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What is Group Fairness?

• Bing Chat (GPT-4) says:

• “Group fairness is a concept in machine learning that measures how a group of individuals with certain protected 

attributes (like gender or race) is impacted differently from other groups. It aims to achieve the same outcomes 

across different demographics or a set of protected population classes”

• But what about “non-protected” groups/attributes?

• For example:  age, regional accent, tenure with a voice assistant

• Goal is to make speech-enabled AI systems perform about equally well for all speakers/attributes

𝑃 𝑓 𝑥 ≥ 𝜃 𝐴 𝑥 ) ≈ 𝑃 𝑓 𝑥 ≥ 𝜃 ¬𝐴(𝑥)),

for a performance metric 𝑓 𝑥 , threshold 𝜃 , and all attributes 𝐴 𝑥 we care about.

• Attributes are often not available due to data privacy, so impossible to verify in general!
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In this talk

• Focus on algorithmic approaches that reduce disparities in 
performance
• For speech recognition (ASR)

• For speaker recognition (speaker verification - SV)

• Metrics will be ad-hoc, depending on task
• Absolute or relative differences in metric between groups

• Word error rate (WER) for ASR

• Equal error rate (EER) for speaker verification
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Fairness and representation

• Empirically, group underperformance in ML systems is typically 
associated with underrepresentation in the training set
• Training objective is to minimize loss over the entire dataset

• It “pays” more to minimize loss for the majority

• Example:
If nonnative speakers are a minority in the data, we expect ASR models to 
perform poorly for them

• Remedy:
Increase the underrepresented group’s aggregated contribution to the loss 
function
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Mitigation: Improving representation

• “Target group” = group that is underrepresented / seeing sub-par 
performance

• How to increase representation of the target group in training loss?

• Many different approaches:
• Give extra weight to target group samples in the loss computation

• Oversample the target group

• Adapt / fine-tune model on the target group

• Use group-specific models (and combine them)

• Use modified loss function that penalizes disparities

• Fabricate data for the target group
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How to define/identify groups?

• Again, several approaches:
• By pre-existing categories, e.g., demographic labels, metadata, …

• Proxy labels (e.g., ZIP codes for demographics)

• By automatic discovery / clustering
• By an adversarial model (implicitly)

• Getting labels is a challenge in itself
• Especially for protected / demographic attributes

• Methods that require no group labels in training are preferred, other things 
being equal
• We then only need labels on the test data for evaluation
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Fairness roadmap

• We will visit all points along both axes, but not map out the 
entire space!

• Along the way, we have some detours, e.g., to look at human 
performance disparities
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Fairness Cohort Discovery and 
Mitigation
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Pranav Dheram, Murugesan Ramakrishnan, A. Raju, I-F. Chen, B. King, K. Powell,  M. Saboowala, K. 

Shetty, A. Stolcke, Toward Fairness in Speech Recognition:  Discovery and mitigation of performance 

disparities, Proc. Interspeech, 2022
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Human and Machine Performance Disparities

• Performance Disparity

• Measure across two cohorts in this work: termed bottom and top performing cohort 

• Machine Performance Disparity

• ASR model confidence score: probability of the model output sequence being correct

• Word error rate (WER) gap 
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Human and Machine Performance Disparities

• Human Performance Disparity

• Human transcription errors impact WER

• Transcription process: 3 blind-pass + 1 adjudicator

• Measure consensus between 3 independent transcribers

• Inter-annotator agreement rates (IAA): 1-1-1 (all disagree) / 2-1 (two agree) / 3-0 (all agree)

• Pairwise disagreement rates (PDR) computed from IAA
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Manual cohort discovery: geodemographic

• Geodemographic cohorts – ZIP codes as a proxy label

• Analyzed geodemographic characteristics: ZIP codes and US census data

• Identified low ASR accuracy cohort:

• for all census attributes, partition ZIP codes into those with ≥ 75% of population sharing 
that attribute, versus all other ZIP codes

• select partition with largest ASR disparity

• Bottom cohort: set of low-accuracy ZIP codes

• Top cohort: all other ZIP codes
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Table 2: Inter-annotator agreement rates of three blind passes

