Statistical model training

DTW, EM, and HMM training

* DTW: no training per se
— each example = its own model

— does deal with sequences

* EM estimates parameters for hidden variables

— iteratively weights with posterior estimates
— as described so far, no sequences

* HMM training uses EM to estimate parameters
— iteratively weights with posterior estimates
— applies to full sequences

HMM recognition->training

* Conditional independence assumptions
— made inference feasible

— led to full likelihood, Viterbi estimates

* Assumption: separate acoustic/language models
— permitted Bayes rule combination
— need to estimate associated parameters

* EM needed for sequences
— goal is to maximize likelihood for entire sequence
— optimize over all possible state sequences
— don’ t know where speech classes start/stop

HMM training(1)

e Start with EM auxiliary function
— states are the hidden variables

— maximizing Aux also maximizes likelihood

Aux =Y PQ1X.0,,)loglP(X}",010)]
o

= Y P(Q1X)".0,,)log[P(X]" 10,0)P(Q10)]
0

* Aux = E(log joint prob of observed, hidden)
— observed = sequence of feature vectors
— hidden=sequence of states
— maximize for each model M by adjusting 6
— Iterate

HMM training(2)

* Use conditional independence assumptions

— Replace P(data|states) by framewise product
of emission probs

— Replace P(state sequence) by framewise product of
transition probs (and first frame prior)

N L
Aux =Y P(q; 1 X\".0,,)log P(x,1q;,©)

n=1 k=1

+Y P(g,1X\",0,,)log P(g, 1©)

L L

N
+222P(% g 1X".,0,,)log P(q] 14;™,6)

n=2 k=1 1[=1

HMM training(3)

* Optimize terms separately (separate parameters)
— First term: take partial derivative, set to zero,
solve equations, get local maximum

— Other terms: need to use Lagrangian constraint
 State priors sum to 1 for all possible classes
 State transition probs sum to 1 for all possible transitions
* For mixture Gaussian case, all weights sumto 1

* In all cases, take partial derivatives including the constraint
term, set to zero, solve

HMM training(4)- summary
(1) Choose form for local prob estimators for state
emission densities (e.g., Gaussian)
(2) Choose initialization for parameters

(3) Given the parameters, compute P(q}1X,".0,,)
for each state and time, and P(¢’.4/"'1X,".0,,)
for each state transition and time

(4) Given these probabilities, re-estimate
parameters to maximize Aux

(5) Assess and return to (3) if not good enough

But wait, there’ s more

* Each parameter estimator needs posterior
estimate (e.g., prob of a state at a particular time

given the feature vector sequence)
* This requires recursion to estimate these values

 This recursion is called the forward-backward
method, or Baum-Welch training

Forward and backward recursions
 Forward recursion was defined before:
L
o,(IM)=P(X/,q |M)= Zan_l(k | M)P(q | g)P(x,1q]")
=]

* Backward recursion defined so that product is
joint probability of observed sequence and a
particular state at time n:

L
p.(lIM)=P(X], 1q/.X'.M) = Zﬁn_l(k | M)P(q;*" 1 g)P(x,, 1g;*")
=1

State probability at time n

PX.q; \M) P(X".q I M)

Plg1X7.M) = PXTIM) S P g M)

_a, (kI M)B, (kI M)
N, d1M)B,UIM)

* This can be used to update parameter values for
emission densities (e.g., means and variances)

* The new density estimators can then be used
to do new forward and backward recurrences

* Etc., etc.

Transition probabilities at time n
P(g'lg' . M)= P(q/.q; \M) P(q.q," | M)

P(g; IM) Y P(q!.q;" | M)
[

N

N B, M)P(x, | g/ P(q] 1 ¢; "er, (k1 M)

n=2
L(M) N

Y B, A1 M)P(x, 1/)P(g 1 g e, (kI M)

[=1 n=2

Gets estimate of total probability for all paths
that contain this transition

* Like emission density estimate, this one can be
iterated for improved estimates

* Practical point: for most systems, transition
probabilities have little effect

Transition probabilities at time n

plx lq)

‘ ‘ P(q/\q,, M ‘ ‘
(5 a4 (kM) B.(11M) ()

Assumptions required for
transition probability estimator

* No dependence on previous state for
observations in current and later frames

* No dependence on past observations for current
state and observation, given previous state

* That being said, the posterior is derived from
acoustic probabilities over the entire utterance

