What does it mean for a language to be **regular**?
Is the following language regular?

$L = \{ w \mid w \text{ has the same number of 01s as 10s} \}$

$\Sigma = \{ 0, 1 \}$

Is the following language regular?

$L = \{ w \mid w \text{ has the same number of 0s and 1s} \}$

$\Sigma = \{ 0, 1 \}$
How do we prove that a language is not regular?

1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.

Is the following language regular?

$L = \{a^n b^n\}$
How to show a language L is not regular:
1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.
Let's look at strings s, $|s| = 4$

What is true about the automaton for all strings of length 4 it reads?

What is the shortest string that will cause a repeated state?

Suppose DFA M has $|Q|$ states. Any string s, $|s| \geq |Q|$ will cause M to repeat a state.

What does it mean to repeat a state?
Input: 10
State Sequence: ABA

Also accepted:
1010
101010

Input: 010
State Sequence: ABBC

Also accepted:
01*0
Generalized process:
1. Pick a string \(s \) of length \(|Q|\).
2. Find where it repeats a state.
3. Repeat that part of the string.

\[s = xyz, \text{ where } y \text{ is the repeating part.} \]

How to show a language \(L \) is not regular:
1. Identify some property \(P \) that is true for all regular languages.
2. Assume \(P \) holds true for language \(L \).
3. Obtain a contradiction, thereby showing \(L \) is not regular.

(Draft 1)
Property: Every regular language with a DFA of \(|Q|\) states has a string \(s \) of length \(|Q|\) where \(s = xyz \) and \(y \) can be repeated.

(Draft 2)
Property: Every regular language with a DFA of \(|Q|\) states has a string \(s \) of length \(|Q|\) where \(s = xyz \) and \(y \) can be repeated and \(|y| > 0\).

(Draft 3)
Property: Every regular language with a DFA of \(|Q|\) states has a string \(s \) of length \(|Q|\) where \(s = xyz \) and \(y \) can be repeated, \(|y| > 0\), and \(|xy| \leq |Q|\).
Pumping Lemma

For every regular language \(L \) there exists some integer \(p \) where for every string \(s \) in \(L \) of length at least \(p \), \(s = xyz \) and \(y \) can be repeated, \(|y| > 0\), and \(|xy| \leq p|.

How to show a language \(L \) is not regular:
1. Identify some property \(P \) that is true for all regular languages.
2. Assume \(P \) holds true for language \(L \).
3. Obtain a contradiction, thereby showing \(L \) is not regular.

Is the following language regular?

\[
L = \{0^n1^n \mid n \geq 0\}
\]

\[\Sigma = \{0, 1\}\]

1. Identify some property \(P \) that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).
Is the following language regular?
\[L = \{0^n1^n \mid n \geq 0\} \]

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some
string s of length p for which we can apply the pumping lemma.

2. Assume P holds true for language L.

Assume L is regular and thus has a DFA
and is pumpable.

3. Obtain a contradiction, thereby showing L is not regular.

Let \(s = 0^p1^p \) \(s \in L \)
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \ s \in L \)

The pumping lemma guarantees:

\[s = xyz \ xy^*z \in L \]

Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \ s \in L \)

The pumping lemma guarantees:

\[s = xyz \ xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \)
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \ s \in L \)

The pumping lemma guarantees:

\[s = xyz \ xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \)
2. \(y \in \{1^*\} \)

Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \ s \in L \)

The pumping lemma guarantees:

\[s = xyz \ xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \)
2. \(y \in \{1^*\} \)
3. \(y \in \{0^i1^j\} \)

Impossible because repeating \(y \) would produce more 0s than 1s.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

\[s = xyz \quad xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \) Impossible because repeating \(y \) would produce more 0s than 1s.

2. \(y \in \{1^*\} \) Impossible because repeating \(y \) would produce more 1s than 0s.

3. \(y \in \{0^i1^j\} \) Impossible because repeating \(y \) would mis-order 1s and 0s.

Therefore

\[L = \{0^n1^n \mid n \geq 0\} \]

is NOT regular.
Is the following language regular?
\[L = \{ w \mid w \text{ has the same number of } 0\text{s and } 1\text{s} \} \]
\[\Sigma = \{ 0, 1 \} \]

Pumping Lemma
For every regular language \(L \) there exists some integer \(p \) where for every string \(s \) in \(L \) of length at least \(p \), \(s = xyz \) and \(y \) can be repeated, \(|y| > 0 \), and \(|xy| \leq p \).
\[L = \{ w \mid w \text{ has the same number of } 0\text{s and } 1\text{s} \} \]

Is the following language regular?
\[L = \{ w \mid w \text{ has the same number of } 0\text{s and } 1\text{s} \} \]

1. Identify some property \(P \) that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).

Assume \(L \) is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing \(L \) is not regular.
\[s = 0^p1^p \]
\[|xy| \leq p \implies y \in \{ 0^* \} \implies xy^2z \notin L \]
Is the following language regular?

\[L = \{ ww^R \} \]
\[\Sigma = \{ 0, 1 \} \]

Pumping Lemma

For every regular language \(L \) there exists some integer \(p \) where for every string \(s \) in \(L \) of length at least \(p \), \(s = xyz \) and \(y \) can be repeated, \(|y| > 0 \), and \(|xy| \leq p \).

\[L = \{ ww^R \} \]

Is the following language regular?

\[L = \{ ww^R \} \]

1. Identify some property \(P \) that is true for all regular languages.

 There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).

 Assume \(L \) is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing \(L \) is not regular.

 \[s = 0^p110^p \]
 \[|xy| \leq p, |y| > 0 \implies y \in \{0^+\} \implies xy^0z \notin L \]
Is the following language regular?
\[L = \{0^i1^j \mid i > j \} \]
\[\Sigma = \{0, 1\} \]

Pumping Lemma
For every regular language \(L \) there exists some integer \(p \) where for every string \(s \) in \(L \) of length at least \(p \), \(s = xyz \) and \(y \) can be repeated, \(|y| > 0 \), and \(|xy| \leq p \).
\[L = \{0^i1^j \mid i > j \} \]

Is the following language regular?
\[L = \{0^i1^j \mid i > j \} \]

1. Identify some property \(P \) that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).

Assume \(L \) is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing \(L \) is not regular.

\[s = 0^{p+1}1^p \]

\[|xy| \leq p, |y| > 0 \implies y \in \{0^+\} \implies xy^0z \notin L \]
Is the following language regular?

\[L = \{0^i1^j0^k \mid i > 10 > j > k > 0\} \]

\[\Sigma = \{0, 1\} \]

\[R = 0^+0^{10}((1^9(0^8 \cup 0^7 \cup \ldots \cup 0^1)) \cup (1^8(0^7 \cup 0^6 \cup \ldots \cup 0^1)) \cup \ldots \cup (1^2(0^1))) \]

YES

Reading: Sipser 1.4