Spring,1999

University of California Berkeley

College of Engineering Department of Electrical Engineering and Computer Sciences

Professors : N.Morgan / B.Gold EE225D

Psychoacoustics

Lecture 16

2000 Hz Target	 (a)
1200Hz Masker	
2000Hz Masker	 (b)
1200Hz Target	

Figure 15.7 : Asymmetry of masking of one tone by another.

For each level (upper horizontal axis), the vertical bars show the number of listeners for whom n more streams are masked by the lower frequency masker than are masked by the higher frequency masker, where n is marked on the lower hrizontal axis.

