### Last time: "small acoustics"

- Voice, many instruments, modeled by tubes
- Traveling waves in both directions yield standing waves
- Standing waves correspond to resonances
- Variations from the idealization give the variety of speech sounds, musical timbre

# This time: "large (room) acoustics"

- Resonances still a factor
- Other points about time domain characteristics
- Wave propagation, energy
- Some properties of hearing



### Spherical wave equation

• In polar coordinates:

 $(\delta^2 p / \delta r^2) + 2/r (\delta p / \delta r) = 1/c^2 (\delta^2 p / \delta t^2)$ 

#### • A solution is:

p(r, t) = P<sub>0</sub> exp[j( $\omega t - kr$ )]/r = P<sub>0</sub> exp[j( $2\pi/\lambda$ )(ct - r)]/r Where k =  $2\pi/\lambda$  and  $\omega$  = kc =  $2\pi c/\lambda$ (k is the *wavenumber*,  $\lambda$  is the *wavelength*) So p is inversely proportional to r

#### Sound waves

- c = (331.4 + 0.6T) m/s, or 343.4 m/s at 20° C
- 1127 ft/s
- A little less than 1 ms per foot
- Wavelength  $\lambda = c/f$
- Actual velocity also depends on humidity

### Intensity

 Definition: sound energy flowing across a unit area surface in a second

 $I = p^2 / (\rho_0 c)$ 

- Where p is the average pressure,  $\rho_0$  is the medium density, c is the speed of sound (as before), and  $\rho_0$  c is the characteristic impedance.
- So, for spherical wave, I is inversely proportional to r<sup>2</sup>
  (think of surface area for sphere)

### Sinusoidal Intensity

Let P<sub>0</sub> be the maximum pressure for a sinusoidal wave. Then

$$p^2 = P_0^2 / 2$$

And

$$I = P_0^2 / 2(\rho_0 c)$$

#### dB sound levels

- Level in dB = 10  $\log_{10} I/I_{ref} = 20 \log_{10} p/p_{ref}$
- We choose ref values to correspond to typical threshold of hearing at 1 kHz

 $I_{ref} = 10^{-12} Watts/m^2$   $p_{ref} = 2 \times 10^{-5} Newtons/m^2$ 

 And the corresponding dB levels are Intensity Level (IL) and Sound Pressure Level (SPL)

## SPL for typical sound sources

16 inch distant, hemispherical radiation, about 1m<sup>2</sup> surface area

- Whispered speech: 1 nW power, 30 dB SPL
- Average speech: 10  $\mu$  W power, 70 dB SPL
- Loud speech: 200  $\mu$  power, 83 dB SPL
- Shouting: 1 mW power, 90 dB SPL
- Ignoring boundaries, SPL would be 6 dB lower for every doubling of distance

#### SPL is not loudness

- Psychoacoustics -> cube root approximation
- Frequency dependencies
- Weighting curves for measurement

#### Equal Loudness curves





#### Room modes

- Same math as for strings, tubes
- Standing waves at resonant frequencies
- Mostly a significant issue at low frequencies (given the large dimensions of rooms)
- Essentially a continuum at high frequencies

#### Acoustic reverberation

- Reflection vs absorption at room surfaces
- Effects tend to be more important than room modes for speech intelligibility
- Also very important for musical clarity, tone

# Energy growth

- Assume sound source (e.g., noise) with power W turns on at t = 0
- Assume it is uniformly distributed and diffuse
- Let  $\overline{\alpha}$  be the average absorption, S be the surface area in the room, and S  $\overline{\alpha}$  be the total absorption

• 
$$S\overline{\alpha} = s_1 \alpha_1 + s_2 \alpha_2 + \dots$$

- Intensity =  $(W/S \overline{\alpha})(1 \exp[-t/\tau])$  where
- $\tau = 4V / cS \overline{\alpha}$  (V is the room volume, c is speed of sound)

### Steady state intensity for large t

Intensity = Power/S  $\alpha$ = Power / Total absorption

#### Reverberation time

- When steady state signal is turned off, overall energy decays roughly exponentially
- Time to decay by 60 dB from steady state after turnoff = RT60
- Sabine formula, RT60 = 0.049V/S  $\overline{\alpha}$  in feet,
- RT60 = 0.  $163V/S\overline{\alpha}$  in meters
- Frequency dependent

#### Air effects

- Additional denominator term
- RT60 =  $0.049V/(S\overline{\alpha} + 4 mV)$
- Air effects dominate at very high frequencies, negligible at low frequencies

# Example: 237 Cory Hall

- Dimensions: 20 x 24 x 16 (feet)
- Volume: 7680 ft<sup>3</sup>
- Surface area: 2368 ft<sup>2</sup>
- Mid-freq RT60: 1.2 sec (empty)
- We infer average  $\overline{\alpha}$  of .13
- Air absorption less than 10% for 1 kHz, 50%

for 4 kHz

### Steady state, 237 Cory

- For a 10  $\mu$  W source,
- Intensity = Power/(S $\overline{\alpha}$ ) = 3.2 x 10<sup>-8</sup> W/ft<sup>2</sup> = 3.5 x 10<sup>-7</sup> W/m<sup>2</sup>
- This is about 55 dB IL, and 120 ms after cutoff, the IL will be about 49 dB. Will this effect interfere with intelligibility?

