Due: November 2, 2009 in class or 1:00 pm (via email to cs361-hw@cs.williams.edu)

1. Closure (15 points). Prove that RE is a) closed under union, b) closed under intersection, and c) closed under Kleene star.

2. Queues (10 points). Prove that $L \in RE$ if and only if there exists some queue automaton that recognizes L.

3. CFL/REG (10 points). Prove that the following language L is undecidable:
 $$L = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \in \text{CFL and } L(M) \notin \text{REG}\}.$$

4. RE/coRE (10 points). Prove that the following language L is neither in RE nor in $coRE$:
 $$L = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } M_1(\epsilon) \text{ halts and } M_2(\epsilon) \text{ loops}\}.$$

5. Verifiers (10 points). Prove that $L \in RE$ if and only if L is verifiable.

6. Separability (20 points). Let A, B, D be languages. We say that D separates A from B if $A \subseteq D$ and $D \cap B = \emptyset$. We say that a language class C is separable if for every $A, B \in C$ where $A \cap B = \emptyset$ there exists a decidable language D such that D separates A from B. Prove that $coRE$ is separable.

7. Separability (25 points). Prove that RE is not separable.