Statistical sequence recognition



Deterministic sequence recognition

* Last time, temporal integration of local

distances via DP

— Integrates local matches over time

— Normalizes time variations

— For cts speech, segments as well as classifies
* Limitations

— End-point detection required

— Choosing local distance (effect on global)

— Doesn’ t model context effect between words



Statistical vs deterministic
sequence recognition

 Statistical models can also be used (rather
than examples) with DP
— Still integrate local matches over time
— Normalize time variations
— For cts speech, segment as well as classify

* Helping with DTW Limitations
— End-point detection not as critical
— Local “distance” comes from the model

— Cross-word modeling is straightforward (though it
does require enough data to train good models)



Statistical sequence recognition

* Powerful tools exist
— Density estimation
— Training data alignment
— Recognition given the models

* Increases generality over deterministic
— Any distance choice is equivalent to implicit model

— Sufficiently detailed statistics can model any
distribution

— In recognition, find MAP choice for sequence
— In practice, approximations used



Probabilistic problem statement

e Bayes relation for models

P(X| M )P(M )
P(X)

P(M,1X)=

where M, jsthe " stat model for a sequence
of speech units

And X isthe sequence of feature vectors

— Minimum probability of error if j chosen to
maximize P(M ;1X)



Decision rule

e Bayes relation for models
jbest =argmax; P(M ;1 X)

=argmaxj P(X | MJ)P(MJ)

since X is fixed for all choices of j



Bayes decision rule for models

M, —— P(XIM,)P(M,)

M, > P(XIM,)P(M,)

M, > P(XIM;)P(M,)




Acoustic and language models

So far, no assumptions
But how do we get the probabilities?
Estimate from training data

Then, first assumption: acoustic parameters
independent of language parameters

Tpost = argmax P(Mj 1 X,0) = argmax ; P(XI Mj,HA)P(Mj 16,)

where @ are parameters estimated from
training data



The three problems

(1) How should P(XIM .6,) be computed?
(2) How should parameters ¢, be determined?

(3) Given the model and parameters, how can
we find the best sequence to classify the input
sequence?

* Today s focus is on problem 1, with some on
problem 3; problem 2 will be next time.



Generative model for speech

P(X M, 6,)




Composition of a model

Could collect statistics for whole words

More typically, densities for subword units
Models consist of states

States have possible transitions

States have observed outputs (feature vectors)

States have density functions
General statistical formulations hard to estimate
To simplify, use Markov assumptions



Markov assumptions

Assume finite state automaton
Assume stochastic transitions

Each random variable only depends on
the previous n variables (typically n=1)

HMMs have another layer of indeterminacy
Let’ s start with Markov models per se



Example: Markov Model

state output

a <« sunny
b <«— cloudy
C <~ rainy

1/3 1/2

1/2

Numbers on arcs are probabilities of transitions



Markov Model

* By definition of joint and conditional probability,
if
Q = (q19q29q39°°°9qN)

then N -
PQ) =P()] | P 147 .¢ . nq")
. And with 15t ordér Markov assumption,

P(Q)=P(q)] | P 1d™)



Example: Markov Model
P(abc) = P(c|b)P(bla)P(a)

If we assume that we start with “a” so that P(a)=1, then

1/3 1/2

1/2

1 1 1
P(abc) = (Z)(g) Ty



Hidden Markov Model (HMM)

e Outputs of Markov Model are deterministic

* For HMM, outputs are stochastic
— Instead of a fixed value, a pdf
— Generating state sequence is “hidden”

* “Doubly stochastic”
— Transitions

— Emissions



Line-up: ASR researchers and
Swedish basketball players




MM vs HMM

MM: bbplayer->1400 Hz; researcher->1600 Hz
HMM: bbplayer-> 1400 Hz mean, 200 Hz std dev
etc. (Gaussian)

Outputs are observed in both cases; but only one
possible for MM, >1 possible for HMM

For MM, then directly know the state; for HMM,
probabilistic inference

In both cases, two states, two possible transitions
from each



Two-state HMM

Associated functions: P(x, | q;) and P(q; | ;)



Emissions and transitions

P(x, | q,) could be density for F2 of bbplayer
(emission probability)

P(x, | q,) could be density for F2 of researcher

P(q, | q,) could be probability for transition of
bbplayer->researcher in the lineup

P(q, | g,) could be probability for transition of
researcher->bbplayer in the lineup

P(q, | ;) could be probability for transition of
bbplayer->bbplayer in the lineup

P(q, | g,) could be probability for transition of
researcher->researcher in the lineup



States vs speech classes

State is just model component; could be
“tied” (same class as a state in a different model)

States are often parts of a speech sound,
(e.g., three to a phone)

States can also correspond to specific contexts
(e.g., “uh” with a left context of “b")

States can just be repeated versions of same
speech class — enforces minimum duration

In practice state identities are learned



Temporal constraints

Minimum duration from shortest path

Self-loop probability vs. forward transition
probability

Transitions not in models not permitted
Sometimes explicit duration models are used



Estimation of P(X| M)

Given states, topology, probabilities
Assume 15t order Markov

For now, assume transition probabilities are
<nown, emission probabilities estimated

How to estimate likelihood function?