Table 1: Hybrid RNN-HMM ASR model performance disparities

Manual cohort discovery: geodemographic
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Automated cohort discovery

• Problems with manual cohort discovery
• Not scalable

• Small cohort sizes

• Limited resolution

• Cohort discovery

• Clustered speaker embeddings

• Bottom cohort

• 10% of clusters with lowest ASR confidence 
scores



Group Fairness · © 2022 Amazon.com, Inc 15

Automated cohort discovery

Table 3: Hybrid RNN-HMM ASR model performance disparities

Table 4: Inter-annotator agreement rates of three blind passes for
automatic cohorts
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Mitigation: Oversampling bottom cohort data

• Bottom cohort underrepresented in training data 

• 0.8% for geodemographic cohorts

• Solution: Oversample bottom cohort data

• Semi-supervised learning

• Identify unlabeled bottom cohort data using ZIP codes 

• Obtain machine transcriptions using a teacher model



Group Fairness · © 2022 Amazon.com, Inc 17

Unsupervised group labeling: Cohort embeddings

• Prior work [1]

• One-hot accent embedding inputs to ASR improves accented speech accuracy

• Why? 

• One-hot embedding as an adapting bias in first layer

• Extend to cohorts

• One-hot cohort embedding as an additional input to our ASR model

• Help the model learn linguistic difference between top and bottom cohort

[1] M. Grace, M. Bastani and E. Weinstein. 2018. Occam’s Adaptation: A Comparison of Interpolation of Bases Adaptation Methods for Multi-Dialect Acoustic Modeling with LSTMS. Proc. IEEE 

Spoken Language Technology Workshop (SLT), pp. 174-181.
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Experimental Setup

• Training Data

• Baseline: 100,000+ hours of de-identified voice-assistant data

• Evaluation Data

• Bottom cohort: 2,040 utterances

• Top cohort: 31,199 utterances

• ASR model

• End-to-end RNNT model architecture

• Metrics

• WERR =
WER𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

− WER𝑒𝑥𝑝

WERbaseline

 WER gap =
WER𝑏𝑜𝑡𝑡𝑜𝑚 

− WER𝑡𝑜𝑝

WER𝑡𝑜𝑝
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Results: Mitigating disparities

• Oversampling bottom cohort data improves performance

• Bottom cohort WER: 5% relative improvement 

• WER-Gap reduced from: 56.3% to 46.2%

• Impact of Cohort embedding

• Cohort embedding reduces WER gap from 56.3% to 38.5%. 

Table 5: Impact of performance disparity mitigation on geodemographic cohorts
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Summary

• Cohort discovery

• Manually identified performance disparities using geodemographic factors

• Proposed automatic cohort discovery: larger bottom cohort, larger discrepancy

• ZIP-code-based grouping of speakers identifies ASR performance disparities

• Group with higher ASR error also more difficult for human transcribers (higher disagreement)

• Tested two effective methods to help close ASR performance gap

• Oversampling data from underperforming cohort

• Encode cohort membership in model inputs



Reducing Geographic 
Disparities in ASR
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Viet Anh Trinh, P. Ghahremani, B. King, J. Droppo, A. Stolcke, R. Maas, Reducing Geographic 

Disparities in Automatic Speech Recognition via Elastic Weight Consolidation, Proc. Interspeech, 2022

   

https://www.amazon.science/publications/reducing-geographic-disparities-in-automatic-speech-recognition-via-elastic-weight-consolidation
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Geolocation for speaker grouping

• ASR performance is affected by geography (e.g., regional accent, socio-economics)

• Instead of ZIP codes and human population attributes, use geolocation directly for grouping

• Given a pretrained ASR model, cluster speakers by geolocation to identify areas of high error rate

• Mitigation:

▪ Adapt ASR model to reduce the performance gap against these high error regions

▪ Without degrading average performance for all regions

▪ Without access to the data of the pretraining stage
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Geographical Clustering by ASR Accuracy

• Use clustering tree to split US data into regions while maximizing word error rate (WER) differences between 

regions

• WER_diff = (WERleft_branch– WERright_branch)2

• Split the data by longitude if WER_diff_longitude > WER_diff_latitude and vice versa

