University of California Berkeley

College of Engineering Department of Electrical Engineering and Computer Sciences

Professors: N.Morgan / B.Gold

EE225D

Spring,1999

Human Speech Recognition

Lecture 19

Human Speech Recognition

- •Experiments dating from 1918 dealing wth noise and reduced BW
- Statistics of CVC perception
- •Comparisons between humans and today's best systems
- •Brief peak at human-inspired ASR research

Assessing Recognition Accuracy

Articulation

Intelligibility

Fletcher Experiments

- •CVC, VC,CV nonsense syllables
- •74% of syllables used
- •Tests over different SNR, bands

	13	21	8	19	18	17	16	15	14	13	12	=	10	9	00	7	_G	5	*	ယ	ы	-	
*=0.909 c=0.735 *=0.793	The last group is	Listen carefully to	Please write	Try to hear	I am about to say	You may perceive	Number 16 is	Write clearly	You should observe	Thirteen will be	Now try	Write the following	Please record	Try the combination	These sounds are	I continue with	Did you understand	Write down	As the fourth write	I will now say	Can you hear	The first group is	
	sho't	e co	hiv	hus.	gaf	jok	t'heb	gēm	bēch	mad	yāp	₩ Li	t'ha'th	100	2	fos	chis	Tun di	chūd	seng	poch	ma'v	served
	4	. 4		4	4						4	4			4	GT:		4	4	4	4		-
	sho't	SO.	thit'h	bus	Raf	jost	veb	dēm	Per	Baj.	yãp	W.	t'ha'sh	zhāth	2	fosh	Kis	run	chūd	seng	poch	na'v	100000000000000000000000000000000000000
. 2	t'hev	fung √	kük	zhūt v	yar v	٠	ra'g V	kōf √	thav	göst V	₩if ✓	<u>8</u>	mus V	shāl V	lus	chech	def	hab v	t'ha'm v	jo'ch √	nēz	po's	served
cac=0.491 s ³ =0.499	vesh	gung	tük	shut	yar	_	3,81	köf	Sai V	gost	#if	8	Bus	Shall	lon	chej	doth	hab	t'ha'm	jo'ch	nēzh	po't'h	
	J,PQL,3	Die.	t'hef	ı	t'hēp	ğ	jet v	yo'd √	must V	t'ha'r	kak	dis	lung	vo's	näsh	gum	₩2'D √	pot'h	thol ,	füch √	shēt'h	k8b 1	served
	shaf	bila	t'hesh	chuv	hēp	2:	_	yo'd	must	zha'r	tak	diah	long	VO'E	nāth	gūn	/ wa'n	pot'h	thoi	füch	91.	√ kōb	-

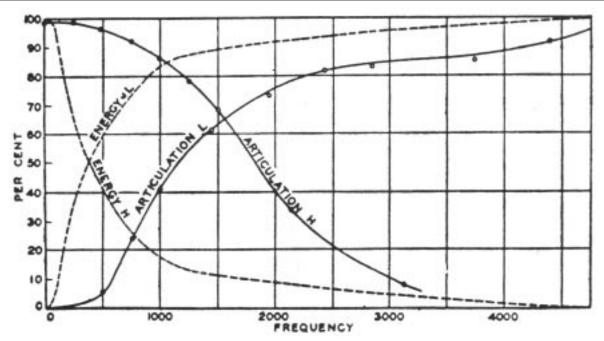


Figure 4: This figure is reproduced from [9] and p.280 of [10].

Speech was low- and high-pass filtered with very sharp filters having a cutoff frequency defined by the abscissa. Two things were measured for each filtered speech sound, the RMS level and the articulation. The speech energy for the two filter outputs is shown by the dashed lines and the articulations are shown by the solid lines. The curve labeled "Articulation H" is the same as s_H , and the curve labeled "Articulation L" is the same as s_L . Note how the energy curves cross at the 50% point, as they should for two sharp filters. Note how the articulation curves do not cross at 50% but at 60%. Also, the frequency of the crossover is very different for energy and articulation. The equal energy point is at 450 Hz, while the equal articulation point is at 1550 Hz.

