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Part 1
Group fairness for speech recognition and speaker recognition
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What is Group Fairness?

• Bing Chat (GPT-4) says:

• “Group fairness is a concept in machine learning that measures how a group of individuals with certain 

protected attributes (like gender or race) is impacted differently from other groups. It aims to achieve the 

same outcomes across different demographics or a set of protected population classes”

• But what about “non-protected” groups/attributes?

• For example:  age, regional accent, tenure with a voice assistant

• Goal is to make speech-enabled AI systems perform about equally well for all 

speakers/attributes

𝑃 𝑓 𝑥 ≥ 𝜃 𝐴 𝑥 ) ≈ 𝑃 𝑓 𝑥 ≥ 𝜃 ¬𝐴(𝑥)),

for a performance metric 𝑓 𝑥 , threshold 𝜃 , and all attributes 𝐴 𝑥 we care about.

4Fairness and Graph-LP for ASR and SV - Dec. 2023



In this talk

• Focus on algorithmic approaches that reduce disparities in 
performance
• For speech recognition (ASR)

• For speaker recognition (specifically, speaker verification - SV)

• Metrics will be depend on task
• Word error rate (WER) for ASR

• Equal error rate (EER) for speaker verification

• Absolute or relative differences in metric between groups
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Fairness and representation

• Empirically, group underperformance in ML systems is typically 
associated with underrepresentation in the training set
• Training objective is to minimize loss over the entire dataset

• It “pays” more to minimize loss for the majority

• Example:
If nonnative speakers are a minority in the data, we expect ASR models to 
perform poorly for them

• Remedy:
Increase the underrepresented group’s aggregate contribution to the loss 
function
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How to define/identify groups?

• Several approaches:
• By pre-existing categories, e.g., demographic labels, metadata, …

• Proxy labels (e.g., ZIP codes for demographics)

• By automatic discovery / clustering
• By an adversarial model (implicitly)

• Getting labels is a challenge in itself
• Especially for protected / demographic attributes
• Use proxy attributes (e.g., ZIP code associated with demographics)

• Methods that require no group labels in training are preferred, other things 
being equal
• We then only need labels on the test data for evaluation
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Mitigation: Improving representation

• “Target group” = group that is underrepresented / found to have sub-
par performance

• How to increase representation of the target group in training loss?
• Oversample the target group

• Give extra weight to target group samples in the loss computation

• Adapt / fine-tune model on the target group

• Use group-specific models (and combine them)

• Use modified loss function that penalizes disparities (adversarial weighting)

• Fabricate data for the target group
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Example 1:  ASR group performance fairness 
• Target group: cohorts of similar speakers with empirically low ASR accuracy

• Identify by:
• ZIP codes as a proxy for minority demographics
• Unsupervised speaker embedding clustering

• Mitigate by:
• Oversampling the target group with semi-supervised training data
• Adding cohort embedding as input to ASR model 

• Results:
• Reduce WER gap between top and bottom cohort from 56% to 39%
• Three-way human labelers disagree 33% more on hardest 10% of ASR data

• More info at
Pranav Dheram, Murugesan Ramakrishnan, A. Raju, I-F. Chen, B. King, K. Powell,  M. 
Saboowala, K. Shetty, A. Stolcke, Toward Fairness in Speech Recognition:  Discovery and 
mitigation of performance disparities, Proc. Interspeech, 2022
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Example 2:  Speaker verification fairness with 
adversarial reweighting
• Target group: any cohort characterizable by input features

• Identify by:
• Implicitly; adversarial component of the loss function penalizes any disparities in 

performance that can be predicted from the input features

• Mitigate by:
• Adversary maximizes loss by assigning higher weight to harder-to-classify inputs
• Regular training loss minimized subject to adversarial weights, and iterate

• Results:
• Formulated adversarial reweighting for two-input metric learning problems 
• Gap b/w speaker genders reduced from 0.70 to 0.58 abs.; overall EER down 8%

• More info at
Minho Jin, C. J.-T. Ju, Z. Chen, Y.-C. Liu, J. Droppo, A. Stolcke, Adversarial 
Reweighting for Speaker Verification Fairness, Proc. Interspeech, 2022
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Example 3:  ASR robustness for stuttered speech

• Target group: speakers with stutter (severe lack of training data)

• Identify by:
• Human labeling on seed data

• Mitigate by:
• Generate synthetic stuttered data using a modified TTS system; fine-tune ASR

• Results:
• Effective stutter synthesis controlled by tags embedded in input text
• WER for stuttered speech reduced by 6% relative