• Repeat while the number of devices in each leaf ≥ threshold x (ensure each region has at least x devices)
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≥ 𝑚𝑒𝑑𝑖𝑎𝑛

data

< 𝑚𝑒𝑑𝑖𝑎𝑛

Split by longitude or latitude ?

region 1 …           region n region 2 



Result: Clustering Tree
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Median longitude

< median
WERleft_branch

≥ median
WERright_branch

WER_diff_longitude = (WERleft_branch– WERright_branch)2



Result: Clustering Tree
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Median latitude

< median
WERleft_branch

≥ median
WERright_branch

WER_diff_latitude = (WERleft_branch– WERright_branch)2



Result: Clustering Tree
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Result: Clustering Tree
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Dataset

• De-identified user data from a commercial voice-enabled AI assistant

• Mitigation: collect more data from regions with high WER

28

Dp : Pretraining set 10k 
hours - random 

37k hours random 

Dr : 10k hours - random
Dc : 10k hours from 
higher-average WER 
regions



Elastic Weight Consolidation

• We propose a loss function that is a combination of the Elastic Weight Consolidation (EWC [1]) loss 

and the RNN-T loss

ℒ θ = ℒASR(θ) +
λ

2


i

Fi (θi − θp,i
∗ )2

• Force ASR parameters 𝜃 to be close to the best parameters of the pre-trained model 𝜽𝒑
∗ , along 

the directions that are important to the pretrained task (based on Fisher information)
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Standard transfer learning EWC 

Assign binary importance score
(freeze, no freeze)

Assign continuous score (𝐹𝑖 )

Score for each layer Score for each parameter in
each layer

Based on researcher
experience, trial and error

Use mathematical criterion (Fisher information) to 
assign score

[1] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, 

and R. Hadsell, “Overcoming catastrophic forgetting in neural networks”, Proc. National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017



Experimental Setup

• Transfer learning: train on Dp, then fine-tune on Dc

▪ Exp 1: Train on random 10k hours 𝐷𝑝

▪ Exp 2: No freeze

▪ Exp 3: Freeze all encoder layers

▪ Exp 4: Freeze all predictor layers

▪ Exp 5: Freeze 3/5 lowest encoder layers  & 1/2 predictor layer

▪ Exp 6: Proposed method

• Joint learning

▪ Exp 7: train on both 𝐷𝑝 and 𝐷𝑐, as empirical bound

▪ Exp 8: train on both 𝐷𝑝 and 𝐷𝑟
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Results
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Experiment Description Data

Region WER reduction (%)
Overall 

WER reduction (%)variance mean max min

Experiment 1 Baseline 𝐷𝑝 0 0 0 0 0

Experiment 2 No freeze 𝐷𝑐 -5.3 -0.9 -2.9 -4.6 -1.1

Experiment 3 Freeze Encoder 𝐷𝑐 -1.8 0.0 -1.4 -5.4 -0.1

Experiment 4 Freeze Predictor 𝐷𝑐 1.8 -0.3 -1.3 -8.5 -0.4

Experiment 5 Freeze 3 lowest encoder 
layers  and 1 predictor layer

𝐷𝑐 -0.9 -0.5 -2.5 -2.7 -0.4

Experiment 6 Proposed method 𝐷𝑐 -7.9 -1.1 -3.2 -5.8 -1.3

Experiment 7 Empirical bound 𝐷𝑝 + 𝐷𝑐 -5.3 -1.2 -2.3 0.2 -1.0 

Experiment 8 𝐷𝑝 + 𝐷𝑟 -12.3 -2.3 -0.9 -7.3 -2.1



Summary
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• Use geolocation to partition speakers into low and high-WER regions (using a clustering tree based on latitude 

and longitude attributes)

• Use an RNN-T loss function combining the standard ASR loss with Elastic Weight Consolidation (EWC) 

regularization loss 

• EWC helps model keep good performance for the user population overall, while reducing WER for 
underperforming regions

• Our proposed method reduces the WER in the region with highest WER by 3.2% relative and reduces the 

overall WER by 1.3% relative 



Group-adapted Fusion Network for 
Speaker Verification Fairness
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Hua Shen, Y. Yang, G. Sun, R. Langman, E. Han, J. Droppo,  A. Stolcke, Improving Fairness in Speaker 