Articulation Results

• $S = vc^2$

•Error independence between bands

Articulation Index (Al)

$$\bullet (1 - s(a, c)) = (1 - s(a, b))(1 - s(b, c)) \tag{1}$$

•
$$\log_{10}(1-s(a,c)) = \log_{10}(1-s(a,b)) + \log_{10}(1-s(b,c))$$
 (2)

$$\bullet \ AI(s) = \frac{\log_{10}(1-s)}{\log_{10}(1-s_{max})} \tag{3}$$

$$\bullet AI(s(a,c)) = AI(s(a,b)) + AI(s(b,c)) \qquad f_a \le f_b \le f_c \qquad (4)$$

Underlying Density

$$\bullet AI(s(0,f_c)) = \int_0^{J_c} D(f) df$$
 (5)

and

•
$$D(f) = \frac{\partial}{\partial (f_c)} AI(s(0, f_c))$$
 (6)

Finally, for each of K bands,

$$\bullet D_k = \int_{f_k}^{J_{k+1}} D(f) df \tag{7}$$

where limits chosen so all D_k are equal.

Multi-independent Channel Model

- Fletcher's articulatory band: 1mm along the basilar membrane (20 between 300 and 8000Hz)
- A single zero error band means zero error overall!!
- Robustness to a range of problems

AI and Noise

Saturating SNR at 0 and 30 dB,

$$\bullet D_k = \frac{1}{K} SNR_k / 30 \tag{8}$$

and

$$\bullet AI = \sum_{k=1}^{K} D_k \tag{9}$$

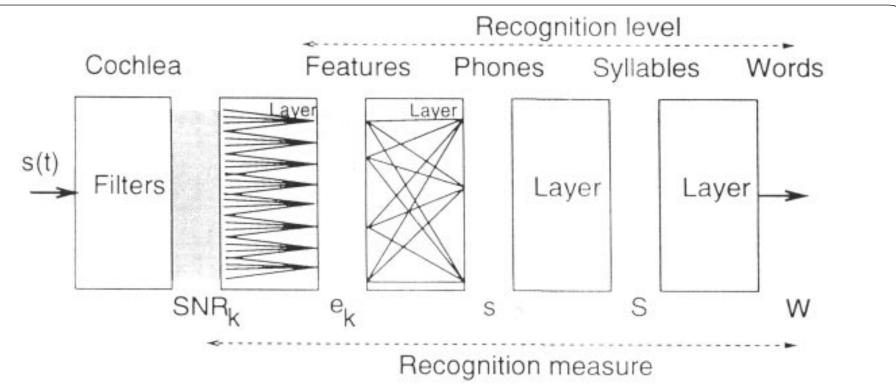


Fig.6: Hypothetical cascade of recognition layers, starting with the cochlea. The articulation measures shown at the bottom are defined in Table II. The words along the top describe the physical correlate of the measure. No feedback is assumed between layers in this oversimplified model of HSR. The first layer, the cochlea, determines the signal-to-noise ratio in about 2800 overlapping critical band channels. The next layer extracts features (i.e., partial recognition) from the speech in a local manner, as indicated by the network wiring. The output of this layer is measured in terms of the K=20 or so feature errors ek. Next, the features are mapped onto the M=20 or so phones. This process necessarily integrates across the entire tonotopic axis. Then syllables and words are formed.

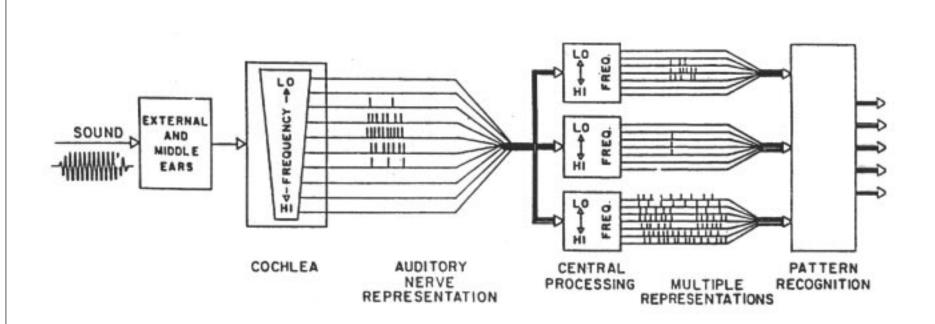
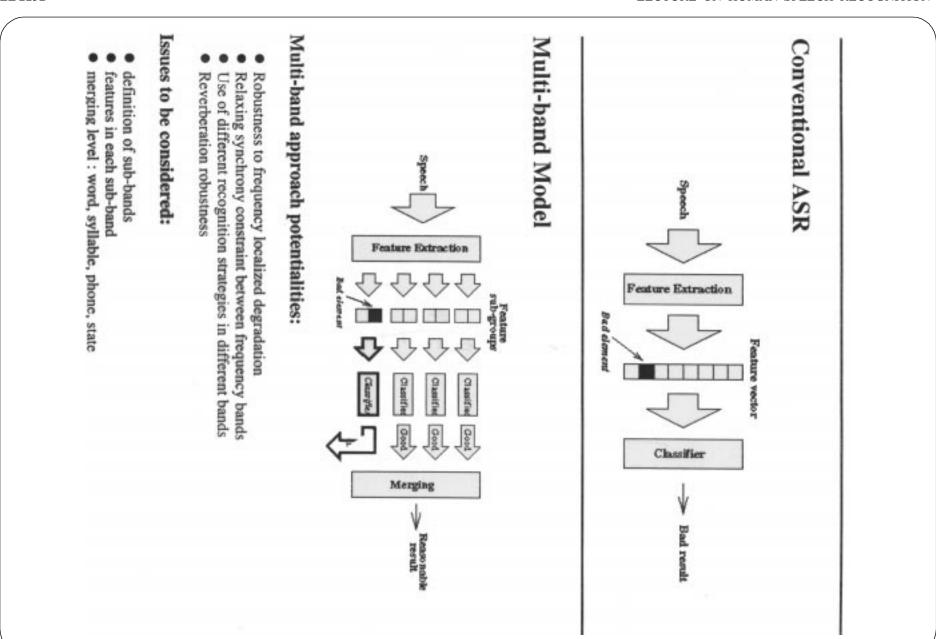



