mainly due to the transient-like sounds of
drums and percussive instruments.
In principle, additive noise can be suppressed by performing

spectral subtraction in the power spectral domain. The effect
of , in turn, can be suppressed by highpass liftering1 the
log-magnitude spectrum. Confirming the reports of earlier au-
thors, however, two noise-reduction systems in a cascade does
not produce appropriate results [30]. Rather, successful noise
suppression is achieved by applying magnitude warping which
equalizes while allowing the additive noise to be linearly
subtracted from the result. The power spectrum is magni-
tude-warped as

(2)

where

(3)

1The term “liftering” is defined [29].

The frequency indices and correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-F0 estimator. The
exact formula for calculating is not as critical as the general
idea represented by (2). The use of (2) and (3) is based on two
reasonable assumptions. First, the amplitudes of the important
frequency partials in are above the additive noise

. Secondly, it is assumed that a majority of the frequency
components between and correspond to the additive
noise floor, not to the spectral peaks of . In this case,

scales the input spectrum so that the level of additive
noise stays close to unity and the spectral peaks of the
vibrating system are noticeably above unity. It
follows that in (2), additive noise goes through a linear-like
magnitude-warping transform, whereas spectral peaks go
through a logarithmic-like transform.
The response is efficiently flattened by the loga-

rithmic-like transform, since subsequent processing takes place
in the warped magnitude scale. Additive noise is suppressed
by applying a specific spectral subtraction on [34]. A
moving average over is calculated on a logarithmic
frequency scale and then linearly subtracted from . More
exactly, local averages were calculated at 2/3-octave bands
while constraining the minimum bandwidth to 100 Hz at the
lowest bands. The same bandwidths are used in the subsequent
F0 calculations and are motivated by the frequency resolution
of the human auditory system and by practical experiments
with generated mixtures of musical sounds and noise. The use
of the logarithmic frequency scale was clearly advantageous
over a linear scale since it balances the amount of spectral fine
structure that is used with different F0s.
The estimated spectral average is linearly subtracted

from and resulting negative values are constrained to zero

(4)

The preprocessed spectrum is passed to the multiple-F0
estimator.

B. Harmonicity Principle
In this section, the “Predominant-F0 estimation” part of the

algorithm is described. A process is proposed which organizes
mixture spectra by utilizing the harmonic relationships between
frequency components, without assuming ideal harmonicity.
Several fundamentally different approaches to F0 estima-

tion have been proposed. One category of algorithms measures
periodicity in the time-domain signal. These methods are typ-
ically based on calculating the time-domain autocorrelation
function or the cepstrum representation [32], [33]. As shown
in [34], this is theoretically equivalent to matching a pattern
of frequency partials at harmonic positions of the sound spec-
trum. An explicit way of building upon this idea is to perform
harmonic pattern matching in the frequency domain [35], [36].
Another category of algorithms measures periodicity in the
frequency-domain, observing F0 from the intervals between
the frequency partials of a sound. The spectrum autocorre-
lation method and its variants have been successfully used
in several F0 estimators [37], [38]. An interesting difference

 Estimate most likely F0 for each bandKLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 807

between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to errors
in F0 halving and the latter to errors in F0 doubling. This
is because the time-domain signal is periodic at half the F0
rate (twice the fundamental time delay) and the spectrum is
periodic at double the F0 rate. A third, psychoacoustically
motivated group of algorithms measures the periodicity of the
amplitude envelope of a time-domain signal within several
frequency channels [20], [21], [39].
A major shortcoming of many of the earlier proposed

methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the
harmonic partials are often not in exact integral ratios. For
example for stretched strings the frequency of an overtone
partial obeys

(5)

where is the fundamental frequency and is the inhar-
monicity factor [40]. Equation (5) means that the partials
cannot be assumed to be found at harmonic spectrum positions,
but are gradually shifted upwards in the spectrum. This is
not of great concern in speech processing, but is important
when analyzing musical sounds at a wide frequency band
[41]. In the rest of this paper, capital letter is used to denote
fundamental frequency, and the lower case letter to denote
simply frequency.
The proposed predominant-F0 estimation method works by

calculating independent F0 estimates at separate frequency
bands and then combining the results to yield a global estimate.
This helps to solve several difficulties, one of which is inhar-
monicity. According to (5), the higher harmonics may deviate
from their expected spectral positions, and even the intervals
between them are not constant. However, we can assume the
spectral intervals to be piecewise constant at narrow-enough
frequency bands. Thus, we utilize spectral intervals in a two
step process which 1) calculates the weights of different
F0s at separate frequency bands and 2) combines the results
in a manner that takes inharmonicity into account. Another
advantage of bandwise processing is that it provides robustness
and flexibility in the case of badly corrupted signals where only
a fragment of the whole frequency range can be used [41]. The
two steps are now described.
1) Bandwise F0 Estimation: The preprocessed spectrum
is analyzed at 18 bands that distribute approximately log-

arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2.
Each band comprises a 2/3-octave region of the spectrum,
constraining, however, the minimum bandwidth to 100 Hz.
Band is subject to weighting with a triangular frequency
response , shown in Fig. 2. The overlap between adjacent
bands is 50%, making the overall response sum to unity at all
except the lowest bands. Response at band is denoted by

(6)

Non-zero frequency components of are defined for fre-
quency indices, where is the lowest
frequency component at band and is the number of com-
ponents at the band.

Fig. 2. Magnitude responses of the 18 frequency bands, at which the bandwise
F0 estimation takes place.

In each band, the algorithm calculates a weight vector
across frequency indices. Note, index corresponds to the fun-
damental frequency where is the number of
samples in the time-domain analysis frame and is the sam-
pling rate. The resolution of the weight vector is the same as
that of the preprocessed spectrum . The bandwise weights

are calculated by finding a series of each frequency
components at band that maximizes the sum

(7)

where

(8)

(9)

Here, is the offset of the series of par-
tials in the sum, is the number of partials in the sum,
and is a normalization factor. A normalization factor is
needed because varies for different values of and . The
form was determined by training with isolated musical
instrument samples in varying noise conditions. The offset
is varied to find the maximum of (7), which is then stored in

. Different offsets have to be tested because the series of
higher harmonic partials may have shifted due to inharmonicity.
The upper panel in Fig. 3 illustrates the calculations for a

single harmonic sound at the band between 1100 Hz
and 1700 Hz. The arrows indicate the series of frequency com-
ponents which maximizes for the true F0.
The values of the offset are restricted to physically realistic

inharmonicities, a subset of . The exact limit is not critical,
therefore (5) with a constant inharmonicity factor can
be used to determine the maximum allowable offset from the
ideal harmonic positions. The harmonic index in (5) can be
approximated by . It follows that the fun-
damental partial must be exactly in the harmonic spectral
position, whereas the whole set has to be considered for the
highest partials. In other words, the algorithm combines the use
of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
which is assumed to contain only the first harmonic partial of a
sound with fundamental frequency corresponding to index ,
inharmonicity is not allowed. Here is set to 1, and (7) reduces
to the special case

(10)

Band 12:
1.1-1.6 kHz

808 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 3. Calculation of the bandwise F0 weight vectors according to (7).

