EECS 225D Audio Signal Processing in Humans and Machines

Lecture 18 – Music Signal Analysis

2012-3-21 **Professor Nelson Morgan** today's lecture by John Lazzaro

www.icsi.berkeley.edu/eecs225d/spr12/

Music appreciation class for computers

X Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Drum pattern selfsimilarity.

(Foote, 1999)

t

Similarity metric

$$S_{w}(i,j) = \frac{1}{w} \sum_{k=0}^{w-1} (\mathbf{v}_{i+k} \bullet \mathbf{v}_{j+k})$$

A simple idea, but very effective for pattern discovery

Horizontal slice patterns correspond to different drums in the kit.

Chord modulation of repetitive piano pattern revealed by similarities and differences.

Horn Concerto No. 4 (Rondo) Mozart.

High horn
note that
starts and
ends a
section.

Day Tripper The Beatles

Song sections are easy to segment, identify.

Alternative visualization:

Running time on y axis, correlation lag time on x axis.

Music appreciation class for computers

X Discovering musical structure

K Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Musical pitch has two aspects:

Height: Octave

Chroma: Note name

And so, we can draw the notes on a piano keyboard like a spiral ...

If note timbres only has octave harmonics ...

... if notes are in tune to a reference.

A histogram can map waveforms to chords. (Chroma algorithm, Fujishima, 1999)

Real-world histogram: Note timbres with arbitrary harmonics ... imperfect instrument tuning ...

A histogram can map waveforms to chords. (Chroma algorithm, Fujishima, 1999)

MI	IDI	PCH	OCT	CPS	(A440
с	36	6.00	6.000	65	.40
C#	37	6.01	6.083	69	.29 🔽
D	38	6.02	6.166	73	3.41
D#	39	6.03	6.250	77	.78
Е	40	6.04	6.333	82	2.40
F	41	6.05	6.416	87	.30
F#	42	6.06	6.500	92	.49
G	43	6.07	6.583	97	.99
G#	44	6.08	6.666	103	.82
Α	45	6.09	6.750	110	.00
A#	46	6.10	6.833	116	.54
в	47	6.11	6.916	123	3.47
С	48	7.00	7.000	130	.81
C#	49	7.01	7.083	138	.59
D	50	7.02	7.166	146	.83
D#	51	7.03	7.250	155	.56
Е	52	7.04	7.333	164	.81
F	53	7.05	7.416	174	.61
F#	54	7.06	7.500	184	.99
G	55	7.07	7.583	195	5.99 🚩
G#	56	7.08	7.666	207	.65
Α	57	7.09	7.750	220	.00
A#	58	7.10	7.833	233	8.08
в	59	7.11	7.916	246	.94
С	60	8.00	8.000	261	.62
C#	61	8.01	8.083	277	.18
D	62	8.02	8.166	293	.66
D#	63	8.03	8.250	311	.12 🔰
Е	64	8.04	8.333	329	.62
F	65	8.05	8.416	349	.22
F#	66	8.06	8.500	369	.99
G	67	8.07	8.583	391	.99 🔺
G#	68	8.08	8.666	415	.20
Α	69	8.09	8.750	440	.00
A#	70	8.10	8.833	466	.16
в	71	8.11	8.916	493	.88
С	72	9.00	9.000	523	.25

Non-octave harmonics? Example: CO = 65.40 Hz

3rd harmonic is @ 196.2 Hz, lies between G and G#.

5th harmonic is @ 327 Hz, lies between D# and E.

6th harmonic is @ 392.4 Hz, lies between G and G#.

In practice, energy in octave harmonics yields a good SNR.

The first 10 partials ...

octaves

		Ratio
	The same note (C1)	1:1
	One octave higher (C2, 12 semi-tones)	2:1
	An octave and a 5 th (G2, 19 semi-	3:1
	tones),	
_	+2 cents	
	Two octaves higher (C3, 24 semi-tones)	4:1
	Two octaves higher plus a major 3 rd	5:1
	(E3, 28 semi-tones),	
_	-14 cents	
	Two octaves and a 5 th (G3, 31 semi-	6:1
	tones),	
_	+2 cents	
	Two octaves and a 7 th (B3, 34 semi-	7:1
	tones),	
_	-31 cents	
	Three octaves higher (C4, 36 semi-	8:1
_	tones)	
	Three octaves and a 2 nd (B5, 38 semi-	9:1
_	tones), +4 cents	
	Three octaves and a major 3 rd , (C#5, 40	10:1
	semi-tones) -14 cents	

Chord changes correspond to changes in pitch class profile histogram

Time (sec.)	Output	Pitch Class Profile										
(300.)	Unitid	С		D		E	F	G		A		B
(sec.) 0.26 0.51 0.77 1.02 1.28 1.54 1.79 2.05 2.31 2.56 2.32 3.33 3.59 3.84 4.35 4.87 5.18 5.12 5.10	Chord En an				· · · · · · · · · · · · · · · · · · ·		F					
5.63 5.89 6.15 6.40 6.62 7.17 7.43 7.68 7.94	C G G G F#dim F#dim F#dim		• • • • •				• • • • •		• • • • • • • • • • •		•	

Chroma is invariant to note order of the chord

Usually, a desirable property.

