Theory of Computation

Pushdown Automata and CFGs

Barath Raghavan
CS 361 Fall 2009
Williams College
MISC

Homework 1 back
Quiz 1 due tomorrow
Is the following language regular?

\[L = \{ 0^n 1^n \mid n \geq 0 \} \]

\[\Sigma = \{ 0, 1 \} \]
What makes a language Regular

NON
DFAs/NFAs cannot store information.
Suppose you have a stack on which to store information.
How might you recognize \(L \)?

\[
L = \{ 0^n 1^n \mid n \geq 0 \} \\
\Sigma = \{ 0, 1 \}
\]
NFAs Q set of states
NFAs Q set of states
Σ the alphabet
NFAs

Q set of states

Σ the alphabet

$\delta : Q \times \Sigma_e \rightarrow P(Q)$ transition function
NFAs

- Q: set of states
- Σ: the alphabet
- $\delta: Q \times \Sigma_e \rightarrow P(Q)$: transition function
- $q_0 \in Q$: start state
NFAs

- Q: set of states
- Σ: alphabet
- $\delta: Q \times \Sigma \rightarrow P(Q)$: transition function
- $q_0 \in Q$: start state
- $F \subseteq Q$: set of final states
Pushdown automata: push and pop a stack.
NPDAs

\[Q \times \Sigma, \Gamma \]

\[Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow P(Q \times \Gamma_\varepsilon) \]

\[q_0 \in Q \]

\[F \subseteq Q \]

set of states

input, stack alphabet

transition function

start state

set of final states
On this input and this on the stack

Push this on the stack

\[0, \varepsilon \rightarrow 0 \]

\[1, 0 \rightarrow \varepsilon \]

\[\varepsilon, \varepsilon \rightarrow \$ \]
\[L = \{0^n 1^n \mid n \geq 0\} \]
\[\Sigma = \{0, 1\} \quad \Gamma = \{0, \$\} \]
What NPDA recognizes:

\[L = \{0^i 1^j 2^k \mid i, j, k \geq 0 \text{ and } i = j \text{ or } i = k\} \]

\[\Sigma = \{0, 1, 2\} \]
$L = \{0^i1^j2^k \mid i, j, k \geq 0 \text{ and } i = j \text{ or } i = k\}$
Build an NPDA that recognizes:

\[L = \{ ww^R \} \]

\[\Sigma = \{ 0, 1 \} \]
\[L = \left\{ \omega \omega^R \right\} \]
Build an NPDA that recognizes:

\[L = \{ w \mid w \text{ has the same number of 0s and 1s} \} \]

\[\Sigma = \{0, 1\} \]
$L = \{ w \mid w \text{ has the same number of 0s and 1s} \}$
How can we define an NPDA’s language?
What CFG generates this language?

\[
L = \{0^n 1^n \mid n \geq 0\}
\]

\[
\Sigma = \{0, 1\}
\]
\[L = \{0^n1^n \mid n \geq 0\} \]
\[\Sigma = \{0, 1\} \]

Variables

- \(A\)
- \(B\)

Rules

- \(A \rightarrow 0A1\)
- \(A \rightarrow B\)
- \(B \rightarrow \varepsilon\)

Terminals
Grammar G:

$$
A \rightarrow 0A1 \\
A \rightarrow B \\
B \rightarrow \varepsilon
$$

$L(G) = \{0^n1^n \mid n \geq 0\}$
Grammar G:

$A \rightarrow 0A1$

$A \rightarrow B$

$B \rightarrow \varepsilon$

Derivation of a string:

$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000B111 \Rightarrow 000111$
What CFG generates this language?

$L = \{ww^R\}$

$\Sigma = \{0, 1\}$
\[L = \{ w w^R \} \]

Grammar \(G \):

\[
\begin{align*}
A & \rightarrow 0A0 \mid 1A1 \\
A & \rightarrow \varepsilon
\end{align*}
\]
What CFG generates this language?

\[L = \{ w \mid w \text{ has the same number of 0s and 1s} \} \]

\[\Sigma = \{0, 1\} \]
\[L = \{ w \mid w \text{ has the same number of 0s and 1s} \} \]

Grammar G:

\[
\begin{align*}
A & \rightarrow 0A1A \mid 1A0A \\
A & \rightarrow \varepsilon
\end{align*}
\]
Reading: Sipser 2.1, 2.2