It follows that in this case the weights are equal to
between the frequency limits of the band. The algorithm is de-
tailed in Table I.
The lower panel in Fig. 3 shows the entire weight vector

calculated at band for the same signal as in the
upper panel. As can be seen, the preprocessed spectrum
appears as such at the corresponding band of . A twice
narrower copy of is found an octave below, since the F0s
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower F0 candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true F0 (70 Hz) which has been assigned the highest
weight.
An important property of the presented calculations is that

only the selected frequency samples contribute to the weight
, not the overall spectrum. The other co-occurring sounds

affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section II-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-F0 algorithms, as described in Section I.
2) Integration of Weights Across Subbands: Fig. 4 shows

the calculated weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the
maximum weight is usually assigned to the true F0, provided
that there is a harmonic partial at that band. The inharmonicity
phenomenon appears in Figs. 4(a) and 4(b) as a rising trend
in the fundamental frequency.
The bandwise F0 weights are combined to yield a global F0

estimate. A straightforward summation across the weight vec-
tors does not accumulate them appropriately since the F0 esti-
mates at different bands may not match for inharmonic sounds,
as can be seen from Fig. 4. To overcome this, the inharmonicity
factor is estimated and taken into account. Two different inhar-
monicity models were implemented, the one given in (5) and
another mentioned in [40, p. 363]. In simulations, the perfor-
mance difference between the two was negligible. The model in
(5) was adopted.
Global weights are obtained by summing squared band-

wise weights that are selected from different bands ac-

TABLE I
ALGORITHM FOR CALCULATING THE WEIGHTS FOR DIFFERENT F0s AT

BAND . SEE TEXT FOR THE DEFINITION OF SYMBOLS

cording to a curve determined by (5). A search over possible
values of is conducted for each , and the highest
and the corresponding are stored in the output. Squaring
the bandwise F0 weights prior to summing was found to pro-
vide robustness in the presence of strong interference where the
pitch may be perceptible only at a limited frequency range.
The global F0 weights and inharmonicity factors

do not need to be calculated for all fundamental frequency in-
dices . Instead, only a set of fundamental frequency indices

is collected from the bandwise weight vec-
tors . This is possible, and advantageous since if a sound
is perceptible at all, it generally has a high weight in at least one
of the bands. Selecting a couple of maxima from each band pre-
serves the correct fundamental frequency among the candidates.
The maximum global weight can be used as such to

determine the true F0. However, an even more robust selec-

Energy
peaks within
Band 12.

808 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 3. Calculation of the bandwise F0 weight vectors according to (7).

It follows that in this case the weights are equal to
between the frequency limits of the band. The algorithm is de-
tailed in Table I.
The lower panel in Fig. 3 shows the entire weight vector

calculated at band for the same signal as in the
upper panel. As can be seen, the preprocessed spectrum
appears as such at the corresponding band of . A twice
narrower copy of is found an octave below, since the F0s
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower F0 candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true F0 (70 Hz) which has been assigned the highest
weight.
An important property of the presented calculations is that

only the selected frequency samples contribute to the weight
, not the overall spectrum. The other co-occurring sounds

affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section II-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-F0 algorithms, as described in Section I.
2) Integration of Weights Across Subbands: Fig. 4 shows

the calculated weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the
maximum weight is usually assigned to the true F0, provided
that there is a harmonic partial at that band. The inharmonicity
phenomenon appears in Figs. 4(a) and 4(b) as a rising trend
in the fundamental frequency.
The bandwise F0 weights are combined to yield a global F0

estimate. A straightforward summation across the weight vec-
tors does not accumulate them appropriately since the F0 esti-
mates at different bands may not match for inharmonic sounds,
as can be seen from Fig. 4. To overcome this, the inharmonicity
factor is estimated and taken into account. Two different inhar-
monicity models were implemented, the one given in (5) and
another mentioned in [40, p. 363]. In simulations, the perfor-
mance difference between the two was negligible. The model in
(5) was adopted.
Global weights are obtained by summing squared band-

wise weights that are selected from different bands ac-

TABLE I
ALGORITHM FOR CALCULATING THE WEIGHTS FOR DIFFERENT F0s AT

BAND . SEE TEXT FOR THE DEFINITION OF SYMBOLS

cording to a curve determined by (5). A search over possible
values of is conducted for each , and the highest
and the corresponding are stored in the output. Squaring
the bandwise F0 weights prior to summing was found to pro-
vide robustness in the presence of strong interference where the
pitch may be perceptible only at a limited frequency range.
The global F0 weights and inharmonicity factors

do not need to be calculated for all fundamental frequency in-
dices . Instead, only a set of fundamental frequency indices

is collected from the bandwise weight vec-
tors . This is possible, and advantageous since if a sound
is perceptible at all, it generally has a high weight in at least one
of the bands. Selecting a couple of maxima from each band pre-
serves the correct fundamental frequency among the candidates.
The maximum global weight can be used as such to

determine the true F0. However, an even more robust selec-

Weights L12(n).
Horizontal “n”
axis plots F0s.

n

808 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 3. Calculation of the bandwise F0 weight vectors according to (7).

It follows that in this case the weights are equal to
between the frequency limits of the band. The algorithm is de-
tailed in Table I.
The lower panel in Fig. 3 shows the entire weight vector

calculated at band for the same signal as in the
upper panel. As can be seen, the preprocessed spectrum
appears as such at the corresponding band of . A twice
narrower copy of is found an octave below, since the F0s
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower F0 candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true F0 (70 Hz) which has been assigned the highest
weight.
An important property of the presented calculations is that

only the selected frequency samples contribute to the weight
, not the overall spectrum. The other co-occurring sounds

affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section II-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-F0 algorithms, as described in Section I.
2) Integration of Weights Across Subbands: Fig. 4 shows

the calculated weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the
maximum weight is usually assigned to the true F0, provided
that there is a harmonic partial at that band. The inharmonicity
phenomenon appears in Figs. 4(a) and 4(b) as a rising trend
in the fundamental frequency.
The bandwise F0 weights are combined to yield a global F0

estimate. A straightforward summation across the weight vec-
tors does not accumulate them appropriately since the F0 esti-
mates at different bands may not match for inharmonic sounds,
as can be seen from Fig. 4. To overcome this, the inharmonicity
factor is estimated and taken into account. Two different inhar-
monicity models were implemented, the one given in (5) and
another mentioned in [40, p. 363]. In simulations, the perfor-
mance difference between the two was negligible. The model in
(5) was adopted.
Global weights are obtained by summing squared band-

wise weights that are selected from different bands ac-

TABLE I
ALGORITHM FOR CALCULATING THE WEIGHTS FOR DIFFERENT F0s AT

BAND . SEE TEXT FOR THE DEFINITION OF SYMBOLS

cording to a curve determined by (5). A search over possible
values of is conducted for each , and the highest
and the corresponding are stored in the output. Squaring
the bandwise F0 weights prior to summing was found to pro-
vide robustness in the presence of strong interference where the
pitch may be perceptible only at a limited frequency range.
The global F0 weights and inharmonicity factors

do not need to be calculated for all fundamental frequency in-
dices . Instead, only a set of fundamental frequency indices

is collected from the bandwise weight vec-
tors . This is possible, and advantageous since if a sound
is perceptible at all, it generally has a high weight in at least one
of the bands. Selecting a couple of maxima from each band pre-
serves the correct fundamental frequency among the candidates.
The maximum global weight can be used as such to

determine the true F0. However, an even more robust selec-

KLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 807

between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to errors
in F0 halving and the latter to errors in F0 doubling. This
is because the time-domain signal is periodic at half the F0
rate (twice the fundamental time delay) and the spectrum is
periodic at double the F0 rate. A third, psychoacoustically
motivated group of algorithms measures the periodicity of the
amplitude envelope of a time-domain signal within several
frequency channels [20], [21], [39].
A major shortcoming of many of the earlier proposed

methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the
harmonic partials are often not in exact integral ratios. For
example for stretched strings the frequency of an overtone
partial obeys

(5)

where is the fundamental frequency and is the inhar-
monicity factor [40]. Equation (5) means that the partials
cannot be assumed to be found at harmonic spectrum positions,
but are gradually shifted upwards in the spectrum. This is
not of great concern in speech processing, but is important
when analyzing musical sounds at a wide frequency band
[41]. In the rest of this paper, capital letter is used to denote
fundamental frequency, and the lower case letter to denote
simply frequency.
The proposed predominant-F0 estimation method works by

calculating independent F0 estimates at separate frequency
bands and then combining the results to yield a global estimate.
This helps to solve several difficulties, one of which is inhar-
monicity. According to (5), the higher harmonics may deviate
from their expected spectral positions, and even the intervals
between them are not constant. However, we can assume the
spectral intervals to be piecewise constant at narrow-enough
frequency bands. Thus, we utilize spectral intervals in a two
step process which 1) calculates the weights of different
F0s at separate frequency bands and 2) combines the results
in a manner that takes inharmonicity into account. Another
advantage of bandwise processing is that it provides robustness
and flexibility in the case of badly corrupted signals where only
a fragment of the whole frequency range can be used [41]. The
two steps are now described.
1) Bandwise F0 Estimation: The preprocessed spectrum
is analyzed at 18 bands that distribute approximately log-

arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2.
Each band comprises a 2/3-octave region of the spectrum,
constraining, however, the minimum bandwidth to 100 Hz.
Band is subject to weighting with a triangular frequency
response , shown in Fig. 2. The overlap between adjacent
bands is 50%, making the overall response sum to unity at all
except the lowest bands. Response at band is denoted by

(6)

Non-zero frequency components of are defined for fre-
quency indices, where is the lowest
frequency component at band and is the number of com-
ponents at the band.

