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HMM-based adaptation and discriminative training are
important techniques for improving accuracy

Both procedures start with HMM’s ML parameters

I Estimated using a large training corpus drawn from many
speakers

Both procedures adjust the model parameters

I Adaptation: model estimation using limited, novel data

I Discriminative training: uses “discriminative” estimation
criteria

However the goals of the two procedures differ:

I Adaptation: specialization

I Discriminative training: compensation for model failures



What is acoustic model adaptation?

A procedure to adapt or target a speech recognizer to

I A specific acoustic environment

I A particular speaker

To understand how this works, we need to understand

I The adaptation problem

I Two adaptation procedures



HMM parameters

We use (mixtures of) multivariate normal distributions for our
output distributions

For simplicity we will discuss 1-dimensional, unimodal models,
so the distribution for state l (there are L ≡ L(M) states)

x | ql
i .i .d∼ N(µl , σ

2
l )

Thus the parameters of our acoustic models consist of

I means and variances for the output distributions (important)

I the transition matrices for the states (not so important for
speech recognition)



We use HMMs to model triphones

A triphone is just a phone in context

I Phone b preceded by a, followed by c: a-b+c

We typically use three state HMMs for each triphone

There is tremendous variability in the amount of training data
for each triphone

I We cluster triphones (at the state level)

I Top-down clustering using decision trees



The acoustic model adaptation problem

We have generic models trained/estimated from a large
amount of data recorded from many speakers

I Usually we train from thousands of hours of recordings from
thousands of speakers

We are given a relatively small amount of novel data

I From a new/unseen acoustic environment (say 20 hours)

I From a new speaker (maybe as little as a minute)

Our task is to obtain new model parameters that are a better
fit for this new task or speaker

I We will sacrifice some of the generic model’s generality



The acoustic model adaptation problem (cont’d)

We preserve the structure of the generic HMM

I We only adjust the output distribution means and variances

In particular, we do not retrain starting from scratch with the
new data

I We do not have enough data to train full blown models

Hence the terminology adaptation



We need transcripts for training

s1 s2 s3 s4 s5 s6

c1
c2
...
c39

o1

p1 p2

w1 w2 w3

c1
c2
...
c39

o2 c1
c2
...
c39

o3 c1
c2
...
c39

o4 c1
c2
...
c39

o5 c1
c2
...
c39

o6

Notation: s = q states, o = x observations



Two modes of adaptation

Adaptation data is just like training data in that it consists of
transcribed audio data

I How do we get the transcripts?

Supervised adaptation

I We are given (accurate) transcripts

I Closest to training, most accurate, but may not be realistic

Unsupervised adaptation

I We need to produce the (errorful) transcripts via recognition

I Errors in transcripts degrade adaptation performance



The acoustic model adaptation problem (cont’d)

For clarity without effecting generality

I We will focus on the speaker adaptation problem

I We will work in one feature dimension

The original models θSI are speaker independent

I Model parameters {µSI
l , σ

SI
l }Ll=1

I Training frames {yt}Mt=1

The adapted models θSD are speaker dependent

I Model parameters {µSD
l , σSD

l }Ll=1

I Training frames {xt}Nt=1



An idealized view of the training data

The oval represents the SI training data with the circles
representing the observed training data from the individual
training speakers
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An idealized view of the adaptation problem

The circle outside of the oval represents all of the data ever
produced by the new target speaker, while the black disk is the
data we observe ({xt}Nt=1)

��
��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
����

��
��
��
��
��
��
��
��
��'

&

$

%

u��
��



The adaptation problem restated

To adjust the generic speaker independent model so it
becomes specialized to the target speaker

Given the small sample from the target speaker ({xt}Nt=1) we
estimate speaker dependent means for all of the states that

I Fit/explain the small sample that we’ve been given

I Fit/explain all future data generated by this speaker

We will use statistical inference

I We also want to leverage the prior knowledge that the generic
models summarize



The speaker independent means

A key part of the Baum-Welch algorithm for HMM parameter
estimation is determining the probability distribution of the
hidden states across a given frame yt :

I p(qt
l | y , θSI )

I
∑L

l=1 p(qt
l | y , θSI ) = 1

I p(qt
l | y , θSI ) is the fraction of frame yt that is assigned to

state ql (at time t)

Then the ML estimate of the speaker independent mean for
state l is the average of the fractional frames assigned to l :

