EECS 225D

Audio Signal Processing in Humans and Machines

Lecture 18 - Music Signal Analysis

2012-3-21
Professor Nelson Morgan
today's lecture by John Lazzaro

www.icsi.berkeley.edu/eecs225d/spr12/

Music appreciation class for computers

* Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Drum

 pattern selfsimilarity.
(Foote, 1999)

Mel-frequency Cepstral Coefficients (MFCCs)

$$
S_{w}(i, j) \equiv \frac{1}{w} \sum_{k=0}^{w-1}\left(v_{i+k} \bullet v_{j+k}\right)
$$

A simple idea, but very effective for pattern discovery

Chord

modulation of repetitive piano pattern revealed by similarities and differences.

Take 5
Dave
Brubeck
Quartet.

Alto sax solo.

30

20
60

18
$i+18$
48
6
61
615
$\frac{18}{4}$

Day Tripper The Beatles
 Song sections are easy to segment, identify.

Alternative visualization:

Running time on y axis, correlation lag time on x axis.

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Musical pitch has two aspects:

Height: Octave

Chroma: Note name
And so, we can draw the notes on a piano keyboard like a spiral ...

A histogram can map waveforms to chords. (Chroma algorithm, Fujishima, 1999)

Real-world histogram: Note timbres with arbitrary harmonics ... imperfect instrument tuning ...

A histogram can map waveforms to chords. (Chroma algorithm, Fujishima, 1999)

MIDI PCH

Non-octave harmonics?

$\begin{array}{llll}\text { C } & 36 & 6.00 & 6.000\end{array} \quad 65.40$ C\# 37 D $38 \quad 6.02 \quad 6.166 \ldots$ 69.29 73.41 $\begin{array}{lllll}\mathrm{D} \# & 39 & 6.03 & 6.250 & 77.78 \\ \mathrm{E} & 40 & 6.04 & 6.333 \ldots & 82.40 \\ \mathrm{~F} & 41 & 6.05 & 6.416 \ldots & 87.30 \\ \mathrm{~F} \# & 42 & 6.06 & 6.500 & 92.49\end{array}$ $\begin{array}{lllll}\mathrm{D} \# & 39 & 6.03 & 6.250 & 77.78 \\ \mathrm{D} & 40 & 6.04 & 6.333 \ldots & 82.40 \\ \mathrm{~F} & 41 & 6.05 & 6.416 \ldots & 87.30 \\ \mathrm{~F} \# & 42 & 6.06 & 6.500 & 92.49\end{array}$ $\begin{array}{lllll}\mathrm{D} \# & 39 & 6.03 & 6.250 & 77.78 \\ \mathrm{D} & 40 & 6.04 & 6.333 \ldots & 82.40 \\ \mathrm{~F} & 41 & 6.05 & 6.416 \ldots & 87.30 \\ \mathrm{~F} \# & 42 & 6.06 & 6.500 & 92.49\end{array}$ $\left.\begin{array}{llll}\mathrm{D} \# & 39 & 6.03 & 6.250 \\ \text { D } & 40 & 6.04 & 6.333 \ldots\end{array}\right) 87.78$ 82.40 $\begin{array}{llll}\text { F\# } 42 & 6.06 & 6.500 & 92.49 \\ \text { G } & 43 & 6.07 & 6.583 \ldots\end{array}$ G\# $44 \quad 6.08$ 6.666... 103.82

| A | 45 | 6.09 | 6.750 | 110.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | A\# $46 \quad 6.10 \quad 6.833 \ldots \quad 116.54$