Fig. 2. Magnitude responses of the 18 frequency bands, at which the bandwise
F0 estimation takes place.

In each band, the algorithm calculates a weight vector
across frequency indices. Note, index corresponds to the fun-
damental frequency where is the number of
samples in the time-domain analysis frame and is the sam-
pling rate. The resolution of the weight vector is the same as
that of the preprocessed spectrum . The bandwise weights

are calculated by finding a series of each frequency
components at band that maximizes the sum

(7)

where

(8)

(9)

Here, is the offset of the series of par-
tials in the sum, is the number of partials in the sum,
and is a normalization factor. A normalization factor is
needed because varies for different values of and . The
form was determined by training with isolated musical
instrument samples in varying noise conditions. The offset
is varied to find the maximum of (7), which is then stored in

. Different offsets have to be tested because the series of
higher harmonic partials may have shifted due to inharmonicity.
The upper panel in Fig. 3 illustrates the calculations for a

single harmonic sound at the band between 1100 Hz
and 1700 Hz. The arrows indicate the series of frequency com-
ponents which maximizes for the true F0.
The values of the offset are restricted to physically realistic

inharmonicities, a subset of . The exact limit is not critical,
therefore (5) with a constant inharmonicity factor can
be used to determine the maximum allowable offset from the
ideal harmonic positions. The harmonic index in (5) can be
approximated by . It follows that the fun-
damental partial must be exactly in the harmonic spectral
position, whereas the whole set has to be considered for the
highest partials. In other words, the algorithm combines the use
of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
which is assumed to contain only the first harmonic partial of a
sound with fundamental frequency corresponding to index ,
inharmonicity is not allowed. Here is set to 1, and (7) reduces
to the special case

(10)

1, 2, 18
Use L1(n) ... L18(n)
to compute a
global F0 value.

806 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 1. Overview of the proposed multiple-F0 estimation method.

A. Preprocessing
All calculations in the proposed system take place in the fre-

quency domain. A discrete Fourier transform is calculated for
a Hamming-windowed frame of an acoustic input signal, sam-
pled at 44.1 kHz rate and quantized to 16-bit precision. Frame
lengths of 93 ms and 190 ms were used in simulations. These
may seem long from the speech processing point of view, but
are actually not very long for musical chord identification tasks.
In such tasks, the pitch range is wide, mixtures of low sounds
produce very dense sets of frequency partials, and F0 precision
of 3% is required to distinguish adjacent notes (see Appendix).
Preprocessing the spectrum before the actual multiple-F0

analysis is an important factor in the performance of the system.
It provides robustness in additive noise and ensures that sounds
with varying spectral shapes can be handled. The signal model
assumed by the proposed system is

(1)

where is the discrete power spectrum of an incoming
acoustic signal and is the power spectrum of a vibrating
system whose fundamental frequency should be measured. The
factor represents the frequency response of the operating
environment and the body of a musical instrument which fil-
ters the signal of the vibrating source. Elimination of is
often referred to as pre-whitening. The term represents
the power spectrum of additive noise. In music signals, the ad-
ditive interference is mainly due to the transient-like sounds of
drums and percussive instruments.
In principle, additive noise can be suppressed by performing

spectral subtraction in the power spectral domain. The effect
of , in turn, can be suppressed by highpass liftering1 the
log-magnitude spectrum. Confirming the reports of earlier au-
thors, however, two noise-reduction systems in a cascade does
not produce appropriate results [30]. Rather, successful noise
suppression is achieved by applying magnitude warping which
equalizes while allowing the additive noise to be linearly
subtracted from the result. The power spectrum is magni-
tude-warped as

(2)

where

(3)

1The term “liftering” is defined [29].

The frequency indices and correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-F0 estimator. The
exact formula for calculating is not as critical as the general
idea represented by (2). The use of (2) and (3) is based on two
reasonable assumptions. First, the amplitudes of the important
frequency partials in are above the additive noise

. Secondly, it is assumed that a majority of the frequency
components between and correspond to the additive
noise floor, not to the spectral peaks of . In this case,

scales the input spectrum so that the level of additive
noise stays close to unity and the spectral peaks of the
vibrating system are noticeably above unity. It
follows that in (2), additive noise goes through a linear-like
magnitude-warping transform, whereas spectral peaks go
through a logarithmic-like transform.
The response is efficiently flattened by the loga-

rithmic-like transform, since subsequent processing takes place
in the warped magnitude scale. Additive noise is suppressed
by applying a specific spectral subtraction on [34]. A
moving average over is calculated on a logarithmic
frequency scale and then linearly subtracted from . More
exactly, local averages were calculated at 2/3-octave bands
while constraining the minimum bandwidth to 100 Hz at the
lowest bands. The same bandwidths are used in the subsequent
F0 calculations and are motivated by the frequency resolution
of the human auditory system and by practical experiments
with generated mixtures of musical sounds and noise. The use
of the logarithmic frequency scale was clearly advantageous
over a linear scale since it balances the amount of spectral fine
structure that is used with different F0s.
The estimated spectral average is linearly subtracted

from and resulting negative values are constrained to zero

(4)

The preprocessed spectrum is passed to the multiple-F0
estimator.

B. Harmonicity Principle
In this section, the “Predominant-F0 estimation” part of the

algorithm is described. A process is proposed which organizes
mixture spectra by utilizing the harmonic relationships between
frequency components, without assuming ideal harmonicity.
Several fundamentally different approaches to F0 estima-

tion have been proposed. One category of algorithms measures
periodicity in the time-domain signal. These methods are typ-
ically based on calculating the time-domain autocorrelation
function or the cepstrum representation [32], [33]. As shown
in [34], this is theoretically equivalent to matching a pattern
of frequency partials at harmonic positions of the sound spec-
trum. An explicit way of building upon this idea is to perform
harmonic pattern matching in the frequency domain [35], [36].
Another category of algorithms measures periodicity in the
frequency-domain, observing F0 from the intervals between
the frequency partials of a sound. The spectrum autocorre-
lation method and its variants have been successfully used
in several F0 estimators [37], [38]. An interesting difference

 L1(n) ... L18(n) for two piano notes

F0 = 65 Hz

KLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 809

Fig. 4. Bandwise-calculated F0 weights for two piano tones, Figure
(a) with F0 65 Hz and Figure (b) with F0 470 Hz. The vectors are displaced
vertically for clarity. The true pitches of the tones are indicated with dashed
vertical lines.

tion among the candidates can be made by further inspecting
the spectral smoothness of the F0s that have the highest global
weights. This is the reason why a smoothing module is used in
Fig. 1 before storing the F0. This module will be described in
detail in Section III. For the sake of discussion in Section II-C
one can assume that themaximum global score determines
the predominant F0.