Hint: at the end, one version will look like DTW




“Total” likelihood estimation

it path through model M is Q,

N is the number of frames in the input

X is the data sequence

L(M) is the number of states in the model
Then expand to

P(X|M)= E P(Q.,.X M)

all Q; in M of length N

But this requires O(N L(M)N) steps
Fortunately, we can reuse intermediate results



“Forward” recurrence (1)

* Expand to joint probability at last frame only
L(M)

P(XIM)= EP(qlN,XIM)

 Decompose into local and cumulative terms,
N
where X can be expressed as X,

* Using P(a,b|c)=P(a|b,c)P(b]|c), get

L(M)
Pt X 1M)= 3 Pl X IMDPg! 3 14 X1 M)



“Forward” recurrence (2)

* Now define a joint probability for state at time
n being g,, and the observation sequence:

o, (1 M)=P(q", X' | M)

* Then, restating the forward recurrence,

L(M)

a,l1M)="Y a, (P x, ¢ " . X" M)
k=1



“Forward” recurrence (3)

* The “local” term can be decomposed further:
P(q}.x,1q;""\M)=P(q]' 1 q;”" . X", M)P(x,1q" .q;"" . X", M)

* But these are very hard to estimate. So we
need to make two assumptions of conditional
independence



Assumption 1: 15t order Markov

e State chain: state of Markov chain at time n
depends only on state at time n-1,
conditionally independent of the past

P(q g™ X" M) = P(q | """\ M)



Assumption 2: conditional
independence of the data

* Given the state, observations are independent
of the past states and observations

P(x 1q'.q)" X", M)=P(x, 1q' M)



“Forward” recurrence (4)

* Given those assumptions, the local term is
n n—1 n
P(q' g, . M)P(x,1q,,M)

e And the forward recurrence is
L(M)

o, (I1M)= 2 o _(kIM)P(g' g .M)P(x,1q"' M)
=]

* Or, suppressing the dependence on M,

L
a,(l) = Zan_l(k)P(%” lq;")P(x, 1)
=1



How do we start it?

e Recall definition

o, (1 M)=P(q" X' | M)

e Set n=1
a,()=P(q,,X})= P(g)P(x, 14



How do we finish it?

e Recall definition

o, (1 M)=P(q" X' | M)

e Sum over all states in model for n=N

jaN(l|M)= jp(qlN,XlN | M)=P(X| M)



Forward recurrence summary

Decompose data likelihood into sum (over
predecessor states) of product of local and
global probabilities

Conditional independence assumptions

Local probability is product of emission and
transition probabilities

Global probability is a cumulative value
A lot like DTW!



Forward recurrence vs DTW

Terms are probabilistic

Predecessors are model states, not
observation frames

Predecessors are always the previous frame

Local and global factors are combined by
product, not sum (but you could take the log)

Combination of terms over predecessors
are done by summation rather than finding
the maximum (or min for distance/distortion)



Viterbi Approximation

 Summing very small products is tricky
(numerically)

* |Instead of total likelihood for model, can find
best path through states

 Summation replaced by max
* Probabilities can be replaced by log probabilities

* Then summations can be replaced by min of the
sum of negative log probabilities

-log P(g) ,X}") = min,[-log P(q;"",X]™") - log P(q | g;”") - log P(x, 1 ¢)]



Similarity to DTW

-log P(q/,X}') = min,[-log P(¢;”", X] ") - log P(q/' | g;”") - log P(x, 1 ¢}")]

* Negative log probabilities are the distance!
But instead of a frame in the reference, we

compare to a state in a model, i.e,,

D(n,q)=min,[D(n-1,¢"")+d(n,q)+T(q]'.q; ")

* Note that we also now have explicit transition
costs



Viterbi vs DTW

* Models, not examples

* The distance measure is now dependent on
estimating probabilities — good tools exist

* We now have explicit way to specify priors

— State sequences: transition probabilities

— Word sequences: P(M) priors come from a
language model



Assumptions required

Language and acoustic model parameters are
separable

State chain is first-order Markov
Observations independent of past

Recognition via best path (best state
sequence) is good enough —don’ t need to
sum over all paths to get best model

If all were true, then resulting inference would
be optimum



