University of California Berkeley

College of Engineering Department of Electrical Engineering and Computer Sciences

Professors : N.Morgan / B.Gold EE225D

Medium & High Rate Coding

Lecture 26

Spring,1999

Representation of good Excitation is still the basic issue.	/ *Multi pulse LPC	Accent on Error Signal.
	* CELP ————————————————————————————————————	
	* Reducing Codebook Search Time in CELP.	
	* Back Ward Filtering	
	* Multi Resolution Codebook Search	
	* Partial Sequence Elimination	
	* Tree Structured Delta Codebooks	
	* Adaptive Codebooks	
	* Linear Conbination Codebooks	

- * Vector Sum Excited Linear Preduction
- * Adaptive Transform Coding

Voice -Excited Channel Vocoder (late 1950's to early 1960's) **Motivations** :

- (1) General Faling Excitation Signal in Channel Vocoder was NOT Robust.
- (2) Possible Transmission of a Wide Band (Analog) Speech Signal (0-8kHz) throughan excisting Telephone Channel [300-3000Hz].
- * Intuitive grasp of the fact that baseband [0-900Hz], generally carried all the necessary excitation information for vocal channel vibrations.
- * A white noise same use a suitable excitatin for voiceless sounds.

* A white noise same use a suitable excitatin for voiceless sounds.

In early 1960's, Schroeder, David et al at BTL, introduced spectral flattering -got rid of spectral distortion [more or less].

Base Band Signal

Two types of prediction.

Predicted Value $\hat{y}(n) = \alpha y(n-T) = y(n) + e(n)$

so
$$e_1(n) = -y(n) + \alpha y(n-M)$$

Perform LPC Analysis on $e_1(n)$

$$e_1(n) = a_1e_1(n-1) + a_2e_1(n-2) + \dots + a_ke_1(n-k) + e_2$$

By transmitting $a_1, a_2, \ldots a_k$ and α, M

Major Assumption - $e_2(n)$ is so small

that it can be <u>quantized</u> to 1 bit. BUT SENT at the sampling rate.

N.MORGAN / B.GOLD

Even a ONE bit error signal results in a large bit rate.

If sampling rate is 8kHz, then transmission of error signal costs 8kbs.

Addition of transmitting d, M, a_k 's sould be another <u>2kbs</u>.

Pitch Detection

If pitch is wrong, first error signal $e_1(n)$ is big.

Early APC Systems Operated at 9600bps.

Major Research Efforts : Reduction of Error Signal Bit Rate.

Key to Error Signal Reduction.

* LPC - Error Signal is eliminated and replaced by standard Excitation Signals.

(like Channel Vocoder)

* RELP - Residual Excited linear Prediction.

Low Pass Filter of error Signal - reduced sampling rate. still one bit quantization.

* VELP - Voice-Excited LP.

So error signal rate can be reduced [hopefully].

They aimed for 4800 bps.

As computer speeds increased, New sptions became available for

<u>real-time</u> Coding of the Error Signal.

Basic Philosophy - Analysis by Synthesis

- * Transmitting system has <u>both</u> analyzer and synthesizer available.
- * So Synthetic Speech can be generated at the transmitter.
- * Using same criteria, the synthetic speech is compared <u>sequentially</u> with the actual speech [perhaps every frame, or every n frames] and <u>synthesizer</u> parameters obtained by analysis <u>VARIED</u> to obtain a GOOD fit between <u>ACTUAL SPEECH</u> vs. <u>SYNTHESIZED SPEECH</u>. we encountered this idea

* So the <u>best</u> parameters are sent.

we encountered this idea in the Setevens Halle concept in chapter 17.

Basic Idea

- Replace the one-bit error signal of APC with a vector quantized error signal.

Problems discussed in Chapter 33

- * How to create the stone?
- * Perceptual weighting filter.
- * Delay
- * Reduction of Codebook Search. [In 20ms, the analyzer must performe complete analysis-synthesis many times in a single frame.]
 So computer speed must be such that MANY systems can opearate in real time SIMULTANEOUSLY.
- * Adaptive Coding.[Storage is adaptive to a different speaker]

Figure 33.14 : Four Channel Subband Coder with Quadrature Mirror Filters.

LECTURE ON MEDIUMAND HIGH RATE CODING

Analysis by Synthesis

How to create the store?

Reduction of delay.

Reduction of Codebook Search

Adaptive Codebook.

APC 10,000bps.

Bessie Smith

Louis Armstong.