C. Spectral Smoothness Principle

1) Iterative Estimation and Separation: The presented
method is capable of making robust predominant-F0 detections
in polyphonic signals. Moreover, the inharmonicity factor and
precise frequencies of each harmonic partial of the detected
sound are produced. A natural strategy for extending the
presented algorithm to multiple-F0 estimation is to remove the
partials of the detected sound from the mixture and to apply the
predominant-F0 algorithm iteratively to the residual spectrum.
Detected sounds are separated in the frequency domain. Each

sinusoidal partial of a sound is removed from the mixture spec-
trum in two stages. First, good estimates of the frequency and
amplitude of the partials must be obtained. It is assumed that
these parameters remain constant in the analysis frame. Second,
using the found parameters, the spectrum in the vicinity of the

partials is estimated and linearly subtracted from the mixture
spectrum.
Initial estimates for the frequency and amplitude of each si-

nusoidal partial of a sound are produced by the predominant-F0
detection algorithm. Efficient techniques for estimating more
precise values have been proposed e.g. in [42]. A method
widely adopted is to apply Hamming windowing and zero
padding in the time domain, to calculate Fourier spectrum,
and to use quadratic interpolation of the spectrum around the
partial. The second problem, estimating the spectrum in the
vicinity of the partial is equivalent to translating the magnitude
spectrum of the original analysis window at the frequency
of the sinusoidal partial. For Hamming window without zero
padding, it was found to be sufficient to perform the subtraction
for five adjacent frequency bins.
2) The Problem of Coinciding Frequency Partials: One

issue that is addressed in the algorithm is the problem of
coinciding frequency partials. To illustrate this problem,
simulations were run using the iterative procedure on randomly
generated F0 mixtures. Fig. 5 shows the errors as a function of
the musical intervals that occur in the erroneously transcribed
sound mixtures (see Appendix). In most cases, the iterative
approach works rather reliably. However, an important obser-
vation can be made when the distribution of the errors in Fig. 5
is analyzed. The error rate is strongly correlated with certain F0
relations. The conclusion to be noted is that a straightforward
estimation and subtraction approach is likely to fail in cases
where the fundamental frequencies of simultaneous sounds
have simple rational number relations, also called harmonic
relations. These are indicated over the corresponding bars in
Fig. 5.
Coinciding frequency partials from different sounds can

cause the algorithm to fail since many of the partials coincide
in frequency. When the sound detected first is removed, the
coinciding harmonics of remaining sounds are corrupted in
the subtraction procedure. After several iterations, a remaining
sound can become too corrupted to be correctly analyzed in the
iterations that follow.
When two sinusoidal partials with amplitudes and and

phase difference coincide in frequency, the amplitude of the
resulting sinusoid can be calculated as

(11)

If the two amplitudes are roughly equivalent, the partials may
either amplify or cancel each other, depending on . However,
if one of the amplitudes is significantly greater than the other,
as is usually the case, approaches the maximum of the two.
Assuming ideal harmonicity, it is straightforward to prove

that the harmonic partials of two sounds coincide if and only
if the fundamental frequencies of the two sounds are in rational
number relations. Moreover, if the harmonic indices of the co-
inciding partials are and , then every partial of the first
sound coincides with every partial of the other sound. An
important principle in Western music is to pay attention to the
pitch relationships of simultaneously played notes. Simple har-
monic relationships are favored over dissonant ones in order to
make the sounds blend better. Because harmonic relationships

1

18

F0 = 470 Hz

KLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 809

Fig. 4. Bandwise-calculated F0 weights for two piano tones, Figure
(a) with F0 65 Hz and Figure (b) with F0 470 Hz. The vectors are displaced
vertically for clarity. The true pitches of the tones are indicated with dashed
vertical lines.

tion among the candidates can be made by further inspecting
the spectral smoothness of the F0s that have the highest global
weights. This is the reason why a smoothing module is used in
Fig. 1 before storing the F0. This module will be described in
detail in Section III. For the sake of discussion in Section II-C
one can assume that themaximum global score determines
the predominant F0.

C. Spectral Smoothness Principle

1) Iterative Estimation and Separation: The presented
method is capable of making robust predominant-F0 detections
in polyphonic signals. Moreover, the inharmonicity factor and
precise frequencies of each harmonic partial of the detected
sound are produced. A natural strategy for extending the
presented algorithm to multiple-F0 estimation is to remove the
partials of the detected sound from the mixture and to apply the
predominant-F0 algorithm iteratively to the residual spectrum.
Detected sounds are separated in the frequency domain. Each

sinusoidal partial of a sound is removed from the mixture spec-
trum in two stages. First, good estimates of the frequency and
amplitude of the partials must be obtained. It is assumed that
these parameters remain constant in the analysis frame. Second,
using the found parameters, the spectrum in the vicinity of the

partials is estimated and linearly subtracted from the mixture
spectrum.
Initial estimates for the frequency and amplitude of each si-

nusoidal partial of a sound are produced by the predominant-F0
detection algorithm. Efficient techniques for estimating more
precise values have been proposed e.g. in [42]. A method
widely adopted is to apply Hamming windowing and zero
padding in the time domain, to calculate Fourier spectrum,
and to use quadratic interpolation of the spectrum around the
partial. The second problem, estimating the spectrum in the
vicinity of the partial is equivalent to translating the magnitude
spectrum of the original analysis window at the frequency
of the sinusoidal partial. For Hamming window without zero
padding, it was found to be sufficient to perform the subtraction
for five adjacent frequency bins.
2) The Problem of Coinciding Frequency Partials: One

issue that is addressed in the algorithm is the problem of
coinciding frequency partials. To illustrate this problem,
simulations were run using the iterative procedure on randomly
generated F0 mixtures. Fig. 5 shows the errors as a function of
the musical intervals that occur in the erroneously transcribed
sound mixtures (see Appendix). In most cases, the iterative
approach works rather reliably. However, an important obser-
vation can be made when the distribution of the errors in Fig. 5
is analyzed. The error rate is strongly correlated with certain F0
relations. The conclusion to be noted is that a straightforward
estimation and subtraction approach is likely to fail in cases
where the fundamental frequencies of simultaneous sounds
have simple rational number relations, also called harmonic
relations. These are indicated over the corresponding bars in
Fig. 5.
Coinciding frequency partials from different sounds can

cause the algorithm to fail since many of the partials coincide
in frequency. When the sound detected first is removed, the
coinciding harmonics of remaining sounds are corrupted in
the subtraction procedure. After several iterations, a remaining
sound can become too corrupted to be correctly analyzed in the
iterations that follow.
When two sinusoidal partials with amplitudes and and

phase difference coincide in frequency, the amplitude of the
resulting sinusoid can be calculated as

(11)

If the two amplitudes are roughly equivalent, the partials may
either amplify or cancel each other, depending on . However,
if one of the amplitudes is significantly greater than the other,
as is usually the case, approaches the maximum of the two.
Assuming ideal harmonicity, it is straightforward to prove

that the harmonic partials of two sounds coincide if and only
if the fundamental frequencies of the two sounds are in rational
number relations. Moreover, if the harmonic indices of the co-
inciding partials are and , then every partial of the first
sound coincides with every partial of the other sound. An
important principle in Western music is to pay attention to the
pitch relationships of simultaneously played notes. Simple har-
monic relationships are favored over dissonant ones in order to
make the sounds blend better. Because harmonic relationships

1

18

808 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 3. Calculation of the bandwise F0 weight vectors according to (7).

It follows that in this case the weights are equal to
between the frequency limits of the band. The algorithm is de-
tailed in Table I.
The lower panel in Fig. 3 shows the entire weight vector

calculated at band for the same signal as in the
upper panel. As can be seen, the preprocessed spectrum
appears as such at the corresponding band of . A twice
narrower copy of is found an octave below, since the F0s
in that range have exactly one harmonic partial at the band (the
second partial). Yet lower F0 candidates have a series of higher
overtones at the band and inharmonicity is allowed. This is the
case for the true F0 (70 Hz) which has been assigned the highest
weight.
An important property of the presented calculations is that

only the selected frequency samples contribute to the weight
, not the overall spectrum. The other co-occurring sounds

affect the weight only to the extent that their partials overlap
those of the sound being estimated (a solution for overlapping
partials is given in Section II-C). Harmonic selection provides
robustness in sound mixtures as long as we do not rely on the
detection of single partials, as is the case here. Harmonic selec-
tion was originally proposed by Parsons in [27] and is used in
most multiple-F0 algorithms, as described in Section I.
2) Integration of Weights Across Subbands: Fig. 4 shows

the calculated weight vectors at different bands for two
isolated piano tones where the weight vectors are arranged
in increasing band center frequency order. As expected, the
maximum weight is usually assigned to the true F0, provided
that there is a harmonic partial at that band. The inharmonicity
phenomenon appears in Figs. 4(a) and 4(b) as a rising trend
in the fundamental frequency.
The bandwise F0 weights are combined to yield a global F0