B $47 \quad 6.11 \quad 6.916 \ldots \quad 123.47$

C	48	7.00	7.000	130.81

C\# $49 \quad 7.01 \quad 7.083 \ldots \quad 138.59$
D $50 \quad 7.02 \quad 7.166 \ldots 146.83$
D\# $51 \begin{array}{llll}7.03 & 7.250 & 155.56\end{array}$
E $52 \quad 7.04 \quad 7.333 \ldots \quad 164.81$
F $53 \quad 7.05 \quad 7.416 \ldots \quad 174.61$
F\# $\begin{array}{llll}54 & 7.06 & 7.500 & 184.99\end{array}$
G $55 \quad 7.07 \quad 7.583 \ldots \quad 195.99$
G\# $56 \quad 7.08 \quad 7.666 \ldots \quad 207.65$
$\begin{array}{llllll}\text { A } & 57 & 7.09 & 7.750 & 220.00\end{array}$
A\# $58 \quad 7.10 \quad 7.833 \ldots \quad 233.08$
$\begin{array}{llll}\text { B } & 59 & 7.11 & 7.916 \ldots\end{array} 246.94$
$\begin{array}{lllll}\text { C } & 60 & 8.00 & 8.000 & 261.62\end{array}$
C\# $61 \quad 8.01 \quad 8.083 \ldots \quad 277.18$
D $62 \quad 8.02 \quad 8.166 \ldots \quad 293.66$
$\begin{array}{lllll}\text { D\# } & 63 & 8.03 & 8.250 & 311.12\end{array}$
E $64 \quad 8.04 \quad 8.333 \ldots \quad 329.62$
F $65 \quad 8.05 \quad 8.416 \ldots \quad 349.22$
$\begin{array}{lllll}\text { F\# } 66 & 8.06 & 8.500 & 369.99\end{array}$
G $\begin{array}{llll} & 8.07 & 8.583 \ldots & 391.99\end{array}$
G\# $68 \quad 8.08 \quad 8.666 \ldots \quad 415.20$
$\begin{array}{lllll}\text { A } & 69 & 8.09 & 8.750 & 440.00\end{array}$
A\# $70 \quad 8.10 \quad 8.833 . . \quad 466.16$
B 718.11 8.916... 493.88
$\begin{array}{lllll}\text { C } & 72 & 9.00 & 9.000 & 523.25\end{array}$

Example: $\mathrm{CO}=65.40 \mathrm{~Hz}$
$3^{\text {rd }}$ harmonic is @ 196.2 Hz , lies between G and G\#.
$5^{\text {th }}$ harmonic is @ 327 Hz , lies between D\# and E. $6^{\text {th }}$ harmonic is © 392.4 Hz , lies between G and G\#.

In practice, energy in octave harmonics yields a good SNR.

Ratio

The same note (C1) 1:1
One octave higher (C2, 12 semi-tones) $\quad 2: 1$
An octave and a $5^{\text {th }}$ (G2, 19 semi- $3: 1$ tones),
+2 cents
Two octaves higher (C3, 24 semi-tones) 4:1
Two octaves higher plus a major $3^{\text {rd }} \quad 5: 1$
(E3, 28 semi-tones),
-14 cents
Two octaves and a $5^{\text {th }}$ (G3, 31 semi- $6: 1$ tones),
+2 cents
Two octaves and a $7^{\text {th }}$ (B3, 34 semi- 7:1 tones),
-31 cents
Three octaves higher (C4, 36 semi- $\quad 8: 1$ tones)
Three octaves and a $2^{\text {nd }}$ ($\mathrm{B} 5,38$ semi- $\quad 9: 1$ tones), +4 cents
Three octaves and a major $3^{\text {rd }}$, (C\#5, $40 \quad 10: 1$ semi-tones) -14 cents

Chroma is invariant to note order of the chord

Major, two inversions

C Major - chromagram

Usually, a desirable property.

However, for some types of chords, the same note list in different note orders produces different musical effects, and thus are given different chord names.

Chroma + the standard ASR algorithms

Chord Segmentation and Recognition using EM-Trained Hidden Markov Models

8 days a week, The Beatles

love babe, just like ineed you, oh, hold me, love me

Evaluation techniques also borrowed from ASR

"E MAJOR" CONFUSION MATRIX Eight Days a Week							
	Maj	Min	Maj7	Min7	Dom7	Aug	Dim
E/Fb	158	115	.	9	.	.	.
E\#/F	9
F\#/Gb	.	.	.	11	.	.	.
G	3
G\#/Ab
A	9	.	.	.	1	.	.
A\#/Bb
B/Cb	8
B\#/C
C\#/Db	.	20
D	.	14
D\#/Eb

Per-beat chroma vectors often work better

Elliot Smith, "Between the Bars".

