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Abstract
Convolution is the main building block of a convolutional
neural network (CNN). We observe that an optimized CNN
often has highly correlated filters as the number of chan-
nels increases with depth, reducing the expressive power of
feature representations. We propose Tied Block Convolution
(TBC) that shares the same thinner filter over equal blocks of
channels and produces multiple responses with a single filter.
The concept of TBC can also be extended to group convolu-
tion and fully connected layers, and can be applied to various
backbone networks and attention modules.
Our extensive experimentation on classification, detection,
instance segmentation, and attention demonstrates that TBC
is consistently leaner and significantly better than standard
convolution and group convolution. On attention, with 64×
fewer parameters, our TiedSE performs on par with the stan-
dard SE. On detection and segmentation, TBC can effectively
handle highly overlapping instances, whereas standard CNNs
often fail to accurately aggregate information in the presence
of occlusion and result in multiple redundant partial object
proposals. By sharing filters across channels, TBC reduces
correlation and delivers a sizable gain of 6% in the average
precision for object detection on MS-COCO when the occlu-
sion ratio is 80%. Our code is publicly available.

Introduction
Convolution is the main building block of a convolutional
neural network (CNN), which has been widely successful
on image classification (Krizhevsky, Sutskever, and Hinton
2012; He et al. 2016; Xie et al. 2017; Simonyan and Zisser-
man 2014), object detection (Girshick 2015; Ren et al. 2015;
He et al. 2017), image segmentation (Kirillov et al. 2019;
Long, Shelhamer, and Darrell 2015; Chen et al. 2017, 2018)
and action recognition (Ji et al. 2012; Wang et al. 2016; Car-
reira and Zisserman 2017; Wang et al. 2018). However, stan-
dard convolution is still costly in terms of computation, stor-
age, and memory access. More importantly, an optimized
CNN often develops highly correlated filters.

We can evaluate pairwise filter similarity in standard con-
volution (SC), using the cosine similarity of guided back-
propagation patterns (Springenberg et al. 2014) averaged
over a set of ImageNet images. Fig. 1 shows that the fil-
ter correlation increases with the layer depth: Filters at the
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Figure 1: Filters of an optimized CNN become more simi-
lar at an increasing depth. (a) Correlation matrix of 64 ran-
domly selected filters at selected layers of the VGG16 Ima-
geNet classifier. We compute the similarity between two fil-
ters based on their guided back-propagation patterns (Sprin-
genberg et al. 2014) averaged on a set of images. As the
layer goes deeper from 2 to 12, the pairwise similarity in-
creases overall and the matrix turns from red to light yellow.
(b) Normalized histograms of these pairwise filter similari-
ties. As the number of channels increases with depth from
64 to 128 to 256, the curve shifts right and becomes far nar-
rower, i.e., more filters become similar.

same layer become more similar from early to later layers,
reducing the expressive power of feature representations.

How to optimize a CNN with less redundancy has been
studied (Howard et al. 2017; Zhang et al. 2018; Ma et al.
2018; Xie et al. 2017), often by exploring dependencies
across space and channel dimensions. In SC, while each
filter can have a reduced size spatially, it extends to the
entire set of channels, whereas in group convolution (GC)
(Krizhevsky, Sutskever, and Hinton 2012), a filter only con-
volves with a subset of input channels. Therefore, if there are
B groups of input channels, each GC layer reduces the num-
ber of parameters B times by reducing the size of each fil-
ter by B times. Depth-wise convolution (DW) is an extreme
case of GC, where each group only contains one channel,
maximally reducing the parameter count.

While GC and DW are effective at reducing the model
size, there is no correlation between filters, resulting in an
isolated representation without cross-channel connections.
Instead of simply reducing the size of each filter as in GC
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Figure 2:Convolution operators.To generate two activation maps, standard convolution requirestwo full-size�lters and group
convolution requirestwo half-size�lters, however, our tied block convolution only requiresone half-size�lter, i.e., the number
of parameters is reduced by 4� . The idea of TBC can also be applied to fully connected and group convolutional layers.

and DW, we further reduce redundancy by exploring the
connections among �lters on subsets of channels and con-
sequently increasing the power of each �lter.

Directly reducing the number of �lters is known to re-
duce the model capacity (He et al. 2016). However, since
SC �lters become more similar (Fig. 1), we can reduce the
effective numberof �lters by reusing them across channels.