µ̂SI
l =

∑M
t=1 p(qt

l | y , θSI )yt∑M
t=1 p(qt

l | y , θSI )



A naive approach to adaptation

We use θSI to compute the fractional counts and set

µ̂SD
l =

∑N
t=1 p(qt

l | x , θSI )xt∑N
t=1 p(qt

l | x , θSI )

It’s useful to introduce the total of the estimated fractional
count of frames assigned to state l :

n̂SD
l ≡

N∑
t=1

p(qt
l | x , θSI )

Where

L∑
l=1

n̂SD
l = N



Problems with the naive approach: uneven counts

The distribution of the adaptation data across the states (n̂SD
l )

will be far from uniform

I Some states, notably silence, will have a large fraction of the
data (n̂SD

l /N)

I Other states will not have any adaptation data, i.e. n̂SD
l = 0

I This will be exacerbated when N is small

The resulting estimates, µ̂SD
l , will vary in reliability

I If n̂SD
l > 50, then µ̂SD

l is probably a pretty good estimate

I If n̂SD
l < 4, then µ̂SD

l is probably not a very good estimate

I If n̂SD
l = 0, then µ̂SD

l doesn’t even make sense



Problems with the naive approach: unreliable counts

Suppose the speaker dependent data is very different from the
speaker independent models (or training data)

I Heavy accent

I Novel channel

This can result in unreliable fractional counts which are inputs
to the estimates µ̂SD

l

I p(qt
l | x , θSI )

Unsupervised adaptation also leads to unreliable counts



Another naive approach: add {xt}Nt=1 to the training data

If we simply add the speakers data {xt}Nt=1 to the training
data {xt}Nt=1 and re-estimate, then the resulting means are

µ̂ML
l =

n̂SI
l µ̂

SI
l + n̂SD

l µ̂SD
l

n̂SI
l + n̂SD

l

Since we are assuming n̂SI
l >> n̂SD

l we will have

µ̂ML
l ≈ µ̂SI

l

Related question: when do we have enough data to directly
estimate SD models?



Two linear adaptation methods

Two linear methods have been developed to address the
problem of uneven counts

I MAP (maximum a posteriori)

I MLLR (maximum likelihood linear regression)

Multiple adaptation passes address the problem of unreliable
counts

MAP and MLLR are examples of empirical Bayes estimation



Empirical Bayes (Robbins 1951, Efron and Morris 1973)

In traditional Bayesian analysis prior distributions are chosen
before any data are observed

I In empirical Bayes prior distributions are estimated from the
data

A example from baseball (Efron-Morris)

I We know the batting averages of 18 players after their first 45
at bats ({xi}18

i=1)

I We want to predict their batting averages at the end of the
season (after 450 at bats)

The obvious solution is to use the early season averages
individually

I We predict that player i will have average xi



Empirical Bayes (cont’d)

There is a better solution that takes into account all of the
available information: yi = x̄ + c(xi − x̄)

I x̄ is the average of the xi

I c is a “shrinkage factor” compute from the xi (related to the
variance)

I 0 < c < 1

I x̄ and c are empirical estimates of the prior distribution of the
observed xi .



Empirical Bayes applies to adaptation problem

Our adaptation problem is very similar to the baseball problem

I However, we are going to leverage more prior information

I Analogous to prior seasons information with other players

MAP and MLLR use the same empirical prior:

I The estimates from the training data {µ̂SI
l , σ̂

SI
l }Ll=1

This empirical prior is used to adjust the speaker dependent
means, {µ̂SD

l }Ll=1, to obtain new estimates:

I MAP uses interpolation

I MLLR uses weighted least squares



The MAP (maximum a posteriori) estimates

The MAP estimates for the means are interpolations

µ̂MAP
l =

τ µ̂SI
l + n̂SD

l µ̂SD
l

τ + n̂SD
l

I There is an analogous formula for the variances

The parameter τ , the prior count or relevance, determines the
interpolation weight

I If τ = 0, then µ̂MAP
l = µ̂SD

l

I If τ =∞, then µ̂MAP
l = µ̂SI

l

I If n̂SD
l � τ , then µ̂MAP

l ≈ µ̂SD
l



The parameter τ is a traditional Bayesian prior

The choice of τ is related to your belief about how many
frames are necessary to reliably estimate means and variances

For example, I believe that

I A minimum of 5 to 10 frames are necessary for a mean

I 50 frames is reasonable number for a 39 dimensional, diagonal
covariance

The value of τ determines when µ̂MAP
l starts to look more like

µ̂SD
l as opposed to µ̂SI

l . I would be comfortable with

I τ = 5 for mean adaptation

I τ = 25 for variance adaptation



MAP adaptation

MAP adaptation can only effect states with adaptation data

I If n̂SD
l = 0, then µ̂MAP

l = µ̂SI
l

When does MAP adaptation under-perform?