Verification via Group-Adapted Fusion Network, Proc. ICASSP, 2022

   

https://www.amazon.science/publications/improving-fairness-in-speaker-verification-via-group-adapted-fusion-network
https://www.amazon.science/publications/improving-fairness-in-speaker-verification-via-group-adapted-fusion-network
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Speaker Verification

Speaker A

Speaker B

Deep 
Embedding

Encoder

Deep 
Embedding

Encoder

The performance of speaker verification systems has dramatically improved due to both deep learning algorithms and large-scale 

datasets. The state-of-the-art speaker verification models typically have two stages: 

1. Deep embedding encoders (Front-end): compute speaker embeddings from speech audio;

Model Architecture

Speaker Embeddings

Speech Audio

Deep Embedding Encoders
(Front-End)

2. Scoring function (Back-end): compute similarity score between two embeddings.

Scoring Function
(Back-End)
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Speaker Verification

Deep 
Embedding

Encoder

Metric Learning 
Objective

We commonly train the Front-end deep embedding encoders with classification or metric learning objectives.

e.g., Triplet loss /
         GE2E loss /
Angular prototypical loss …

Speaker Embeddings

Training Process

Example of metric learning objective

Centroid C

Centroid B

Centroid A

learning

Learn to optimize the embedding to get:
• smaller distance between same speakers
• larger distance with different speakers.

Embedding space

smaller

larger

larger

Speech Audio
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Motivation

Deep 
Embedding

Encoder

Dataset Model

Majority 
group

Minority 
group

However, this learning process can potentially lead to model unfairness across groups, because:

• Training: Models minimize average loss over the full datasets, which might ignore the voice characteristics of 

underrepresented groups;

• Evaluation: The performance metrics (e.g., EER) typically measure overall performance, which does not reflect 

performance over different subgroups.
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Study Objective

• Rigorously analyze model unfairness in speaker verification systems

• Offer a generalizable solution to mitigate model unfairness

Contributions

1. We originally crafted training and evaluation datasets, and evaluation metrics, to rigorously 

evaluate and analyze model fairness performance.

2. We provide direct evidence showing that group-imbalanced training dataset can lead to model 

unfairness to underrepresented groups.

3. We propose a flexible, modular model based on group embedding adaptation and score fusion to 

alleviate model unfairness.  
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Core Idea

Group-adapted Fusion Network (GFN)

Group Embedding Adaptation

Use group-wise adaptation encoders to capture voice 

characteristics specific to each group

Score Fusion Strategy

Use score fusion strategy to aggregate scores from all

group-specific embeddings
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Group-adapted Fusion Network (GFN)

Front-end

The front-end encoders extract base (general) 
and group-adapted embeddings. 

Group Embedding Adaptation
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Group-adapted Fusion Network (GFN)

Training objective

Binary cross-entropy loss
with positive and negative training pairs

Back-End

The back-end score fusion model 
combines all scores for speaker 
verification. 

Score fusion model

Neural
Network
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Crafted Datasets and Metrics for Fairness

Training sets 

Gender Ratio 

(Female:Male)

Female 

Speakers

Male

Speakers

Female

Utterances

Male

Utterances

9:1 2250 250 387,322 45,181

4:1 2000 500 341,500 95,157

1:1 1250 1250 214,919 228,823

1:4 500 2000 86,616 372,133

1:9 250 2250 43,482 419,853

- Total Speakers: 2500 -

balanced

unbalanced

unbalanced

- Voxceleb2-GRC (Gender Ratio Controlled) Dataset

Test sets

- Voxceleb1-F (Fairness) Dataset

Gender Trials Trial Count VoxCeleb1-F

[F] [M] [All]

Positive F-F 150,000

Negative F-F 150,000

Negative M-F 150,000

Positive M-M 150,000

Negative M-M 150,000

Front-End

Back-End

Sample positive (same speaker) and negative (different speakers)
training pairs from VoxCeleb2-GRC for metric learning.
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Evaluation metrics

Equal error rate (EER) is one of the most common metrics to evaluate speaker verification models, denoting 

the rate where False accept rate (FAR) = False rejection rate (FRR).