Figure 17.1: Block diagram of sound representation in the auditory system.

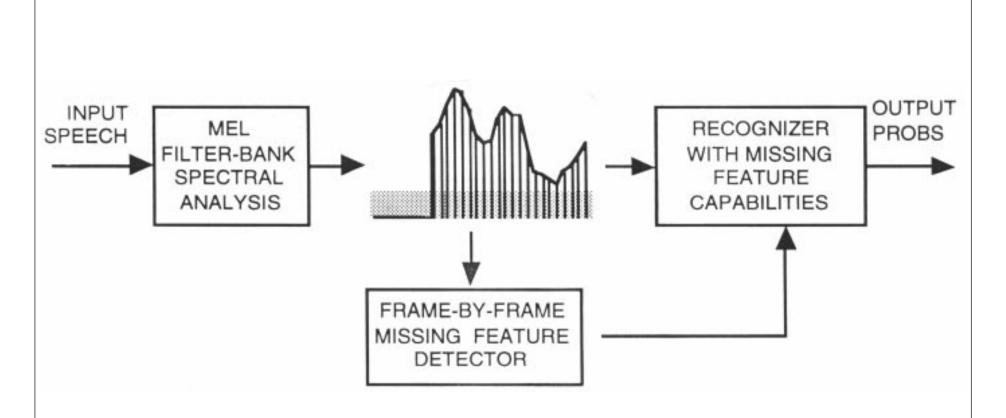
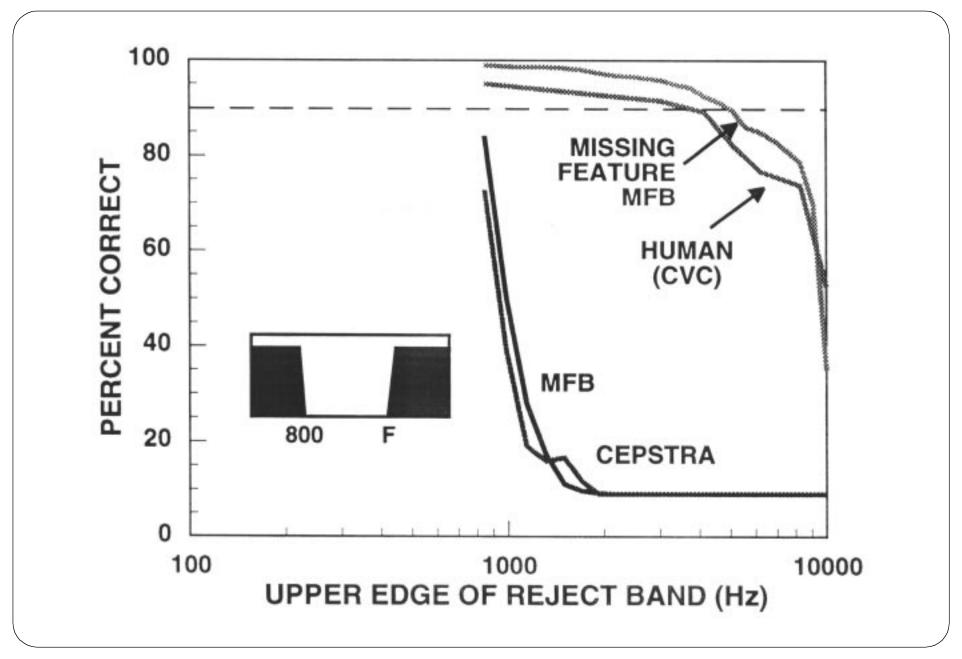



Figure 1 : Block diagram of recognizer using missing-feature adaptation.