• More info at
Xin Zhang, I. Vallés-Pérez, A. Stolcke, C. Yu, J. Droppo, O. Shonibare, R. Barra-
Chicote, V. Ravichandran, Stutter-TTS: Controlled Synthesis and Improved 
Recognition of Stuttered Speech, Proc. NeurIPS Workshop on Synthetic Data for 
Machine Learning, 2022
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Deep Dive 1: Geographic fairness for ASR
• Target group: speakers in geographic regions with poor ASR performance

• Identify by:
• Geo-coordinates, with automatic induction of regions

• Mitigate by:
• Oversampling training data
• Elastic weight consolidation (EWC) in training loss

• Results:
• Reduces WER in highest-error regions by 3.2% relative
• Overall WER reduced by 1.3% relative

• More info at

Viet Anh Trinh, P. Ghahremani, B. King, J. Droppo, A. Stolcke, R. Maas, Reducing 
Geographic Disparities in Automatic Speech Recognition via Elastic Weight 
Consolidation, Proc. Interspeech, 2022
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Motivation: Geographical Fairness for ASR

• ASR performance is affected by geography (e.g., regional accent, socio-economic differences)

• Geographic fairness is easy to explain and motivate

• Instead of ZIP codes and human population attributes, use geolocation directly for grouping

• Given a pretrained ASR model, cluster speakers by geolocation to identify areas of high error rate

• Mitigation:

▪ Adapt ASR model to reduce the performance gap against these high error regions

▪ Without degrading average performance for all regions

▪ Without access to the data of the pretraining stage
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Geographical Clustering by ASR Accuracy

• Use clustering tree to split US data into regions while maximizing word error rate (WER) differences between 

regions

• WERdiff = (WERleft-branch– WERright-branch)2

• Split the data by longitude if WERdiff-by-longitude > WERdiff-by-latitude , otherwise by latitude

• Repeat while the number of data sources (speakers, devices) in each leaf ≥ threshold x (to ensure each region 

has at least x sources)

14

≥ 𝑚𝑒𝑑𝑖𝑎𝑛

data

< 𝑚𝑒𝑑𝑖𝑎𝑛

Split by longitude or latitude ?

region 1 …           region n region 2 
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Result: Geo-clustering (Split 1)
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Median longitude

< median
WERleft_branch

≥ median
WERright_branch
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Result: Geo-clustering (Split 2)
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Result: Geo-clustering (Split 3)
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Final Geo-clustered Regions (same color = same WER)
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Elastic Weight Consolidation for ASR Adaptation

• End-to-end ASR using RNN-T (5x1024 encoder layers, 2x1025 predictor, 1x1024 joint network) 

• To prevent catastrophic forgetting, use EWC [1] loss in addition to standard RNN-T loss:

ℒ θ = ℒASR(θ) +
λ

2
෍

i

Fi (θi − θp,i
∗ )2

• Intuition behind EWC:  force ASR parameters 𝜃 to be close to the best parameters of the 

pretrained model 𝜽𝒑
∗ , along the directions that are important to the pretrained task (based on 

Fisher information)

• Alternative to heuristic approaches that freeze portions of the pretrained network (note: this was 

before adapters, LoRA, etc.)

19

[1] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, 

and R. Hadsell, “Overcoming catastrophic forgetting in neural networks”, Proc. National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017
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Experiment data
• Drawn from de-identified user data from a commercial voice-enabled AI assistant

• Pretrain models on 10k hours, randomly sampled

• Rank geo-clustered data by region-averaged WER (min no. devices per region = 1500 → 126 regions)

• Sample 37k hours, disjoint with pretraining set

• Sample 10k adaptation data in order of high-to-low region-average WER; random 10k as control

20

Dp : Pretraining set 10k 
hours - random 

37k hours random 

Dr : 10k hours - random
Dc : 10k hours 
from 35 regions 
with highest WER 

Fairness and Graph-LP for ASR and SV - Dec. 2023



Results
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• EWC beats standard fine-tuning, both in overall WER and variance across regions
• Better than heuristic freezing of network portions
• Better than training on combined pretraining and adaptation data
• Training on all-random data best overall; not much help to highest-WER regions



Deep Dive 2: Group-adapted fusion for Speaker 
Verification
• Target group: any group or attribute with imbalanced representation

• Study example: artificially manipulated gender imbalance

• Identify by:
• Metadata or automatic labeling (e.g., clustering)

• Mitigate by:
• Training group-specific submodels
• Merge submodel predictions in equal proportion