I Small amounts of adaptation data

I Unsupervised adaptation

When does MAP adaptation excel?

I Large amounts of adaptation data

I Supervised adaptation



MAP wrap-up

In practice we empirically “validate” our beliefs about τ

One can “derive” the MAP estimate using conjugate priors
(Gauvain and Lee 1993)

MAP adaptation is a somewhat misleading name for this
procedure



MLLR (maximum likelihood linear regression)

We use a weighted linear regression model to predict {µ̂SD
l }Ll=1

from the empirical priors {µ̂SI
l }Ll=1

µ̂SD
l = a0 + a1µ̂

SI
l + εl

Where the errors are distributed

εl
i .i .d∼ N(0,

(σ̂SI
l )2

n̂SD
l

σ2)

Thus, we assume the variance in the error, εl , has two factors

I A uniform (unknown) variance: σ2

I A (known) state specific weight: (σ̂SI
l )2/n̂SD

l



MLLR (cont’d)

I am ignoring a minor technicality about states with n̂SD
l = 0

The form of the state specific weight, (σ̂SI
l )2/n̂SD

l , means the
model is influenced more by states with

I A small speaker independent variance, (σ̂SI
l )2

I A large speaker dependent count n̂SD
l

To estimate a = (a0, a1)t we use weighted least squares, i.e.,
we minimize the weighted residual sum of squares error

WRSS(a) =
L∑

l=1

(µ̂SD
l − a0 − a1µ̂

SI
l )2

(σ̂SI
l )2/n̂SD

l

=
L∑

l=1

n̂SD
l

(
µ̂SD

l − a0 − a1µ̂
SI
l

σ̂SI
l

)2



Relationship to the original formulation (Leggetter and
Woodland 1994)

In the original formulation, a is chosen to maximize the
log-likelihood of the speaker dependent data (here and below
the Ci do not depend on a):

LL(a) = −1

2

L∑
l=1

N∑
t=1

p(qt
l | x , θSI )

(
xt − a0 − a1µ̂

SI
l

σ̂SI
l

)2

+ C1

It is easy to show that these two formulations are the same:

−1

2
WRSS(a) = LL(a)− C2



The weighted least squares solution

We introduce three matrices

Z =


µ̂SD

1

µ̂SD
2
...

µ̂SD
l

 ,Y =


1 µ̂SI

1

1 µ̂SI
2

...
1 µ̂SI

l

 ,E =


ε1

ε2
...
εl


Then the model can be written in this form

Z = Ya + E

We use least squares because this is an inconsistent system
(L > 2)



The weighted least squares solution (cont’d)

To un-weight the problem we introduce δl
i .i .d∼ N(0, σ2),

D =


δ1

δ2
...
δl

 , and W =


n̂SD

1 /(σ̂SI
1 )2 0 . . . 0

0 n̂SD
2 /(σ̂SI

2 )2 . . . 0
...

...
. . .

...
0 0 . . . n̂SD

l /(σ̂SI
L )2



The equivalent, un-weighted model is

W
1
2 Z = W

1
2 Ya + D



The weighted least squares solution (cont’d)

The least squares estimate for a is

â =
(
Y tWY

)−1
Y tWZ

Finally, the MLLR estimates for the means are given by

µ̂MLLR
l = â0 + â1µ̂

SI
l



MLLR step 1: gather the SI and SD data

- µSI

6

µSD

q (µ̂SI
j , µ̂

SD
j )

q
q
qqq
q

q
qq
q
qqqqq
q
qq



MLLR step 2: do the least squares fit

- µSI

6

µSD

��
��
�
��
�
��

�
��

�
��

��

â0

µSD = â0 + â1µ
SI

q (µ̂SI
j , µ̂

SD
j )

q
q
qqq
q

q
qq
q
qqqqq
q
qq



MLLR step 3: use the regression to compute µ̂MLLR
l

- µSI

6

µSD

µ̂SI
l

µ̂MLLR
l

��
��
�
��
�
��

�
��

�
��

��

â0

µSD = â0 + â1µ
SI

q (µ̂SI
j , µ̂

SD
j )