estimate. A straightforward summation across the weight vec-
tors does not accumulate them appropriately since the F0 esti-
mates at different bands may not match for inharmonic sounds,
as can be seen from Fig. 4. To overcome this, the inharmonicity
factor is estimated and taken into account. Two different inhar-
monicity models were implemented, the one given in (5) and
another mentioned in [40, p. 363]. In simulations, the perfor-
mance difference between the two was negligible. The model in
(5) was adopted.
Global weights are obtained by summing squared band-

wise weights that are selected from different bands ac-

TABLE I
ALGORITHM FOR CALCULATING THE WEIGHTS FOR DIFFERENT F0s AT

BAND . SEE TEXT FOR THE DEFINITION OF SYMBOLS

cording to a curve determined by (5). A search over possible
values of is conducted for each , and the highest
and the corresponding are stored in the output. Squaring
the bandwise F0 weights prior to summing was found to pro-
vide robustness in the presence of strong interference where the
pitch may be perceptible only at a limited frequency range.
The global F0 weights and inharmonicity factors

do not need to be calculated for all fundamental frequency in-
dices . Instead, only a set of fundamental frequency indices

is collected from the bandwise weight vec-
tors . This is possible, and advantageous since if a sound
is perceptible at all, it generally has a high weight in at least one
of the bands. Selecting a couple of maxima from each band pre-
serves the correct fundamental frequency among the candidates.
The maximum global weight can be used as such to

determine the true F0. However, an even more robust selec-

KLAPURI: MULTIPLE FUNDAMENTAL FREQUENCY ESTIMATION BASED ON HARMONICITY AND SPECTRAL SMOOTHNESS 807

between the time-domain and frequency-domain periodicity
analysis methods is that the former methods are prone to errors
in F0 halving and the latter to errors in F0 doubling. This
is because the time-domain signal is periodic at half the F0
rate (twice the fundamental time delay) and the spectrum is
periodic at double the F0 rate. A third, psychoacoustically
motivated group of algorithms measures the periodicity of the
amplitude envelope of a time-domain signal within several
frequency channels [20], [21], [39].
A major shortcoming of many of the earlier proposed

methods is that they do not handle inharmonic sounds appro-
priately. In the case of real nonideal physical vibrators, the
harmonic partials are often not in exact integral ratios. For
example for stretched strings the frequency of an overtone
partial obeys

(5)

where is the fundamental frequency and is the inhar-
monicity factor [40]. Equation (5) means that the partials
cannot be assumed to be found at harmonic spectrum positions,
but are gradually shifted upwards in the spectrum. This is
not of great concern in speech processing, but is important
when analyzing musical sounds at a wide frequency band
[41]. In the rest of this paper, capital letter is used to denote
fundamental frequency, and the lower case letter to denote
simply frequency.
The proposed predominant-F0 estimation method works by

calculating independent F0 estimates at separate frequency
bands and then combining the results to yield a global estimate.
This helps to solve several difficulties, one of which is inhar-
monicity. According to (5), the higher harmonics may deviate
from their expected spectral positions, and even the intervals
between them are not constant. However, we can assume the
spectral intervals to be piecewise constant at narrow-enough
frequency bands. Thus, we utilize spectral intervals in a two
step process which 1) calculates the weights of different
F0s at separate frequency bands and 2) combines the results
in a manner that takes inharmonicity into account. Another
advantage of bandwise processing is that it provides robustness
and flexibility in the case of badly corrupted signals where only
a fragment of the whole frequency range can be used [41]. The
two steps are now described.
1) Bandwise F0 Estimation: The preprocessed spectrum
is analyzed at 18 bands that distribute approximately log-

arithmically between 50 Hz and 6 kHz, as illustrated in Fig. 2.
Each band comprises a 2/3-octave region of the spectrum,
constraining, however, the minimum bandwidth to 100 Hz.
Band is subject to weighting with a triangular frequency
response , shown in Fig. 2. The overlap between adjacent
bands is 50%, making the overall response sum to unity at all
except the lowest bands. Response at band is denoted by

(6)

Non-zero frequency components of are defined for fre-
quency indices, where is the lowest
frequency component at band and is the number of com-
ponents at the band.

Fig. 2. Magnitude responses of the 18 frequency bands, at which the bandwise
F0 estimation takes place.

In each band, the algorithm calculates a weight vector
across frequency indices. Note, index corresponds to the fun-
damental frequency where is the number of
samples in the time-domain analysis frame and is the sam-
pling rate. The resolution of the weight vector is the same as
that of the preprocessed spectrum . The bandwise weights

are calculated by finding a series of each frequency
components at band that maximizes the sum

(7)

where

(8)

(9)

Here, is the offset of the series of par-
tials in the sum, is the number of partials in the sum,
and is a normalization factor. A normalization factor is
needed because varies for different values of and . The
form was determined by training with isolated musical
instrument samples in varying noise conditions. The offset
is varied to find the maximum of (7), which is then stored in

. Different offsets have to be tested because the series of
higher harmonic partials may have shifted due to inharmonicity.
The upper panel in Fig. 3 illustrates the calculations for a

single harmonic sound at the band between 1100 Hz
and 1700 Hz. The arrows indicate the series of frequency com-
ponents which maximizes for the true F0.
The values of the offset are restricted to physically realistic

inharmonicities, a subset of . The exact limit is not critical,
therefore (5) with a constant inharmonicity factor can
be used to determine the maximum allowable offset from the
ideal harmonic positions. The harmonic index in (5) can be
approximated by . It follows that the fun-
damental partial must be exactly in the harmonic spectral
position, whereas the whole set has to be considered for the
highest partials. In other words, the algorithm combines the use
of spectral positions for the lowest harmonic partials and the use
of spectral intervals for the higher partials. For a frequency band
which is assumed to contain only the first harmonic partial of a
sound with fundamental frequency corresponding to index ,
inharmonicity is not allowed. Here is set to 1, and (7) reduces
to the special case

(10)

1, 2, 18
Use L1(n) ... L18(n)
to compute a
global F0 value.

806 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 1. Overview of the proposed multiple-F0 estimation method.

A. Preprocessing
All calculations in the proposed system take place in the fre-

quency domain. A discrete Fourier transform is calculated for
a Hamming-windowed frame of an acoustic input signal, sam-
pled at 44.1 kHz rate and quantized to 16-bit precision. Frame
lengths of 93 ms and 190 ms were used in simulations. These
may seem long from the speech processing point of view, but
are actually not very long for musical chord identification tasks.
In such tasks, the pitch range is wide, mixtures of low sounds
produce very dense sets of frequency partials, and F0 precision
of 3% is required to distinguish adjacent notes (see Appendix).
Preprocessing the spectrum before the actual multiple-F0

analysis is an important factor in the performance of the system.
It provides robustness in additive noise and ensures that sounds
with varying spectral shapes can be handled. The signal model
assumed by the proposed system is

(1)

where is the discrete power spectrum of an incoming
acoustic signal and is the power spectrum of a vibrating
system whose fundamental frequency should be measured. The
factor represents the frequency response of the operating
environment and the body of a musical instrument which fil-
ters the signal of the vibrating source. Elimination of is
often referred to as pre-whitening. The term represents
the power spectrum of additive noise. In music signals, the ad-
ditive interference is mainly due to the transient-like sounds of
drums and percussive instruments.
In principle, additive noise can be suppressed by performing

spectral subtraction in the power spectral domain. The effect
of , in turn, can be suppressed by highpass liftering1 the
log-magnitude spectrum. Confirming the reports of earlier au-
thors, however, two noise-reduction systems in a cascade does
not produce appropriate results [30]. Rather, successful noise
suppression is achieved by applying magnitude warping which
equalizes while allowing the additive noise to be linearly
subtracted from the result. The power spectrum is magni-
tude-warped as

(2)

where

(3)

1The term “liftering” is defined [29].