We propose such a simple alternative calledtied block
convolution(TBC): We splitC input channels intoB equal
blocks, and use a single block �lter de�ned only onCB chan-
nels to produceB responses. While SC produces two re-
sponses with two full-size �lters each spanning entireC
channels, TBC atB = 2 produces two responses with a sin-
gle half-size �lter spanning onlyC2 channels (Fig. 2). TBC
is GC shared across groups, and TBC atB =1 is SC.

Extending the concept of TBC in a straightforward fash-
ion to the fully connected layer and the group convolution
layer, we obtain tied block fully connected layer (TFC) and
the tied block group convolution (TGC) respectively.

Our TBC utilizes each �lter, memory access, and samples
more effectively.1) At B = 2 , TBC obtains twice responses
with one half-size thin �lter, achieving 4 times model re-
duction.2) As the same thin �lter is applied to each of the
B blocks, TBC has more ef�cient memory access by uti-
lizing GPU's parallel processing.3) Since each thin �lter
is trained onB times more samples, learning also becomes
more effective.4) Since each set of TBC �lters are applied to
all input channels, TBC could aggregate global information
across channels and model cross-channel dependencies.

While TBC is appealing in theory, its advantage over SC
or GC in practice could depend upon neural network ar-
chitectures. We apply TBC/TFC/TGC to various backbone
networks, including ResNet (He et al. 2016), ResNeXt (Xie
et al. 2017), SENet (Hu, Shen, and Sun 2018) and ResNeSt
(Zhang et al. 2020), and propose their tied versions:TiedRes-
Net, TiedResNeXt, TiedSENetandTiedResNeSt.

We conduct extensive experimentation on classi�ca-
tion, detection, segmentation, and attention, demonstrating
TBC/TGC/TFC's signi�cant across-the-board performance
gain over standard convolution, group convolution, and fully
connected layer function. For example, TiedResNet consis-
tently outperforms ResNet, ResNeXt and HRNetV2 (Wang
et al. 2019) by a larger margin with a much leaner model

(Fig. 6). We obtain similar performance boost and model re-
duction on a varity of frameworks, tasks and datasets.

Our empirical insight is that �lter redundancy in an op-
timized CNN not only reduces the effective model capac-
ity, but also makes it unable to capture diverse outputs and
thereby loses performance. For object detection on MS-
COCO, standard CNNs often fail to accurately locate target
object regions and aggregate useful information in the fore-
ground. Consequently, there are multiple overlapping partial
object proposals, preventing a single full object proposal to
emerge from the proposal pool. Our TiedResNet can handle
highly overlapping instances much better and increase the
average precision (AP) by6% ( in particular,8:3% in AP at
IoU= 0 :75) when the occlusion ratio is80%.

Related works
Backbone Networks.AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) is the �rst CNN success with signi�cant ac-
curacy gain on the ILSVRC competition. However, large
kernels and fully connected layers greatly increase the
model size. With smaller kernels, GoogleNet (Szegedy et al.
2015) and VGGNet (Simonyan and Zisserman 2014) only
need 12 times fewer parameters to outperform (Krizhevsky,
Sutskever, and Hinton 2012; Zeiler and Fergus 2014). How-
ever, large network depths cause vanishing gradient prob-
lems, later to be solved by the residual connection design in
ResNet (He et al. 2016). Since the depth of a CNN model is
no longer an issue, researchers have begun to explore how
to use parameters more ef�ciently. At a comparable model
complexity, ResNeXt (Xie et al. 2017) outperformes ResNet
on many major tasks, mainly due to the use of ef�cient group
convolution. With a careful design of the architecture, HR-
NetV2 (Wang et al. 2019) achieves the state-of-the-art per-
formance on multiple major tasks. Compared to these works
using either GC or SC, our TBC further utilizes the full po-
tential of each thinner �lter. We provide detailed compar-
isons with these networks.
Group-wise Convolution. Group convolution (GC)
(Krizhevsky, Sutskever, and Hinton 2012) is proposed
to remove �lter redundancy. Since each GC �lter only
convolves with features in its group, with the same number
of channels, this mechanism can reduce the number of



parameters within each layer by a factor ofB , whereB
is the number of groups. When the number of groups
is the same as the number of input feature channels, GC
becomes identical to depth-wise convolution (DW) (Howard
et al. 2017). Both GC and DW greatly reduce the model
redundancy by reducing the size of each �lter. However,
they do not exploit the correlation between (learned) �lters.