q
q
qqq
q

q
qq
q
qqqqq
q
qq



MLLR vs MAP

All of the means are adjusted by the MLLR transform

I Even states where n̂SD
l = 0

The estimates {µ̂MLLR
l }Ll=1 are influenced most by data from

states l where n̂SD
l /(σ̂SI

l )2 is large

I This follows from the weighted least squares formulation

MLLR outperforms MAP

I Small amounts of data

I Unsupervised adaptation

MAP outperforms MLLR

I Large amounts of data



MLLR wrap-up

The MLLR framework allows for multiple transformations

I Groups of states (components) are given separate transforms

I This grouping can be done by hand (e.g. by phoneme groups)
or by automatic clustering

I Number of transforms is a function of N

MLLR in the d-dimensional case is a straightforward
generalization

I There are d weighted regressions

“Maximum likelihood linear regression” is a peculiar name

I Least squares is the maximum likelihood solution to the linear
regression problem!



Intro to discriminative training

Earlier we showed how to estimate a HMM’s parameters using
maximum likelihood

I Via the Baum-Welch algorithm

Maximum likelihood estimation is asymptotically optimal in
most situations

I Baum-Welch also has good asymptotic properties

Why consider other estimation methods?

I What if the model is wrong!



Motivation (cont’d)

When the model doesn’t fit the data, you can do better than
the MLE

In the case of speech recognition there are (at least) two
successful alternatives to the MLE

I Maximum mutual information (MMI)

I Minimum phone error (MPE)

Both of these estimation methods use model selection criteria

I That are more close related to the recognition problem than
maximum likelihood

I That are “discriminative” in nature



Recognition reminder

Given a utterance X , we select M recog via:

M recog = arg max
M

P(M | X )

We do not model P(M | X ), instead we use Bayes’ Rule

P(M | X ) =
P(X | M)P(M)

P(X )

This decomposes the problem into two probability models

I The acoustic model gives the likelihood P(X | M)

I The language model gives the prior P(M)



Generative vs Discriminative classifiers
What we’ve just described is an example of a generative
classifier

I Model P(X | M) separately for each class M

I X is random

I Stronger model assumptions

I Uses maximum likelihood estimation

I Estimation is “easy”

A discriminative classifier models P(M | X )

I Model the class probabilities P(M | X ) directly

I M is random

I Weaker model assumptions

I Uses conditional likelihood estimation

I Estimation is “hard”



Generative vs Discriminative classifier (cont’d)

Generative Discriminative

Model P(X | M) P(M | X )

Estimation MLE, “easy” CMLE, “hard”

Model assumptions Stronger Weaker

Advantages More efficient when model More robust,
is correct (uses P(X )) fewer assumptions

Disadvantages IRL model is rarely correct Ignores P(X )



Discriminative classifiers

Model the class boundaries or membership probabilities directly

I Logistic regression

I Neural networks

I Support vector machines

Requires simultaneous consideration of all classes—including
correct

I In contrast to generative: just the correct class

I Makes the training task much harder



Brief technical interlude about recognition

We scale the acoustic model by a factor 1/κ

I Mostly because of between/within frame correlation

I Choice of κ is made via ’tuning’ to minimize errors

So recognition actually uses

M recog = arg max
M

P(X | M,Θ)
1
κ P(M)

Weighted version of P(M | X ,Θ):

Pκ(M |X ,Θ) ≡ P(X |M,Θ)
1
κ P(M)∑J

j=1 P(X |Mj ,Θ)
1
κ P(Mj)



Brief technical interlude (cont’d)

Recognition problem becomes

M recog = arg max
M

Pκ(M | X ,Θ)

A(M ,Mref ) is the phone accuracy of M relative to Mref

I Convert both M and Mref to a phone string using a dictionary

I Technicalities involving time boundaries



Three model selection criteria

ML: likelihood of the training data

FML(Θ) = P(X | Mref ,Θ)

MMI: conditional likelihood of the training data

FMMI (Θ) = Pκ(Mref |X ,Θ)

MPE: expected phone accuracy on the training data

FMPE (Θ) =
J∑

j=1

Pκ(Mj |X ,Θ)A(Mj ,Mref )



