EECS 225D Audio Signal Processing in Humans and Machines

Lecture 15 – Pitch

2012-3-12 Professor Nelson Morgan today's lecture by John Lazzaro

www.icsi.berkeley.edu/eecs225d/

UC Regents Spring 2012 © UCB

Today's lecture: Pitch

H Basic concepts in pitch detection

H Practical issues in pitch tracking

★ The quiz …

Musical pitch: an experimental definition

Pitch (unit: Hz). The frequency of a sine wave whose pitch is heard to be the same as a played note.

Timbre and Pitch

Why are the timbres different?

Contributing factor: Partial heights differ, and evolve differently over time. "Spectral Shape."

Why are both sounds pitched?

Why is the pitch the same?

Frequency placement of partials share a common structure.

Same pitch, different timbre

Displacement

Summed waveform repeats at pitch frequency.

Frequencies of partials are integer multiples of an underlying fundamental.

Pitch Period = 1 / (Pitch Frequency)

Bells

Lowest partials are exact integers, but higher partials are quasiharmonic (4.2, 54, 6.8).

We still hear the bells as having a definite pitch.

Play.

But bell "chords" often sound atonal.

FROM SOUND ON SOUND, SYNTH SECRETS, AUG Ø2

Licklider Pitch Model

Autocorrelate filtered versions of the audio waveform.

pitch -

Autocorrelation model addresses all of these issues.

Seebeck's Siren

When ϕ is offset slightly from 180°, the pitch drops one octave. Why? The repetition period of the waveform doubles.

Autocorrelation "hears" this signal the same way humans do.

Perceived Period

Related: Reynolds/McAdams Oboe

Comb-Filtered Noise

We hear a weak pitch in comb-filtered noise, corresponding to the period of the comb delay.

This is unusual because the waveform of each period is unique.

Autocorrelation "hears" the same pitch humans perceive.

Amplitude Modulation

This sound has components at $F_c - F_m$, F^c , and $F_c + F_m$.

To a first order, the pitch we hear is F_m (the repetition frequency).

Autocorrelation matches this first-order result.

But fails on second-order phenomena. (slope of pitch for small changes in F_c , F_m).

Today's lecture: Pitch

Here Basic concepts in pitch detection

H Practical issues in pitch tracking

★ The quiz ...

Modern engineering pitch trackers are based on multi-tap autocorrelation (or similar operators).

Algorithm enhancements mostly take the form of pre-processing the audio input or post-processing the auto-correlation tap outputs, to better handle the "difficult" pitch signals we see in real-world engineering applications.

Real-World Issues

mappinghang MMMMMMM Dynamic range of pitch **(***a***)** Pitch variations in time (b) Vocal tract variations in time

(c)

Real-World Issues

Acoustic noise background

Modern engineering pitch trackers are based on multi-tap autocorrelation (or similar operators).

Algorithm enhancements mostly take the form of pre-processing the audio input or post-processing the auto-correlation tap outputs, to better handle the "difficult" pitch signals we see in real-world engineering applications.

Pre-Processing : Spectral Flattening

Pre-Processing : Low-pass Filtering

Time/Frequency Tradeoffs

Narrow linear filters are slow Fast linear filters are wide

Filters: Wide vs Narrow

Spoken word "boyt" processed by two filterbanks.

Accurate pitch harmonics.

Good glottal pulse timing.

Narrow filters

Fast filters

Data from Hong Leung and Victor Zue

Modern engineering pitch trackers are based on multi-tap autocorrelation (or similar operators).

Algorithm enhancements mostly take the form of pre-processing the audio input or post-processing the auto-correlation tap outputs, to better handle the "difficult" pitch signals we see in real-world engineering applications.

Post-Processing : Yin Normalization

Today's lecture: Pitch

Here Basic concepts in pitch detection

H Practical issues in pitch tracking

★ The quiz ...