#### Losses at boundaries

- Sound energy reaching boundary can do 3 things:
  - Reflect
  - Transform into heat
  - Pass through boundary
- The energy fraction for the last two constitutes the absorption coefficient  $\overline{\alpha}$

# Absorption coefficients, common building materials

|                       | 125 Hz | 500 Hz | 2000 Hz |
|-----------------------|--------|--------|---------|
| Material              |        |        |         |
| Acoustic paneling     | 0.16   | 0.50   | 0.80    |
| Acoustic plaster      | 0.30   | 0.50   | 0.55    |
| Brick wall, unpainted | 0.02   | 0.03   | 0.05    |
| Draperies, light      | 0.04   | 0.11   | 0.30    |
| Draperies, heavy      | 0.10   | 0.50   | 0.82    |
| Felt                  | 0.13   | 0.56   | 0.65    |
| Floor, concrete       | 0.01   | 0.02   | 0.02    |
| Floor, wood           | 0.06   | 0.06   | 0.06    |
| Floor, carpeted       | 0.11   | 0.37   | 0.27    |
| Glass                 | 0.04   | 0.05   | 0.05    |
| Marble or glazed tile | 0.01   | 0.01   | 0.02    |
| Plaster               | 0.04   | 0.05   | 0.05    |
| Wood paneling, pine   | 0.10   | 0.10   | 0.08    |

### Effect on intelligibility

- Energy is larger than without reverberation
- Decay stretches sounds out in time
- Colorations due to frequency-dependent absorption
  - Spectral measures will be different



Intensity level in a "live" room as produced by successively spoke syllables



The phrase "two oh six" convolved with impulse response from .5 second RT60 room



EB 225D

### Measuring room responses

- Impulsive sounds
- Correlation of mic input with random signal source (since R(x,y) = R(x,x) \* h(t) )
- Chirp input
- Also includes mic, speaker responses
- No single room response (also not really linear)



Figure 13: Anechoic direct impulse response, Rogers speaker

8



Figure 14: Room 237 direct impulse response, Rogers speaker

22

#### Effects of reverberation

- Increases loudness
- "Early" loudness increase helps intelligibility
- "Late" loudness increase hurts intelligibility
- When noise is present, ill effects compounded
- Even worse for machine algorithms

### Effects of reverberation (2)

- Reverb acts like a smearing of the spectrogram
- "Spectrum of the short-term spectral components" is the modulation spectrum
- Reverberation acts like a low-pass filter on the modulation spectrum
- Treatment of the modulation spectrum can help ASR

## Effects of reverberation: Word error rate for ASR

|           | Close-mic'ed<br>speech | RT60 = .55s,<br>distance mic |
|-----------|------------------------|------------------------------|
| Human     | 0.3%                   | 0.3%                         |
| ASR       | 5.9%                   | 22.2%                        |
| ASR w/    | 4.7%                   | 13.0%                        |
| treatment |                        |                              |

Numbers '95 corpus;

"treatment" corresponds to modulation spectral features

### Dealing with reverberation

- Microphone arrays beamforming
- Reducing effects by subtraction/filtering
- Stereo mic transfer function
- Using robust features (for ASR especially)
- Statistical adaptation

#### Artificial reverberation

- Physical devices (springs, plate, etc.)
- Simple electronic delay with feedback
- FIR for early delays (think of "initial time delay gap" in concert halls), IIR for later decay
- Explicit convolution with stored response

# Some factors affecting concert hall design (Beranek)

- Reverberation time
- Envelopment (diffusion)
- Clarity

#### Reverberation time

- 500Hz/1 kHz average, RT60, ~2 s for concert halls
- ~1.4 s for opera houses
- want ~80-90% at 2 kHz/4 kHz ("brilliance")
- want 110-125% at 125/250 Hz ("warmth")
- Based on subjective assessments of concert masters

### Envelopment

- Impression of sound surrounding you
- Requires adequate diffusion (reflections everywhere)

# Clarity

Ratio of energy in early sound to later sound
 C<sub>80</sub> corresponds to first 80 ms after direct;

typically want 0 to -4 dB

Typically want a short initial time delay gap

e.g., 15 ms or less

# Some "Large Acoustics" Conclusions

- Frequency-domain resonances only a part of the effects; time-domain reflections important
- Short-time reverberation aids in intelligibility, affects spectrum, related to room geometry
- Long-time reverberation acts like exponential decay of signals, can yield overlapping speech
- Factors beyond reverberation time are important for high quality acoustic spaces

#### What's next:

 Homework due Wednesday on chap. 9, 10, 14 questions :

Provide answers to problems (9.2, 9.4, 10.1, 10.5, 14.4, 14.5) and answer the question: "Describe phase locking in the auditory nerve. Over roughly what frequencies does this take place? "

 Wednesday talk is by Prof. Keith Johnson (linguistics) on speech sound categories