The frequency indices and correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-F0 estimator. The
exact formula for calculating is not as critical as the general
idea represented by (2). The use of (2) and (3) is based on two
reasonable assumptions. First, the amplitudes of the important
frequency partials in are above the additive noise

. Secondly, it is assumed that a majority of the frequency
components between and correspond to the additive
noise floor, not to the spectral peaks of . In this case,

scales the input spectrum so that the level of additive
noise stays close to unity and the spectral peaks of the
vibrating system are noticeably above unity. It
follows that in (2), additive noise goes through a linear-like
magnitude-warping transform, whereas spectral peaks go
through a logarithmic-like transform.
The response is efficiently flattened by the loga-

rithmic-like transform, since subsequent processing takes place
in the warped magnitude scale. Additive noise is suppressed
by applying a specific spectral subtraction on [34]. A
moving average over is calculated on a logarithmic
frequency scale and then linearly subtracted from . More
exactly, local averages were calculated at 2/3-octave bands
while constraining the minimum bandwidth to 100 Hz at the
lowest bands. The same bandwidths are used in the subsequent
F0 calculations and are motivated by the frequency resolution
of the human auditory system and by practical experiments
with generated mixtures of musical sounds and noise. The use
of the logarithmic frequency scale was clearly advantageous
over a linear scale since it balances the amount of spectral fine
structure that is used with different F0s.
The estimated spectral average is linearly subtracted

from and resulting negative values are constrained to zero

(4)

The preprocessed spectrum is passed to the multiple-F0
estimator.

B. Harmonicity Principle
In this section, the “Predominant-F0 estimation” part of the

algorithm is described. A process is proposed which organizes
mixture spectra by utilizing the harmonic relationships between
frequency components, without assuming ideal harmonicity.
Several fundamentally different approaches to F0 estima-

tion have been proposed. One category of algorithms measures
periodicity in the time-domain signal. These methods are typ-
ically based on calculating the time-domain autocorrelation
function or the cepstrum representation [32], [33]. As shown
in [34], this is theoretically equivalent to matching a pattern
of frequency partials at harmonic positions of the sound spec-
trum. An explicit way of building upon this idea is to perform
harmonic pattern matching in the frequency domain [35], [36].
Another category of algorithms measures periodicity in the
frequency-domain, observing F0 from the intervals between
the frequency partials of a sound. The spectrum autocorre-
lation method and its variants have been successfully used
in several F0 estimators [37], [38]. An interesting difference

And then ...

806 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 1. Overview of the proposed multiple-F0 estimation method.

A. Preprocessing
All calculations in the proposed system take place in the fre-

quency domain. A discrete Fourier transform is calculated for
a Hamming-windowed frame of an acoustic input signal, sam-
pled at 44.1 kHz rate and quantized to 16-bit precision. Frame
lengths of 93 ms and 190 ms were used in simulations. These
may seem long from the speech processing point of view, but
are actually not very long for musical chord identification tasks.
In such tasks, the pitch range is wide, mixtures of low sounds
produce very dense sets of frequency partials, and F0 precision
of 3% is required to distinguish adjacent notes (see Appendix).
Preprocessing the spectrum before the actual multiple-F0

analysis is an important factor in the performance of the system.
It provides robustness in additive noise and ensures that sounds
with varying spectral shapes can be handled. The signal model
assumed by the proposed system is

(1)

where is the discrete power spectrum of an incoming
acoustic signal and is the power spectrum of a vibrating
system whose fundamental frequency should be measured. The
factor represents the frequency response of the operating
environment and the body of a musical instrument which fil-
ters the signal of the vibrating source. Elimination of is
often referred to as pre-whitening. The term represents
the power spectrum of additive noise. In music signals, the ad-
ditive interference is mainly due to the transient-like sounds of
drums and percussive instruments.
In principle, additive noise can be suppressed by performing

spectral subtraction in the power spectral domain. The effect
of , in turn, can be suppressed by highpass liftering1 the
log-magnitude spectrum. Confirming the reports of earlier au-
thors, however, two noise-reduction systems in a cascade does
not produce appropriate results [30]. Rather, successful noise
suppression is achieved by applying magnitude warping which
equalizes while allowing the additive noise to be linearly
subtracted from the result. The power spectrum is magni-
tude-warped as

(2)

where

(3)

1The term “liftering” is defined [29].

The frequency indices and correspond to frequencies
50 Hz and 6.0 kHz, respectively, and are determined by the
frequency range utilized by the multiple-F0 estimator. The
exact formula for calculating is not as critical as the general
idea represented by (2). The use of (2) and (3) is based on two
reasonable assumptions. First, the amplitudes of the important
frequency partials in are above the additive noise

. Secondly, it is assumed that a majority of the frequency
components between and correspond to the additive
noise floor, not to the spectral peaks of . In this case,

scales the input spectrum so that the level of additive
noise stays close to unity and the spectral peaks of the
vibrating system are noticeably above unity. It
follows that in (2), additive noise goes through a linear-like
magnitude-warping transform, whereas spectral peaks go
through a logarithmic-like transform.
The response is efficiently flattened by the loga-

rithmic-like transform, since subsequent processing takes place
in the warped magnitude scale. Additive noise is suppressed
by applying a specific spectral subtraction on [34]. A
moving average over is calculated on a logarithmic
frequency scale and then linearly subtracted from . More
exactly, local averages were calculated at 2/3-octave bands
while constraining the minimum bandwidth to 100 Hz at the
lowest bands. The same bandwidths are used in the subsequent
F0 calculations and are motivated by the frequency resolution
of the human auditory system and by practical experiments
with generated mixtures of musical sounds and noise. The use
of the logarithmic frequency scale was clearly advantageous
over a linear scale since it balances the amount of spectral fine
structure that is used with different F0s.
The estimated spectral average is linearly subtracted

from and resulting negative values are constrained to zero

(4)

The preprocessed spectrum is passed to the multiple-F0
estimator.

B. Harmonicity Principle
In this section, the “Predominant-F0 estimation” part of the

algorithm is described. A process is proposed which organizes
mixture spectra by utilizing the harmonic relationships between
frequency components, without assuming ideal harmonicity.
Several fundamentally different approaches to F0 estima-

tion have been proposed. One category of algorithms measures
periodicity in the time-domain signal. These methods are typ-
ically based on calculating the time-domain autocorrelation
function or the cepstrum representation [32], [33]. As shown
in [34], this is theoretically equivalent to matching a pattern
of frequency partials at harmonic positions of the sound spec-
trum. An explicit way of building upon this idea is to perform
harmonic pattern matching in the frequency domain [35], [36].
Another category of algorithms measures periodicity in the
frequency-domain, observing F0 from the intervals between
the frequency partials of a sound. The spectrum autocorre-
lation method and its variants have been successfully used
in several F0 estimators [37], [38]. An interesting difference

Make a smooth
version of the
note, and remove.

810 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 5. Distribution of the F0 estimation errors as a function of the musical
intervals that occur in the erroneously transcribed sound mixtures.

are so common in music, these “worst cases” must be handled
well in general.
To solve this problem, the spectra of the detected sounds must

be smoothed before subtracting them from the mixture. Con-
sider the preprocessed spectrum of a two-sound mixture
in Fig. 6(a). In the figure, the harmonic partials of the higher-
pitched sound coincide with every third harmonic of the lower-
pitched sound . As predicted by (11), the
coinciding partials randomly cancel or amplify each other at the
low frequencies, whereas at the higher frequencies the summary
amplitudes approach the maximum of the two, i.e., the spectral
envelope of the higher sound.
When the spectrum of the lower-pitched sound is smoothed

(the thin slowly decreasing horizontal curve in Fig. 6(b)), the co-
inciding partials at the higher frequencies rise above the smooth
spectrum and thus remain in the residual after subtraction. In
particular, this solves a very common case where the dense har-
monic series of a lower-pitched sound matches the few partials
of a higher-pitched sound. Detecting the higher-pitched sound
first is less common and in that case, only a minority of the har-
monics of the lower-pitched sound are deleted.
It should be noted that simply smoothing the amplitude enve-

lope (the thin curve in Fig. 6(b)) of a sound before subtracting
it from the mixture does not result in lower error rates. A suc-
cessful smoothing algorithm was found by applying psychoa-
coustic knowledge. The full motivation for this approach has
been presented in [43] and is beyond the scope of this paper.
The algorithm first calculates a moving average over the am-

plitudes of the harmonic partials of a sound. An octave-wide
triangular weighting window is centered at each harmonic par-
tial , and the weighted mean of the amplitudes of the par-
tials in the window is calculated. This is the smooth spectrum
illustrated by a thin horizontal curve in Fig. 6(b). The original
amplitude value is then replaced with the minimum of the
original and :

(12)