• Results:
• Minority group EER reduced up to 18.6% relative (more when more imbalance)
• Overall EER reduced up to 29.9% relative (more when more imbalance)

• More info at

Hua Shen, Y. Yang, G. Sun, R. Langman, E. Han, J. Droppo,  A. Stolcke, Improving Fairness in 
Speaker Verification via Group-Adapted Fusion Network, Proc. ICASSP, 2022
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Deep Learning Speaker Verification

• An encoder network maps audio stream to fixed-size embeddings

• A scoring backend compares embeddings to accept/reject speaker 
identity claim
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Speaker Verification - Training

• Encoder network is trained either
• for classification (1 of N training 

speakers)

• via metric learning (triplet loss, 
GE2E, angular prototypical loss, …)

• Metric learning is easier to scale
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Training Data Imbalance and SV Performance

• First systematic study of effect of speaker attribute imbalance on SV

• Manipulate the training set to control the ratio of males to females

• Measure effect on
• group-wise EER
• overall EER
•
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Imbalance Mitigation: Group-adapted Fusion 
Networks (GFN)

1. Train all-data base models

2. Adapt model to each group

3. Generate multiple 
embeddings for each 
utterance
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Training objective

Binary cross-entropy loss
with positive and negative training pairs

The back-end score fusion model 
combines all scores for speaker 
verification. 

Score fusion model

Neural
Network

Score fusion Back-end



Imbalance mitigation with GFN: Results

• GFN achieves better group-wise and overall EERs than baselines, for 
both genders and all imbalance ratios

• GFN reduces the disparity score for most (9:1, 1:4,1:9) gender ratios
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Baselines:

• Q/RN: Quarter-channel ResNet-34

• H/RN: Half-channel ResNet-34

GFN uses Q/RN encoders

Female:Male Ratio in Voxceleb2-GRC Training Datasets 
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Embedding visualization

• Genders tend to aggregate in different regions of the embedding space

• GFN encoder generates higher quality embeddings relative to Q/RN baseline 
(more compact for the same speakers; more separate for different speakers)
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Part 2
Graph label propagation for speaker recognition and ASR
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Graph Label Propagation for unsupervised 
learning
• Represent labeled and unlabeled instances as graph nodes

• Encode sample similarity as edge weights

• Propagate labels so as to
• Stay close to the original labels (supervision)

• Minimize discrepancies between similar instances
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Graph-LP for Household Speaker ID
• Task:  ID speakers in household settings

• Small number of labeled samples (enrollment utterances)
• Large number of unlabeled samples (runtime utterances)

• How to leverage unlabeled samples for classifying subsequent utterances?

• Apply graph-LP:
• Utterances are graph nodes
• Edge weights given by distance in speaker embedding space
• Enrollment utterances anchor the label propagation

• More info at

Long Chen, V. Ravichandran, A. Stolcke, Graph-based Label Propagation for Semi-
Supervised Speaker Identification, Proc. Interspeech, 2021

Long Chen, Yixiong Meng, V. Ravichandran, A. Stolcke, Graph-based Multi-View 
Fusion and Local Adaptation: Mitigating Within-Household Confusability for Speaker 
Identification, Proc. Interspeech, 2022
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Household SID: utterance graph construction

• Nodes = utterances (l labeled, u unlabeled)

• Label set = speaker IDs (1 … C)

• Edge weights = pairwise utterance embedding similarity scores

• W matrix of edge weights, 𝜎 is a temperature-like hyperparameter
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Household Utterance Graph Prediction with Label Propagation
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Label propagation
➢ Objective function: 

➢ a) supervised loss over the labeled instances

➢ b) a graph-based regularization term to ensure labeling is 

smooth over the graph

argminf  𝐟 − 𝐘 2
2 + 𝜆𝐟𝑇𝐿𝑠𝑦𝑚𝐟

Household Utterance Graph Prediction with Label Propagation

Label propagation

where 𝐿𝑠𝑦𝑚 = 𝐼 − 𝐷−1/2𝑊𝐷−1/2 , 𝐷𝑖𝑖 = σ𝑗=1
𝑙+𝑢 𝑊𝑖𝑗. 

➢ Solution: 

➢ iterative algorithm* to spread samples’ label information 

through the graph until achieving global convergence. 

➢ class normalization** in order to minimize the influence 

of imbalance in the labels/pseudo-labels. *D. Zhou, et al., “Learning with local and global consistency,” in Proceedings of NIPS, Dec. 

2003, pp. 321–328. 

** F. Li, et al., “Normalized label propagation for imbalanced scenario classification,” in 

Foundations of Intelligent Systems, vol. 277, Springer Verlag, 2014, pp. 901–909. 