Gaussian example

e Best estimator for mean is

N
EP(Q? leN’®old’M)xn
n=1

tuj — N
EP(Q? leN’®old’M)
n=1

e Substituting recursion values for posterior

Y a,(jIM)B, (I M)x,

»a,(j1M)B,(j 1 M)

Viterbi training

Previously: full likelihood ASR = best path ASR
(Viterbi approximation)

Prob sum -> max (or min of —log P)
Can also approximate for training

Assume state sequence estimate is ground truth
for each iteration -> posterior probs are either
Zero or one

At training time, choice of model is known (i.e.,
you know what the word is)

Viterbi training steps

(1) Choose form for local prob estimators for state
emission densities (e.g., Gaussian)

(2) Choose initialization for parameters

(3) Find most likely state sequence for each model
(4) Given this sequence, re-estimate parameters
(5) Assess and return to (3) if not good enough

Note: Step (3) is called forced (or Viterbi)
alignment.

Viterbi alignment uses DP

DTW-like local distance is —logP(x,1q,)
Transition costis -logP(q lg;™")

Only consider models for transcribed words
Backtracking straightforward

Next slide, alighnment cartoon

Viterbi (forced) alignment

M,
A

@ '
,
P
P
. »
.’

P I
4 I

V
V. I
’ I

P
P
.,
P

Viterbi training minus/plus

Adds another approximation

Best path might not be the best choice to
represent model against other models

But:

Recognition often done with Viterbi, so it s a
good match, since best path gets reinforced
Transition probabilities particularly simple:
just count

Gaussian example

 Means and variances computed from last
alignment

e Equivalent to Baum-Welch example with
posteriors only being zero or one

* For the mean, get the obvious

X

n
frames labeled j

~ #frames labeled]

J

Baum-Welch mean vs Viterbi

N

P(q; leN’®old’M)xn
1

U, = N
EP(Q? leN’®old’M)

n=1

'xn
frames labeled j

~ #frames labeled]

J

Emission probability estimators

Gaussians
— Strong assumption; better if full covariance used

Tied Mixtures of Gaussians

— Typically better use of parameters
Independent Mixture of Gaussians

— More parameters, needs more training data

Neural Networks — quite different

Discrete density estimators (using
guantization)

Discrete probability estimators

* Vector quantization (VQ) training
— make a table of feature vectors using clustering

— commonly called a codebook — sometime >1

* Map each training frame x
to codebook index y,

* For both Baum-Welch and Viterbi, generate
probability estimates for states given
codebook entries

Discrete probability estimators(2)

e Baum-Welch case:

N

EP(QZn leN’(h)old’M)énj
P(y;1q/,0) ==
EP(%n |X1]v’®01d’M)

n=1

where posteriors come from forward-backward

e E(#frames for codebook index j and state |)
divided by E(#frames for state |)

Discrete probability estimators(3)

e Viterbi case:

frames labeled [and j
frames labeled [

P(y; 1q,,0)=

where counts come from the previous alignment

Initialization

Needed for any form of EM

Can start with manually annotated database
— TIMIT

— STP or Buckeye

Can start with estimator probabilities from a
previous task

For Baum-Welch, can even use very simple
segmentations

Smoothing

To capture variability, want detailed models
Insufficient data for some fine categories
Smoothing is required

Typically combine fine and coarse estimates
Used for both acoustic and language models
Common methods: backoff and interpolation

Backoff Smoothing

e Set threshold for number of training examples
in a category to use for estimate
* |f fewer examples, use a coarser category
 Example: triphone
— Phone in context of a left and right phone

— |If not enough examples, use biphone (e.g.,
average of the left biphone value and right one)

* Simple, but often works well
* The subtlety is in picking thresholds

Smoothing by Interpolation

* Linearly interpolate between fine and coarse

* One approach: deleted interpolation
— Learn weights from disjoint data
— Can also jackknife through the data

— Can set fine class weight to fraction of utterances
for which fine class is better

— Can also use EM to estimate the weights

A caution about probabilities

I ve treated each incidence of P() as a prob
Often it’ s really a density
Density values often > 1

Integrate to 1 over all possible values, not over
all observed values

Summary

Training of HMMs briefly covered

Chapter 26 has a few things worked through in
greater detail — try to follow the equations

Papers from ICASSP, Interspeech (the
combined ICSLP and Eurospeech) have more
We had many assumptions

 known to be wrong — long distance independence
* If models are wrong, ML not the best

* Increased importance of discriminant training