These values are illustrated by a thick curve in Fig. 6(b).
Performing this straightforward smoothing operation before
subtracting the sound from the mixture reduces the error rates
significantly.
A further improvement to the smoothing method can be made

by utilizing the statistical dependency of every harmonic

Fig. 6. Illustration of the spectral smoothness principle. (a) Preprocessed
spectrum containing two sounds with F0s in the relation 1:3. (b) Two
different smoothing operations have been used to estimate the spectral envelope
of the lower-pitched sound. The results are indicated with thin and thick
horizontal curves.

partial, as was previously explained following (11) in this sec-
tion. The algorithm applies a multistage filter with the following
steps [43]. First, the indices of the
harmonic partials around harmonic are collected from an oc-
tave-wide window. Next, the surrounding partials are classified
into groups, where all the harmonics that share a common di-
visor are put in the same group, starting from the smallest prime
factors. Third, weighted mean around harmonic is calculated
inside groups in the manner described above. In the last step,
the estimates of different groups are averaged, weighting each
group according to its mean distance from harmonic .
3) Recalculation of F0 Weights After Smoothing: The de-

scribed principle of smoothing provides an efficient solution
to another common class of errors. In this class of errors two
or more fundamental frequencies in specific relationships may
cause the detection of a nonexistent sound, such as the root of a
musical chord in its absence. For instance, when two harmonic
sounds with fundamental frequencies and are played,
the spectra of these sounds match every second and every third
harmonic partial of a nonexisting sound with fundamental fre-
quency . This frequency may be erroneously estimated in
the predominant-F0 calculations given the observed partials.
The problem can be solved by applying smoothing and an

ordered search when selecting among the candidate indices
calculated by the predominant-F0 algorithm (see the end of Sec-
tion II-B). First, the candidate with the highest global weight

is taken and its spectrum is smoothed. Then the weight
of this candidate is recalculated using the smoothed harmonic
amplitudes. In the above-described case of a nonexistent sound,
the irregularity of the spectrum decreases the level of the smooth
spectrum significantly, and the weight remains low. If the recal-
culated weight drops below the second-highest weight, the next

Black dots are
partials of the
note for F0.

810 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 6, NOVEMBER 2003

Fig. 5. Distribution of the F0 estimation errors as a function of the musical
intervals that occur in the erroneously transcribed sound mixtures.

are so common in music, these “worst cases” must be handled
well in general.
To solve this problem, the spectra of the detected sounds must

be smoothed before subtracting them from the mixture. Con-
sider the preprocessed spectrum of a two-sound mixture
in Fig. 6(a). In the figure, the harmonic partials of the higher-
pitched sound coincide with every third harmonic of the lower-
pitched sound . As predicted by (11), the
coinciding partials randomly cancel or amplify each other at the
low frequencies, whereas at the higher frequencies the summary
amplitudes approach the maximum of the two, i.e., the spectral
envelope of the higher sound.
When the spectrum of the lower-pitched sound is smoothed

(the thin slowly decreasing horizontal curve in Fig. 6(b)), the co-
inciding partials at the higher frequencies rise above the smooth
spectrum and thus remain in the residual after subtraction. In
particular, this solves a very common case where the dense har-
monic series of a lower-pitched sound matches the few partials
of a higher-pitched sound. Detecting the higher-pitched sound
first is less common and in that case, only a minority of the har-
monics of the lower-pitched sound are deleted.
It should be noted that simply smoothing the amplitude enve-

lope (the thin curve in Fig. 6(b)) of a sound before subtracting
it from the mixture does not result in lower error rates. A suc-
cessful smoothing algorithm was found by applying psychoa-
coustic knowledge. The full motivation for this approach has
been presented in [43] and is beyond the scope of this paper.
The algorithm first calculates a moving average over the am-

plitudes of the harmonic partials of a sound. An octave-wide
triangular weighting window is centered at each harmonic par-
tial , and the weighted mean of the amplitudes of the par-
tials in the window is calculated. This is the smooth spectrum
illustrated by a thin horizontal curve in Fig. 6(b). The original
amplitude value is then replaced with the minimum of the
original and :

(12)

These values are illustrated by a thick curve in Fig. 6(b).
Performing this straightforward smoothing operation before
subtracting the sound from the mixture reduces the error rates
significantly.
A further improvement to the smoothing method can be made

by utilizing the statistical dependency of every harmonic

Fig. 6. Illustration of the spectral smoothness principle. (a) Preprocessed
spectrum containing two sounds with F0s in the relation 1:3. (b) Two
different smoothing operations have been used to estimate the spectral envelope
of the lower-pitched sound. The results are indicated with thin and thick
horizontal curves.

partial, as was previously explained following (11) in this sec-
tion. The algorithm applies a multistage filter with the following
steps [43]. First, the indices of the
harmonic partials around harmonic are collected from an oc-
tave-wide window. Next, the surrounding partials are classified
into groups, where all the harmonics that share a common di-
visor are put in the same group, starting from the smallest prime
factors. Third, weighted mean around harmonic is calculated
inside groups in the manner described above. In the last step,
the estimates of different groups are averaged, weighting each
group according to its mean distance from harmonic .
3) Recalculation of F0 Weights After Smoothing: The de-

scribed principle of smoothing provides an efficient solution
to another common class of errors. In this class of errors two
or more fundamental frequencies in specific relationships may
cause the detection of a nonexistent sound, such as the root of a
musical chord in its absence. For instance, when two harmonic
sounds with fundamental frequencies and are played,
the spectra of these sounds match every second and every third
harmonic partial of a nonexisting sound with fundamental fre-
quency . This frequency may be erroneously estimated in
the predominant-F0 calculations given the observed partials.
The problem can be solved by applying smoothing and an

ordered search when selecting among the candidate indices
calculated by the predominant-F0 algorithm (see the end of Sec-
tion II-B). First, the candidate with the highest global weight

is taken and its spectrum is smoothed. Then the weight
of this candidate is recalculated using the smoothed harmonic
amplitudes. In the above-described case of a nonexistent sound,
the irregularity of the spectrum decreases the level of the smooth
spectrum significantly, and the weight remains low. If the recal-
culated weight drops below the second-highest weight, the next

Thick/thin lines
are smoothing
algorithms.

UC Regents Spring 2012 © UCBEECS 225D L18: Music Signal Analysis

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

ing the chord change times in training data [11].
Largely orthogonal to the note being played is the

identity of the instrument playing the note. Percussion
instruments have relatively little variation among note
events and have been successfully identified (such as in
pop music) for transcribing drum parts. However,
despite considerable literature on recognizing the
instrument in solo notes or phrases, recognizing one
instrument in a mixture of instruments and voices is
much more difficult—perhaps because statistical mod-
eling techniques are overwhelmed by the huge varia-
tions in the accompanying instruments encountered.

Locating singing within pop music has been rela-
tively successful, with several projects able to recover the
precise temporal alignment between known lyric con-
tent and recordings. However, an unusual speaking
style, along with significant non-speech energy, make
direct transcription of lyrics, or speech recognition for
songs, a significant challenge.

Figure 1 illustrates some of these approaches, show-
ing a 14-second excerpt from a pop music recording
(“Let It Be” by the Beatles) analyzed through various
methods. The top pane shows the conventional nar-
row-band spectrogram in which note harmonics appear
as horizontal ridges; drum sounds and other onsets
appear as vertical stripes. Below that is a set of “down-
beats,” or the start of each beat unit, derived from a
tempo-smoothed event detector. The next two panes
show note sequences as a function of time in a “piano
roll” format; each horizontal stripe corresponds to one
semitone, or a key on a piano keyboard, and note
events are indicated by dark stripes. The higher of the
two panes shows a probabilistic estimate of the melody
notes from the LabROSA melody extractor [3]; the
lower pane estimates all notes played by the piano.

PHRASE-LEVEL INFORMATION

Individual notes are not music in and of themselves.
Music emerges from the time-sequence of events, and a
number of musically important properties can be rec-

ognized over multiple, successive note events, perhaps
the individual phrases or lines that form the shortest
recognizable musical fragments. Tempo is a basic prop-
erty of a musical fragment. Although intuitively natural
(such as the steady beat of foot-tapping) it is also intrin-
sically ambiguous, since much music seemingly “plays”
with our perception of repetitive period. Approaches to
tempo extraction from music audio can attempt to
either extract note onsets, then fit periodicities to these
event sequences, or use a mechanism (such as autocor-
relation) to identify strong periodicities in the signal
energy envelope without explicit event detection [10].