As each �lter in GC or DW only responds to a partial in-
put feature map, the ability to integrate information across
channel dimensions is reduced in GC and completely lost
in DW. In contrast, our TBC �lter is shared across all in-
put channels, and thus its responses over subsets of channels
becomecomparableand relatable. This mechanism also in-
troduces another bene�t: With only one fragmentation, TBC
can take full advantage of the powerful parallel computing
capabilities of GPUs.
Attention Modules. (Hu, Shen, and Sun 2018) introduces
the squeeze-and-excitation (SE) module to adaptatively re-
calibrate channel-wise feature responses. (Cao et al. 2019)
uni�es SE and a non-local (Wang et al. 2018) module into
a global context block (GCB). While SE and GCB are rel-
atively light, SE (GCB) still counts for 10% (25%) of the
model size. Our tied block convolution and tied fully con-
nected layers can be integrated into various attention mod-
ules and signi�cantly reduce the number of parameters:
2.53M vs 0.04M for SE and 10M vs 2.5M for GCB.

Tied Block Convolution Network Design
We �rst analyze TBC and TGC to guide us in network de-
sign. We also develop TFC and apply to attention modules.

TBC Formulation
Let X 2 Rci � h i � w i and ~X 2 Rco � ho � wo denote the in-
put and output features respectively, wherec; h; w are the
number of channels, the height and width of feature maps
respectively. The kernel size isk � k and the bias term is
ignored for clarity.
Standard Convolution, denoted by� , can be formulated as:

~X = X � W (1)

whereW 2 Rco � ci � k � k is the SC kernel. The number of
parameters for SC is thus:co � ci � k � k:
Group Convolution �rst divides input featureX into G
equal-sized groupsX 1; :::; X G with size ci =G � hi � wi
per group. Each group shares the same convolutional �lters
Wg. The output of GC is computed as:

~X = X 1 � W1 � X 2 � W2 � � � � � X G � WG (2)

where� is the concatenation operation along the channel
dimension,Wg is the convolution �lters for groupg, where
g 2 f 1; : : : ; Gg, Wg 2 R

c o
G � c i

G � k � k . The number of pa-
rameters for GC is:G � co

G � ci
G � k � k:

Tied Block Convolution reduces theeffective numberof �l-
ters by reusing �lters across different feature groups with the
following formula:

~X = X 1 � W 0 � X 2 � W 0 � � � � � X B � W 0 (3)

Figure 3:TBC has a �at (vs. GC's linear) compute with
respect to the block number. The time cost of process-
ing 1k iterations of each feature map using the RTX 2080Ti
GPU is plotted againstB . WhenB increases, GC increases
the time cost almost linearly. In contrast, when using a larger
B , TBC keeps a similar time cost. Different block numbers
B were tested for GC and TBC, the total FLOPs at these
values were �xed by changing the total �lter number. When
B = 1 , GC and TBC are equal to SC. Input feature map size
is 56� 56� 2048.

whereW 0 2 R
c o
B � c i

B � k � k is the TBC �lters shared among
all the groups. The parameter number is:co

B � ci
B � k � k:

TBC vs. GC. While TBC is GC with �lters shared across
groups, it has several major distinctions from GC in practical
consequences (assume that the block numberB is the same
as the group numberG).

1. TBC hasB � fewer parameters than GC.
2. TBC only has one fragmentation on GPU utilization,

whereas GC hasG fragmentations, greatly reducing the
degree of parallelism. Fig.3 shows that the processing
time increases linearly with the number of groups in GC,
whereas our TBC keeps almost the same processing time.

3. TBC can better model cross-channel dependencies. Since
each set of GC �lters are only convolved on subsets of
channels, GC has trouble comparing and aggregating in-
formation across channels. However, each set of TBC �l-
ters are applied to all input channels and can better model
cross-channel dependencies.

4. TBC-based TiedResNet greatly surpasses GC-integrated
ResNeXt on object detection and instance segmentation
tasks. TiedResNet-S can even outperform ResNeXt with
2� model size reduction, demonstrating that TiedResNet
makes more effective use of model parameters.