Questions about Articulation Index

- •Based on phones the right unit for fluent speech?
- •Lost correlation between distant bands?
- •Lippmann experiments, disjoint bands

HSR vs ASR Quantitative Comparisons

•Lippmann compilation

Range of tasks



Figure 18.1 : Six speech recognition corpora.

Corpus	Description	Number of Talkers	Vocabulary Size	Number of Utterances	Total Duration	Recognition Perplexity	
TI Digits	Read Digits	326	10	25,102	4 hrs	11	
Alphabet Letters	Read Alphabet Letters	150	26	7.800	l hr	26	
Resource Management	Read Sentences	109	1,000	4.000	4 hrs.	60-1,000	
Wall Street Journal	Read Sentences	84 - 284	5,000 - 20,000	7,200 - 37,200	12 hrs - 62 hrs	45-160	
Credit-Card Continuous Speech Recognition	Spontaneous Telephone Conversations	70	2,000	35 Conversations. 1,600 Segments	2 hrs	100	
Credit-Card Spontaneous Wordspotting Telephone Conversations		70	20 Keywords	2.000 Keyword Occurrences	2 hrs	-	

Figure 18.2: Characteristics of six takler-independent recogniton corpora

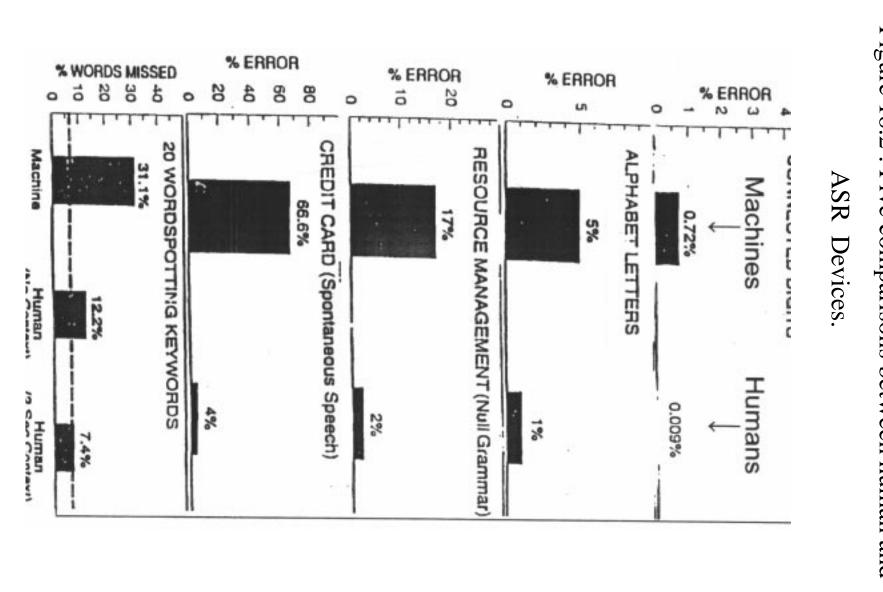


Figure 18.2: Five comparisons between human and

System	10dB SNR	16dB SNR	Quiet
Baseline HMM ASR	77.4%	42.2%	7.2%
ASR with noise comp	12.8%	10.0%	_
Human Listner	1.1%	1.0%	0.9%

Table 18.1: Word error rate for 5000 word Wall Street journal task using additive automotive noise

HSR vs ASR Qualitative Comparisons

- Signal processing
- Subword recognition
- Temporal integration
- •Higher levels

HSR vs ASR: Signal Processing

- Many maps versus one
- •Sampled in frequency and time vs sampled in time (10ms)
- •Some aspects of hearing already in ASR

HSR vs ASR: Subword Recognition

•Knowing what is important

Combining it optimally

HSR vs ASR: Temporal Integration

- •Using or ignoring duration
- Compensating for rapid speech
- •Incorporating multiple time scales

HSR vs ASR: Higher Levels

- •Syntax
- Semantics
- Pragmatics
- •Getting the gist
- Dialog to learn more

Conclusions

•Under good conditions, human recognition

much better

- •Humans need to pay attention
- •Some human approaches going into ASR
- •Much more to do