Crafted Datasets and Metrics for Fairness

(3) Disparity Score (DS): model performance gap between groups

(1) Group-wise EERs: monitor group-specific performance

Female-group: Male-group:

(2) Overall EERs: monitor performance across all groups

Overall EER:

Model fairness evaluation via three metrics: 
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Does imbalanced group size in training cause model unfairness? 

Imbalanced group ratios in training sets can lead to model unfairness
towards underrepresented groups.

Findings:

• Training with same total speaker numbers (i.e., 2500), the dominant group achieves better group-wise EER
than the underrepresented group.

Female:Male Ratio in Voxceleb2-GRC Training Datasets 

9:1 4:1 1:1 1:4 1:99:1 4:1 1:1 1:4 1:9
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(a) Group-wise EER (b) EER[All] and DS Score

Q/RN_[F] Q/RN_[M]

H/RN_[F] H/RN_[M]

EER[All]_Q/RN

EER[All]_H/RN

DS_Q/RN

DS_H/RN

• Increasing dominance of one gender group (e.g., 4:1 → 9:1) leads to increasing performance gap (DS score)
and overall EER, indicating increasing model unfairness and worse overall performance, respectively.

Baselines:

• Q/RN: Quarter-channel ResNet-34

• H/RN: Half-channel ResNet-34;
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Does GFN mitigate model unfairness?

GFN model can improve gender-specific EER over baselines, and further
reduces the performance gap in most imbalanced group ratio settings.

Female:Male Ratio in Voxceleb2-GRC Training Datasets 

9:1 4:1 1:1 1:4 1:99:1 4:1 1:1 1:4 1:9
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(a) Group-wise EER (b) EER[All] and DS Score

Q/RN_[F] Q/RN_[M]

H/RN_[F] H/RN_[M]

GFN_[F] GFN_[M]

EER[All]_Q/RN

EER[All]_H/RN

EER[All]_GFN

DS_Q/RN

DS_H/RN

DS_GFN

Findings:

• GFN model achieves better group-wise and overall EERs than baselines, regardless of gender group imbalances.

All GFN’s encoders: Q/RN

• The GFN also reduces the performance gap (DS Score) in 9:1, 1:4 and 1:9 gender ratio settings.
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t-SNE projection

Q/RN GFN
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-40

-80
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400-40-80
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-7.5

-12.5
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-2

-4

-6
100-10-20 20-2-4 4 6 8

(a) (b) (c)

GFN encoder tends to generate higher quality embeddings compared with Q/RN 
baseline (more compact for the same speakers and separate for different speakers)

Genders tend to aggregate in different regions of the embedding space.

Embedding visualization
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Listing Methods:

o Gender Batching with Weighted Loss (GBWL);

o Equal Score (ES);

o Female-FineTuned (F-FT);

o Male-FineTuned (M-FT);

o Q/RN Baseline;

o H/RN Baseline.

Ablation Study

GFN achieves the best performance among all methods.
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Summary

• We use evaluation metrics and datasets with defined group (male/female) ratios to analyze 

model fairness performance.

• We provide the direct evidence that imbalanced group presence can lead to model 

unfairness to different subgroups, specialized in gender-group settings.

• We propose Group-adapted Fusion Network (GFN), based on group embedding adaptation 

and score fusion, to counteract model unfairness.  

• We demonstrate that GFN reduces group-disparity for imbalanced training scenarios, while 

reducing overall speaker verification EER.



Adversarial Reweighting for 
Speaker Verification Fairness
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Minho Jin, C. J.-T. Ju, Z. Chen, Y.-C. Liu, J. Droppo, A. Stolcke, Adversarial Reweighting for 

Speaker Verification Fairness, Proc. Interspeech, 2022

   

https://www.amazon.science/publications/adversarial-reweighting-for-speaker-verification-fairness
https://www.amazon.science/publications/adversarial-reweighting-for-speaker-verification-fairness


Problem Formulation
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Problem Formulation

• The algorithm aims to computationally identify and boost underperforming 
groups in the optimization

• Emphasizing minority groups can lead to better fairness and better accuracy.