Household SID: label propagation
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Graph-LP for Household Speaker ID: Experiments

• SID trained on VoxCeleb2:
• GE2E: Generalized end-to-end loss

• GE2E-Att: Generalized end-to-end loss with attention

• Simulated 4-speaker households drawn from VoxCeleb1

• Metric: Speaker Identification Error Rate
SIER = 1 – (accuracy of top-scoring predicted speaker)

• Baselines: cosine scoring (CS) against all labeled samples, embedding 
averaging (CSEA), pseudo-labeling of unlabeled data (2-CS, 2-CSEA)

• Proposed: label propagation on all utterances (LP), pseudo-labeling 
with LP (2-LP), pseudo-labeling with embedding averaging (2-LPEA)
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Graph-LP for Household Speaker ID: Results

• LP-based methods outperform all baseline methods 

• SIER reduced by 10%-23% lower

• 2-LPEA is production-friendly:  graph-LP happens offline and generates a 
single speaker embedding, with standard scoring at runtime
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Deep Dive 3: Graph-LP for ASR rescoring

• Task:  Offline ASR hypothesis rescoring 

• How to leverage cross-utterance similarity?
• Similar-sounding utterances should have similar hypotheses

• How to deal with infinite label set (all possible transcriptions)?
• Use hypothesis clustering to group utterances for graph construction
• Use the union of N-best hypotheses as labels

• Apply graph-LP: 
• Utterances are graph nodes
• Edge weights given by acoustic similarity scores
• All utterances have initial labels given by their 1-best ASR output

• More info at

Srinath Tankasala, Long Chen, A. Stolcke, A. Raju, Q. Deng, C. Chandak, A. Khare, R. 
Maas, V. Ravichandran, Cross-Utterance ASR Rescoring with Graph-based Label 
Propagation, Proc. ICASSP, 2023
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➢ ASR rescoring across utterances

➢ Most rescoring approaches (ex. LM rescoring) consider utterances one at a time, independently

➢ Doesn’t account for utterance-utterance similarity to make predictions

➢ Similar-sounding utterances should predict similar hypotheses

➢ Impact on ASR for underrepresented groups

➢ ASR accuracy degrades for groups not well-represented in the training data (e.g., regional accents)

➢ Cross-utterance ASR can exploit local information that stays consistent across utterances:

➢ acoustic conditions (noise environment, household, etc.)

➢ Speaker and accent idiosyncrasies

➢ New idea:  map ASR rescoring problem to graph label propagation  (Graph LP)

➢ Utterances → nodes of the graph

➢ Acoustic similarity → edge weights between the nodes

➢ The N-best hypotheses from ASR first pass → the node labels

➢ Graph-LP algorithm harmonizes the node labels with the acoustic similarity between utterances

a
1,
a
2,
a
3

a2,
a3,
b1

b1,
a2,
a1

Label

Propagation

a1,
a2,
a3

a1,
a2,
a3

a1,
a2,
a3

Utterance 1

Utterance 2Utterance 3

Utterance 
similarity a1,a2,… are full text 

transcriptions/hypotheses

Graph-LP for ASR rescoring: Motivation
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➢ Node representation and graph edge function

➢ Utterances are represented using frame embeddings 

from an RNN-T audio encoder

➢ Compute utterance-utterance similarity only using 

audio (without performing full ASR) for graph edge 

weights

➢ Label propagation shares information between 

utterances, improving overall prediction accuracy

➢ Utterances with strong priors from local ASR will 

propagate better hypotheses to similar sounding 

utterances

Union of all 

hypotheses{1,2,.

.,C}

hypotheses set (size=C)

Select top N 

hypotheses 

for each utterance

(using ASR model)

For N=3, let the grouped hypothesis set be

{a1, a2, a3, b1, b2,c1,c2,c3,…}

Where a1,a2,… are full text transcriptions

Label propagation
➢ Objective function: 

➢ a) supervised loss over the labeled nodes

➢ b) a graph-based regularization term to ensure labeling is 

smooth over the graph

argmin𝐟  ( 𝐟 − 𝐘 2
2 + 𝜆 𝑡𝑟𝑎𝑐𝑒(𝐟𝑇𝐿𝑠𝑦𝑚𝐟))

➢ Solution: 

➢ Iterative Laplacian algorithm to spread samples’ label 

information through the graph until achieving global 

convergence

Graph-LP for ASR rescoring: Details
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➢ Perform first pass ASR on all utterances to generate initial 

hypotheses set for all test set utterances

➢ Cluster utterances in the hypotheses space based on their tf-idf 

distances

➢ Given a cluster of M utterances, we generate a graph with M 

nodes.