Model estimation (training) using these criteria

These are simply different model selection/estimation criteria

I We don’t change the structure of the HMM

Each criterion has its own estimation algorithm

I ML uses the Baum-Welch algorithm

I MMI/MPE use a variant called extended Baum-Welch



Maximum likelihood

Model selection criterion:

FML(Θ) = P(X | Mref ,Θ)

Model estimation: maximizes training data likelihood

Θ̂ML = arg max
Θ
FML(Θ)



Maximum mutual information

Model selection criterion:

FMMI (Θ) = Pκ(Mref |X ,Θ)

FMMI is intuitively related to recognition accuracy

Model estimation: maximizes training data conditional
likelihood

Θ̂MMI = arg max
Θ
FMMI (Θ)

This is conditional likelihood estimation

I Equivalent (original) formulation: mutual information



Minimum phone error

Model selection criterion:

FMPE (Θ) =
J∑

j=1

Pκ(Mj |X ,Θ)A(Mj ,Mref )

FMPE is intuitively related to recognition accuracy

MPE: maximizes expected phone accuracy on the training data

Θ̂MPE = arg max
Θ
FMPE (Θ)

Perhaps a better name: maximum phone accuracy!



Parameter estimation using MMI: introduction

We choose Θ to maximize

FMMI (Θ) =
P(X |Mref ,Θ)

1
κ P(Mref )∑J

j=1 P(X |Mj ,Θ)
1
κ P(Mj)

The denominator term is key to estimation with MMI

I Maximum likelihood ignored it



Parameter estimation using MMI: introduction (cont’d)

We expand the denominator

FMMI (Θ) =
P(X |Mref ,Θ)

1
κ P(Mref )

P(X |Mref ,Θ)
1
κ P(Mref ) +

∑
M 6=Mref

P(X |M,Θ)
1
κ P(M)

Roughly speaking, large FMMI (Θ) (say = 1) means that for
every imposter M 6= Mref

P(X |Mref ,Θ)
1
κ P(Mref ) > P(X |M,Θ)

1
κ P(M)

This would give perfect recognition on the training data!



Parameter estimation using MMI: extended BW

Extended BW training combines two separate BW estimations

I The numerator: P(X |Mref ,Θ)
1
κ P(Mref )

I The denominator:
∑J

j=1 P(X |Mj ,Θ)
1
κ P(Mj)

The numerator BW is (essentially) the usual algorithm

For the denominator we would like to run J BWs

I One BW for each term P(X | Mj ,Θ)P(Mj)

I Then combine somehow



Parameter estimation using MMI: extended BW (cont’d)

The problem is that J can be extremely large (∞!)

We make an approximation by summing over a subset
{Mk}Kk=1

I K � J

I Obtained by K -best recognition on the training data

I This recognition uses Θ̂ML

I Choosing the recognition language model is tricky



Parameter estimation using MMI: extended BW (cont’d)

The actual procedure uses the framework of lattices

I An efficient way to store the K -best information

I Word and phone level start and end times

The forward-backward algorithm has been extended to this
lattice-based framework

I Including the numerator

We will omit the details, see

I Gold-Morgan-Ellis, Chapter 28

I Dan Povey’s Ph.D. thesis



Parameter estimation using MMI: update formula inputs

Each BW produces a set of accumulators

I Numerator (correct): {µnum
l , nnum

l }Ll=1

I Denominator (impostors) :{µden
l , nden

l }Ll=1

The previous value of the mean, µl

I At the start µl = µ̂MLE
l

A state specific smoothing constant, Dl

I Dl = E × nden
l

I E is tunable, usually 1 ≤ E ≤ 2

I So Dl ≥ nden
l



Parameter estimation using MMI: mean update formula

MMI estimate

µ̂l =
nnum
l µnum

l − nden
l µden

l + Dlµl

nnum
l − nden

l + Dl
.

To get to µ̂l from µl we move

I Towards to centroid of the correct data (numerator)

I Away from the centroid of the imposter data (denominator)

MPE uses a slight variation on this formula

I An additional smoothing term with µ̂MLE
l

I However, the counts are now related to phone accuracy



Discriminative training wrap-up

MMI and MPE have resulted in impressive gains in recognition
accuracy

I It took many years of research to work out the current,
successful formalism

MMI/MPE only work because the HMM model doesn’t fit the
data

I What model assumptions are at fault?

I Maybe we should look for a better model!

Promising, recent research using hybrid HMM/neural networks

I Builds on earlier work (e.g. by Morgan)

I Uses deep belief networks