• To computationally identify minority groups, without additional information, 
we employ an adversarial reweighting:
• The adversary network outputs weights for each training sample, and is optimized 

to maximize the loss giving more weight to underperforming samples.
• The learner is optimized to minimize the weighted loss.
• This leads to a mini-max optimization given by

50



Speaker Verification Loss

• The loss                           used for SV is prototypical loss

• Given a batch of size M, the pairwise similarity
is computed using a query                                   and anchor (= speaker 
enrollment data) 

• Then, the training loss is computed as follows:

, where

51



Adversarial Reweighting Approaches (1)

• APS (accumulated pairwise similarity): transform each anchor to a 
space where their pairwise similarity predicts recognition difficulty, 
with inner product (10) or cosine (11)
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Adversarial Reweighting Approaches (2)

• PL (pseudo labeling): the entire training data is clustered with k-
means, and each training speaker is mapped to a cluster; the 
adversarial weight is a function of the anchor’s cluster ID, serving as a 
pseudo label

53



Adversarial Reweighting Approaches (3)

• PW (pairwise weighting): the weight is formulated using the pseudo 
labels (see above) of both anchor and query. Adversarial weights are 
applied to the similarities either in the exponent (15) or linearly (16)

54



Results by Speaker Gender

• The model was trained with 5,994 training speakers in VoxCeleb2, 
and its equal-error rate (EER) was evaluated with  VoxCeleb 1 test 
data
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Results by Speaker Region
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Summary

• Proposed a novel approach to speaker verification fairness based on 
adversarial reweighting
• ARW previously used only for classification depending on single input

• This reduces the EER gap between speaker groups based on
• Gender

• Locale

• Overall EER is also improved

57



Synthetic data for ASR 
robustness to stuttered speech
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Xin Zhang, I. Vallés-Pérez, A. Stolcke, C. Yu, J. Droppo, O. Shonibare, R. Barra-Chicote, V. 

Ravichandran, Stutter-TTS: Controlled Synthesis and Improved Recognition of Stuttered Speech, Proc. 

NeurIPS Workshop on Synthetic Data for Machine Learning, 2022

   

https://www.amazon.science/publications/stutter-tts-controlled-synthesis-and-improved-recognition-of-stuttered-speech


Background and Motivation

Stuttering is a speech disorder where the natural flow of speech is interrupted by blocks, repetitions or prolongations
of syllables, words and phrases.

Sorry, I do not understand…

➢ The majority of existing automatic speech recognition (ASR) interfaces perform poorly on utterances with stutter, 
mainly due to lack of matched training data. 

➢ Synthesis of speech with stutter thus presents an opportunity to improve ASR for this type of speech.



Different Stutter Types

• According to the National Institute on Deafness and Other Communication Disorders, nearly three million 
Americans suffer from lifelong stuttering.

• The following types of disfluencies happen when someone stutters:

• Part-word repetitions – "I w-w-w-want a drink."

• One-syllable word repetitions – "Go-go-go away."

• Prolonged sounds – "Ssssssssam is nice."

• Blocks or stops – "I want a (pause) cookie."

https://www.asha.org/public/speech/disorders/stuttering



Text-To-Speech (TTS)

• TTS technology has been widely utilized to produce artificial voices that closely emulate natural 
human speech.

Tacotron 2
https://arxiv.org/abs/1712.05884

Transformer-based TTS
https://arxiv.org/abs/1809.08895 

GAN-based TTS
https://arxiv.org/pdf/2006.03575.pdf



Project Objectives & Outcomes

Text
Synthetic 
Network

WaveNet

Vocoder 
Network

TTS model

Objectives

We propose Stutter-TTS, an end-to-end neural text-to-speech model capable of synthesizing 
diverse types of stuttering utterances with controlled prosody. 

Outcomes

Mel spectrogram

1. Develop a simple yet effective prosody-control strategy to produce specific stuttering characteristics

2. Synthesize stutter events with high accuracy (F1-scores between 0.63 to 0.84, depending on stutter type)

3. Reduce word error rate by 5.7% relative by fine-tuning an ASR model on synthetic stuttered speech



Stutter-TTS Architecture

A multi-speaker transformer-based TTS network is used to model stuttering speech.