➢ Hypothesis sharing: The label set for that graph is the 

union of all initial N-best hypotheses of the nodes

➢ Initial confidence/score of labels (hypotheses) for each node is 

calculated using normalized log-likelihoods of the hypotheses 

from the ASR model output

Table 3: Clustered utterances in test data 

derived from VCTK Corpus* (using tf-idf 

distance)

Label propagation was 

performed independently 

for each of the 4008 

graphs/clusters

Unclustered utterances 

are not affected by 

label propagation

* Veaux et al., “CSTR VCTK corpus: English multi-speaker corpus for CSTR 

voice cloning toolkit (version 0.92),” 2019. [Online]

Graph and label set generation
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➢ Baseline Datasets

➢ Training: Librispeech corpus*

➢ Test: VCTK Common Corpus**

➢ Has diverse regional accents with lots of overlapping utterances between them

➢ Large variance in pre-trained RNN-T model performance across accents

➢ Performance degradation for regional accents not well-representated in the training set

➢ Baseline results on VCTK is worse for non-American accents (WER > 10%) as the ASR model is trained 

on Librispeech, biased towards North American accents (US, Canada).

➢ Evaluation metrics (micro-averages): 

➢ Word error rate (WER), 

➢ Sentence error rate (SER)

* Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An asr corpus based on public domain audio books. 

In 2015 IEEE international conference on acoustics, speech and signal processing (pp. 5206–5210). IEEE.

** Veaux et al., “CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit (version 0.92),” 2019. 

[Online]

Experiments – Data and Metric
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➢ Utterance embedding: Last frame and all frame embeddings of audio encoder outputs of RNN-T model

➢ Distance function: d-DTW* distance function across all frame embeddings

* Shokoohi-Yekta et al., “Generalizing DTW to the multi-dimensional case requires an adaptive 

approach,” Data mining and knowledge discovery, vol. 31, no. 1, pp. 1–31, 2017.

Fig 2: TSNE plot of sample utterances based on 

normalized d-DTW distance across all frames

Fig 1: TSNE plot of sample utterances based on 

normalized Euclidean distance between last frames

Utterance distance from acoustic embeddings
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Two LP-based methods:

➢ LP without label sharing: re-ranking only initial 

hypothesis set for a given utterance/node

➢ LP with label sharing: all graph nodes use the 

union of initial hypotheses of all utterances/nodes

➢ Label sharing reduces WER by 35.5%,  SER by 28.8%

➢ Overall gains relative to baseline:  WER 43.5%,  SER 40.5% for clustered utterances 

➢ Not shown here:  Clusters of larger size seem to show a bigger performance gain

Results:  Importance of hypothesis sharing
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➢ WER improvement across all accents and ranges of cluster sizes

➢ Discrepancy in WER, SER reduces across different accents, more similar performance on underrepresented groups

➢ Improvement is largest for the most difficult accents (improved ASR fairness)

Results:  Graph-LP on VCTK utterances
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➢ We have proposed a graph-based approach to ASR rescoring across utterances that

➢ only uses utterance-utterance similarity in the acoustic space, modeled by a DTW-based distance

➢ is designed to help ASR adapt to idiosyncratic pronunciations, accents, or out-of-domain content

➢ uses graph LP to ensure that similar-sounding utterances have similar hypotheses

➢ Experiments on a regional accents dataset demonstrate that our approach consistently reduces error rates, 

especially for accents underrepresented in the training set

➢ The method is well-suited to offline ASR (for example, teacher ASR for semi-supervised training)

➢ Does not require adaptation or fine-tuning of the baseline model

➢ Can be combined with (applied after) single-utterance based (e.g., LM) rescoring methods

Graph-lP for ASR rescoring: Conclusions
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Wrapping Up
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Takeaways
• Part 1 (Fairness)

• Both speaker recognition (ID, verification) and speech recognition systems suffer from 

unequal performance for different groups, due to underrepresentation in the training data

• Mitigation by increasing representation of the targeted group in the overall training loss

• Range of techniques (oversampling, loss function mods, data fabrication, model fusion)

• Part 2 (Graph-LP)

• Graph-LP is a natural and effective for unsupervised learning in speaker recognition

• Demonstrated a mapping to ASR rescoring that exploits cross-utterance similarities (relying 

less on training data)

• Empirically, graph-LP also benefits ASR fairness
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Thank You!
Questions?
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