Cover songs: Discover tempo \& transposition

Elliott Smith - Between the Bars

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

There is a "sub-symbolic" approach to this problem.

Score

Alignment
Score Model

Musician

AAAAAABABBCBBdBBBBCCCC...

Feature Extraction

No "transcription" necessary: no need to extract "symbolic" notes from audio.

... a "cover song" MIDI file works fine ...

Was

 working as a waitress in a cocktail bar"

Notes, synthesized audio, and the record ...

The "alignment" task
synthesized audio from MIDI file
human
league
"don't
you
want
mest alignment,
audio

Alignment lets us map audio time to score position.

Alignment recovers from missing MIDI file section.

Audio on a movie set ...

Audio quality may leave something to be desired ...

Problem: Re-recorded audio must synchronize tightly to visuals (lip-sync, footsteps, etc).

RMS

Line spoken on the set.

Will not lip-sync well.

Line re-recorded in the studio.

10 s

VocAlign: A plug-in that automatically

 aligns "dub" audio with "guide" audio.

Setup: User selects segments of dub and guide audio tracks for alignment.

Result: Blue line shows envelope of aligned dub audio (user can also listen).

Fine-tuning: User can choose different algorithms to improve fit, then "print" best one.

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Hallelujah Chorus (Vocal opening)

Masataka Goto's transcription system

Screenshot of the system in action

Harmonic partials \rightarrow Pitch tracks

Instantaneous frequency calculation

\downarrow

Extracting candidate frequency components

Limiting frequency regions
 BPF for melody line BPF for bass line

Filterbank

Instantaneous frequency calculation

"Agent" systems

Model: Humans collaborating on solving a math program by taking turns reading, writing, and erasing equations on a black board.

Agents are small programs that play the "human" role.

Instantaneous frequency calculation
\downarrow
Extracting candidate frequency components

Share
Results

"Agents" in action

Screenshot of the system in action

Harmonic partials \rightarrow Pitch tracks

Klapuri's subtractive system

acoustic

mixture signal

Estimate number of concurrent sounds

Predomi- Spectral nant-F0 estimation

Remove detected sound from the mixture

f0 spectral smoothing

Stop when no more prominent f0s

Estimate most likely FO for each band

Band 12:
$1.1-1.6 \mathrm{kHz}$

Energy
 peaks within
 Band 12.

Weights $L_{12}(n)$. Horizontal "n" axis plots FOs.

Use $L_{1}(n)$... $L_{18}(n)$ to compute a global FO value.

$L_{1}(n)$... $L_{18}(n)$ for two piano notes

FO $=65 \mathrm{~Hz}$

Use $L_{1}(n)$... $L_{18}(n)$ to compute a global FO value.

And then ...

Make a smooth

 version of the note, and remove.acoustic mixture signal

Estimate number of concurrent sounds
and iterate

Remove detected sound from the mixture

Black dots are partials of the note for FO.

Thick/thin lines are smoothing algorithms.

Music appreciation class for computers

Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

And, in the end ...

Research topics

Ratio

The same note (C1) 1:1
One octave higher (C2, 12 semi-tones) $\quad 2: 1$
An octave and a $5^{\text {th }}$ (G2, 19 semi- $3: 1$ tones),
+2 cents
Two octaves higher (C3, 24 semi-tones) 4:1
Two octaves higher plus a major $3^{\text {rd }} \quad 5: 1$
(E3, 28 semi-tones),
-14 cents
Two octaves and a $5^{\text {th }}$ (G3, 31 semi- $6: 1$ tones),
+2 cents
Two octaves and a $7^{\text {th }}$ (B3 3,34 semi- 7:1 tones),
-31 cents
Three octaves higher (C4, 36 semi- $\quad 8: 1$ tones)
Three octaves and a $2^{\text {nd }}$ (B5, 38 semi- \quad 9:1 tones), +4 cents
Three octaves and a major $3^{\text {rd }}$, (C\#5, $40 \quad 10: 1$ semi-tones) -14 cents

Apply this architecture to other applications

No "transcription" necessary: no need to extract "symbolic" notes from audio.