(similar to the transformer-based TTS )

• A phonetic encoder 

• An acoustic autoregressive decoder 

• An audio reference encoder (speaker identity and prosody)

• A prenet with a strong regularization 



Stutter-TTS Training Data

Dataset # of speakers # of utterances Total hours

Stutter 1,000 130,000 600

Fluent 146 18,000 40

It is critical to train the Stutter-TTS model using a combination of two datasets.

1. Fluent speech (without stutter) captured on close-talking microphones

2. Stuttered speech with human-produced annotation on stutter type

➢ Utterances in both datasets are 6 to 12 seconds long.

➢ We employ the universal neural vocoder to synthesize audio samples from spectrograms generated by Stutter-TTS

Stutter-TTS

<audio, transcript>



Training Data Preprocessing--Stutter Tokens

we use a list of special tokens to denote different stuttering patterns and their location.

The mapping rule from different types of stutter 
to corresponding tokens inserted in the source sentence.

Stutter-TTS

<audio, transcript>

How stutter tokens work?

• We insert stutter tokens immediately in front of the word where stuttering occurs in the corresponding audio.

• We mainly focus on three common stutter types as detailed in the above table.



Stutter-TTS Training

Stutter-TTS

[stuttered audio, transcript w/ stutter token]

[fluent audio, transcript w/o stutter token]

During training, each stutter token is mapped to a corresponding special phoneme. 

These stutter phonemes are added to the regular phoneme set.

The TTS model thus learns embedding vectors associated with each of stutter type.  

I want some s_repetition coffee please

I want some coffee please



Results & Discussions

• We compare the Mel spectrogram generated from Stutter-
TTS with the associated recording, collected from speakers 
with stutter.

• By inserting the stutter tokens in the source text, Stutter-
TTS can reproduce the original stutter pattern.

• When eliminating the stutter token from the source text, 
the resulting synthetic utterance contains no stutter.



Results & 
Discussions

• We randomly sampled 500 utterances containing phoneme repetition, 
dysrhythmic phonation, block and non-stutter to quantify the generation 
performance. 

• By varying the ratio between two types of utterances when sampling 
data for training, a fluent-to-stuttered ratio of 90:10 gives a good 
compromise between over- and inder-generating stutter events.

F1 scores for correct synthesis of different types of stutter,
while varying the ratio of fluent to stuttered utterances in training



• We fine-tuned an RNN-T based ASR model for additional five epochs using 
the 100 hours of synthetic utterances produced by Stutter-TTS and 66k hours 
of fluent speech (the same data used for training the baseline model). 

• A good tradeoff is obtained by sampling 3% of the training data from 
synthetic speech with stutter, achieving 5.74% relative WER reduction for 
human utterances with stutter. 

Results & 
Discussions

Relative change in ASR WER when fine-tuning an RNN-T ASR model using 
different ratios of fluent to synthetic stuttered speech 



Summary

1. Develop a simple yet effective prosody-control strategy to produce specific stuttering characteristics

2. Synthesize stutter events with high accuracy (F1-scores between 0.63 to 0.84, depending on stutter type)

3. Reduce word error rate by 5.7% relative by fine-tuning an ASR model on synthetic stuttered speech



Wrapping Up
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Takeaways

• Both speaker recognition (ID, verification) and speech recognition systems suffer from unequal 

performance for different groups

• Underperformance is typically associated with underrepresentation in the training data

• Mitigation by increasing representation of the targeted group in the overall training loss

• This can be done with a variety of techniques:

• Oversampling based on observable features (geolocation, demographic proxies)

• Acoustic feature-based clustering of cohorts

• Group-specific model training and combination (implicitly reweighted)

• Adversarial reweighting of training samples (no labels required)

• Fabrication (synthesis) of group-representative training data
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Open issues

• More systematic exploration of the fairness method space (as 
mapped out at the beginning)

• How to predict which methods work for what task (depending on 
model type/size, metrics, amount of data, etc.)

• How to compare “fairness” for different notions of groups and 
attributes
• Can we define a “GINI coefficient” for model fairness, similar to how 

economists characterize wealth/income distributions?

• How to optimize for it?

73



Thank You!
More information at https://www.amazon.science/author/andreas-stolcke
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