However, for some types of chords, the same note list in different note orders produces different musical effects, and thus are given different chord names.

Chroma + the standard ASR algorithms

Chord Segmentation and Recognition using EM-Trained Hidden Markov Models

Alexander Sheh and Daniel P.W. Ellis LabROSA, Dept. of Electrical Engineering, Columbia University, New York NY 10027 USA {asheh79,dpwe}@ee.columbia.edu

8 days a week, The Beatles

love babe, just like i need you, oh, hold me, love me

Evaluation techniques also borrowed from ASR

"E MAJOR" CONFUSION MATRIX Eight Days a Week									
	Maj	Min	Maj7	Min7	Dom7	Aug	Dim		
E/Fb	158	115		9					
E#/F	9								
F#/Gb				11					
G	3								
G#/Ab									
А	9				1				
A#/Bb						•			
B/Cb	8				,				
B#/C									
C#/Db		20							
D	•	14	•	•	•	•	•		
D#/Eb	•	•	•		•	•	•		

Per-beat chroma vectors often work better

Elliot Smith, "Between the Bars".

Cover songs: Discover tempo & transposition

Music appreciation class for computers

X Discovering musical structure

Chroma: Simple chord detection

K Sheet-music score alignment

Music transcription

There is a "sub-symbolic" approach to this problem.

Ground-Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses Robert J. Turetsky and Daniel P.W. Ellis

No "transcription" necessary: no need to extract "symbolic" notes from audio.

... a "cover song" MIDI file works fine ...

Ϊ" was working as a waitress in a cocktail bar"

Notes, synthesized audio, and the record ...

synthesized audio from MIDI file

human league ``don't you you want me" audio Best alignment, using dynamic programming.

Alignment lets us map audio time to score position.

synthesized audio from MIDI file

toto

audio

"africa"

Vertical line: dynamic programming skipping over audio.

Alignment recovers from missing MIDI file section.

Audio on a movie set ...

Audio quality may leave something to be desired ...

Redo audio in the studio

Problem: Re-recorded audio must synchronize tightly to visuals (lip-sync, footsteps, etc).

Line spoken on the set.

VocAlign: A plug-in that automatically aligns "dub" audio with "guide" audio.

Setup: User selects segments of dub and guide audio tracks for alignment.

Result: Blue line shows envelope of aligned dub audio (user can/also listen).

Fine-tuning: User can choose different algorithms to improve fit, then "print" best one.

Music appreciation class for computers

X Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

Hallelujah Chorus (Vocal opening)

Masataka Goto's transcription system

Screenshot of the system in action

Harmonic partials

Pitch tracks

The front end

and the second second

Filterbank

and the second secon

'Agent" system

Agent system decides the temporal extant and spectral makeup of each note in a melody line.

"Agent" systems

Model: Humans collaborating on solving a math program by taking turns reading, writing, and erasing equations on a black board.

Agents are small programs that play the "human" role.

Screenshot of the system in action

Harmonic partials

Pitch tracks

-20

-10

Audio

frame

Stop when no more prominent f0s

Estimate most likely FO for each band

Band 12: 1.1–1.6 kHz

Energy peaks within Band 12.

Weights L₁₂(n). Horizontal "n" axis plots FOs.

Use L₁(n) ... L₁₈(n) to compute a global FO value.

L₁(n) ... L₁₈(n) for two piano notes

- And and A light and a series of the second second and and a second second

FO = 65 Hz

FO = 470 Hz

Use L₁(n) ... L₁₈(n) to compute a global FO value.

And then ...

Make a smooth version of the note, and remove.

Black dots are partials of the note for FO.

Thick/thin lines are smoothing algorithms.

Music appreciation class for computers

X Discovering musical structure

Chroma: Simple chord detection

Sheet-music score alignment

Music transcription

And, in the end ...

Research topics ...

A chroma replacement

octaves

	Ratio
The same note (C1)	1:1
One octave higher (C2, 12 semi-tones)	2:1
An octave and a 5 th (G2, 19 semi-	3:1
tones),	
+2 cents	
Two octaves higher (C3, 24 semi-tones)	4:1
Two octaves higher plus a major 3 rd	5:1
(E3, 28 semi-tones),	
-14 cents	
Two octaves and a 5 th (G3, 31 semi-	6:1
tones),	
+2 cents	
Two octaves and a 7 th (B3, 34 semi-	7:1
tones),	
-31 cents	
Three octaves higher (C4, 36 semi-	8:1
tones)	
Three octaves and a 2 nd (B5, 38 semi-	9:1
tones), +4 cents	
Three octaves and a major 3 rd , (C#5, 40 semi-tones) -14 cents	10:1

Apply this architecture to other applications

No "transcription" necessary: no need to extract "symbolic" notes from audio.