Automatic tempo extraction has obvious applica-
tions in playlist sequencing but is complicated by
rhythmic ambiguities arising from the hierarchical
structure of beats, with different tempos at different lev-
els; for example, locking onto a quarter-note might give
a tempo of 60 beats per minute (bpm), whereas identi-
fying the eighth-notes would give 120 bpm. A related
challenge involves finding the downbeat, or the start of
each beat, as opposed to the spacing between beats.

Tempo extraction was another facet of the MIREX-
05 evaluations, with many systems able to extract the
tempo of at least part of the two-level “ground-truth”
beat hierarchy. A “faster” and “slower” pulse are both
consistent with the music, like the quarter-note/eighth-
note ambiguity, in over 90% of a diverse set of musical
excerpts. Finding the correct downbeat was much more
difficult, with the best system correct in under 50% of
the excerpts.

Musical phrases frequently extend beyond even the
slowest tempo segmentation and have irregular lengths.
Yet the repetition and alternation of segments (such as
verse and chorus) are central to many kinds of music.
Automatic identification of this structure can be valu-
able for music summarization; for instance, if a four-
minute pop song is to be represented by a 10-second
excerpt, it is probably best to use the first 10 seconds of
the chorus, which can be defined as the most-repeated
part of the song [7].

COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8 35

Figure 1. Example transcription
for a fragment of “Let It Be”
by the Beatles. Below a
conventional narrowband
spectrogram are automatically
generated estimates of down-
beat, melody note probability,
and piano part. Notes are in a
“piano-roll” representation, with
horizontal stripes describing
the activation (on the left)
of adjacent notes, or keys
on a piano.

And, in the end ...

Research topics ...

A chroma replacement octaves The Definitive Guide to Evolver

This chart gives you settings for
most possible whole-number ratios.
Pitch/note values (C1, C2, etc.)
assume your carrier is set to C1.

Bring up the basic patch.

! OSC 1, 2, and 4 Level = 0

! Verify OSC 3 and 4 shapes =
01

! Verify OSC 3 frequency = C1

! FM 4!3 = 12

! Using the chart to the right,
set OSC 4’s values to each of
the ratios in turn, and play a
few notes up and down the
keyboard

Use the “Freq” parameter for the
basic semi-tones tuning. Adjust the
“Fine” parameter for cents, and note that all cents
values had to be rounded up or down a little to the
nearest cent, since Evolver doesn’t do fractional cents.

Modulator is… Ratio

The same note (C1) 1:1
One octave higher (C2, 12 semi-tones) 2:1
An octave and a 5th (G2, 19 semi-
tones),
+2 cents

3:1

Two octaves higher (C3, 24 semi-tones) 4:1
Two octaves higher plus a major 3rd
(E3, 28 semi-tones),
-14 cents

5:1

Two octaves and a 5th (G3, 31 semi-
tones),
+2 cents

6:1

Two octaves and a 7th (B3, 34 semi-
tones),
-31 cents

7:1

Three octaves higher (C4, 36 semi-
tones)

8:1

Three octaves and a 2nd (B5, 38 semi-
tones), +4 cents

9:1

Three octaves and a major 3rd, (C#5, 40
semi-tones) -14 cents

10:1

Keeping the ratios as whole numbers between 1 and 4
means you will be able to hear/perceive the frequency
of the modulator. This in turn means the resulting
timbre always has a distinctive pitch.

If you use whole-number ratios greater than 4, you
probably just hear the modulator as harmonics
(unless you are playing very low notes).

If your ratios aren’t whole numbers, you’re going to
get “non-harmonic partials” – stuff that sounds like
bells, or noise to some degree. It may not be as
“musically useful” as whole-number ratios, but it can
be very cool.

The amount of FM you apply makes a big difference in
the sound as well. The more FM applied, the heavier
the “warping” of the basic waveform. The settings for
this exercise are pretty tame but do a good job of
showing how changing the ratio alters the harmonic
structure.

Pick a couple of ratios and try stepping up the amount
of FM a bit while still using sine waves. You can hear

 29

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

Figure 2: The Alignment Process. Features computed on original audio and synthesized MIDI are compared in the similarity matrix
(SM). The best path through SM is a warping from note events in the MIDI file to their expected occurrence in the original.

for listeners to identify the approximate version of the song, it
is natural that we choose a representation that highlights pitch.
This rules out the popular Mel-Frequency Cepstral Coefficients
(MFCCs), which are specifically constructed to eliminate fun-
damental periodicity information, and preserve only broad spec-
tral structure such as formants. Although authors of MIDI repli-
cas may seek to mimic the timbral character of different instru-
ments, such approximations are suggestive at best, and particu-
larly weak for certain lines such as voice etc. We use features
based on a narrowband spectrogram, which encapsulates infor-
mation about the harmonic peaks within a frame. We apply
2048 point (93 ms) hann-windowed FFTs to each frame, with
each frame staggered by 1024 samples (46 ms), and then dis-
card all bins above 2.8 kHz, since they relate mainly to timbre
and contribute little to pitch. As a safeguard against frames con-
sisting of digital zero, which have an infinite vector similarity to
nonzero frames, 1% white noise is added across the spectrum.
In our experiments we have augmented or altered the windowed
FFT in one or more of the following ways (values that we tried
are shown in braces):

1. spec power {‘dB’, 0.3, 0.5, 0.7, 1, 2} - We had initially
used a logarithmic (dB) intensity axis for our spectro-
gram, but had problems when small spectral magnitudes
become large negative values when converted to dB. In or-
der to approximate the behavior of the dB scale without
this problem, we raised the FFT magnitudes to a power of
spec power. In our experiments we were able to perform
the best alignments by taking the square root (0.5) or rais-
ing the spectrum to the 0.7 power.

2. diff points {0, [1 16], [1 64], [224 256]} - First order dif-
ferences in time of some channels are appended as addi-
tional features. The goal here is to highlight onset times
for pitched notes using the low bins and for percussion
using the high bins. In our experiments, we found that
adding the high-bin time differences had negligible effect
because of the strong presence of the snares and hi-hats
across the entire spectrum. Adding low-order bins can im-

prove alignment, but may also cause detrimental misalign-
ment in cases where the MIDI file was transcribed off-key.

3. freq diff {0, 1} - First-order difference in frequency at-
tempts to normalize away the smooth spectral deviations
between the two signals (due to differences in instrument
timbres) and focus instead on the local harmonic structure
that characterizes the pitch.

4. noise supp {0, 1} - Noise suppression. Klapuri has pro-
posed a method for simultaneously removing additive and
convolutive noise through RASTA-style spectral process-
ing (Klapuri et al., 2001). This method was not as success-
ful as we had hoped.

2.3 The Similarity Matrix

Alignment is carried out on a similarity matrix (SM), based
on the self-similarity matrix used commonly in music analy-
sis (Foote, 1999), but comparing all pairs of frames between
two songs, instead of comparing one song against itself. We
calculate the distance between each time step i (1 . . .N) in the
raw feature vector series specraw with each point j (1 . . .M)
in the syn series specsyn. Each value in the N ×M matrix is
computed as follows:

SM(i, j) =
specraw(i)T specsyn(j)

|specraw(i)||specsyn(j)|
,

for 0 ≤ i < N, 0 ≤ j < M (2)

This metric is proportional to the similarity of the frames, e.g.
similar frames have a value close to 1 and dissimilar frames
have a value that can approach -1. Several similarity matri-
ces for different songs are shown in figure 4, in which we can
see the structures that are also present in self-similarity matri-
ces, such as the checkerboard pattern corresponding to segment
boundaries, and off-diagonal lines signifying repeated phrases
Bartsch andWakefield (2001); Dannenberg and Hu (2002). The
presence of the strong diagonal line indicates a good alignment
between the raw and syn files, and the next stage attempts to
find this alignment.

 Apply this architecture to other applications

No “transcription” necessary: no need to
extract “symbolic” notes from audio.