Tied Block Group Convolution (TGC) The idea of tied
block �ltering can also be directly applied to group convo-
lution, formulated as:

~X =( X 11 � W 0
1 � � � � � X 1B � W 0

1) � � � � �

(X G1 � W 0
G � � � � � X GB � W 0

G )
(4)

whereW 0
g 2 R

c o
BG � c i

BG � k � k , X gb 2 R
c i

BG � h i � w i is the
divided feature map,g 2 [1; G] andb 2 [1; B ].
Tied Block Fully Connected Layer (TFC) Convolution is
a special case of fully connected (FC) layer, just as FC is a
special case of convolution. We apply the same tied block
�ltering idea to FC. Tied block fully connected layer (TFC)
shares the FC connections between equal blocks of input
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Figure 4:Diagram of bottleneck modulesfor (a) TiedResNet with 4 splits (b) TiedResNeXt with 4 splits and (c) TiedResNeSt.
Each tied block convolution (TBC) and tied block group convolution (TGC) has a speci�c block number.

(a) TiedSE (b) TiedGCB

Figure 5:Diagram of Tied attention modules.(a) TiedSE
module replaces FC in the original squeeze-and-excitation
(SE) module (Hu, Shen, and Sun 2018) to be TFC. (b)
TiedGCB module replaces standard convolution in global
context block (GCB) (Cao et al. 2019) with TBC.

channels. Like TBC, TFC could reduceB 2 times parame-
ters andB times computational cost.

TBC/TGC in Bottleneck Modules
The ResNet/ResNeXt/ResNeSt bottleneck modules have1�
1 and3� 3 convolutional �lters. We apply TBC/TGC differ-
ently as in Fig.4. For3� 3 in ResNet and ResNeXt, we split
all the �lters into groups; each group has its own TBC/TGC
setting. This choice allows different levels of sharing and is
motivated by network visualization works (Zeiler and Fer-
gus 2014; Bau et al. 2017): Filters assume different roles
at different layers and some are unique concept detectors
(Agrawal, Carreira, and Malik 2015; Bau et al. 2017). For
the1� 1 convolutions at the entry and the exit of bottlenecks,
we replace the entry one by TBC withB = 2 to allow �lter
sharing, while maintaining the exit convolution to aggregate
information across channels. Since ResNeSt replaces3 � 3
convolutions to be multi-path and split attention modules
with k cardinals,3 � 3 convolutions occupy less proportion
of the overall model complexity. Therefore, we only replace
all 3� 3 convolution to be TBC withB = 2 as in1� 1 convo-
lution. Further increase ofB would only marginally reduce
the model size but greatly reduce the model performance.

The default setting for TiedResNet-50 (TiedResNeXt-50)
is 4 splits with base width of 32 (64), i.e. 4s� 32w (4s� 64w),

and the default setting for TiedResNet-S (TiedResNeXt-50-
S) is 4s� 18w (4s� 36w). Our TiedBottleNeck reaches more
than 1% performance improvement in term of top-1 accu-
racy on ImageNet-1K. However, losing cross-channel inte-
gration could weaken the model. To add it back, we intro-
duce a mixer that fuses outputs of multiple splits. Introduc-
ing the mixer increases performance by another 0.5%. The
input to the mixer can be either concatenation or element-
wise sum of split outputs. Table 6 shows that element-wise
sum has a better trade-off.

TBC and TFC in Attention Modules
We apply TBC and TFC to attention modules such as SE
(Hu, Shen, and Sun 2018) and GCB (Cao et al. 2019), by
simply replacing SC and FC with their tied block counter-
parts (Fig. 5). Both designs signi�cantly reduce the number
of parameters without dropping performance.

Experimental Results
We conduct extensive tests of TBC, TGC and TFC on ma-
jor benchmarks for object recognition, object detection, in-
stance segmentation and attention.

ImageNet Classi�cation
Implementation. We follow standard practices and perform
data augmentation with random cropping to size 224� 224
pixels (He et al. 2016). We train the network using SGD
with a momentum of 0.9 and a mini-batch of 256 on 8 GPUs.
The learning rate is initially set to 0.1 and then decayed 10�
every 30 epochs for a total of 100 epochs.
Performance gain.Table 1 compares the recognition accu-
racy of multiple models on ImageNet-1k (Deng et al. 2009)
validation set. In Table 1, TiedResNet50-S beats ResNet50
in terms of top-1 accuracy with only 60% �ops and 54%
parameters, likewise for TiedResNet101-S. With similar
model complexity, TiedResNet50 and TiedResNet101 can
beat benchmarks by more than 1.5% and 1.4% separately
with 10% parameter reduction. Similar tendency can be ob-
served for TiedResNeXt and TiedSENet. To further prove
the effectiveness of TBC, we integrate it with current SOTA
model ResNeSt. With only 59% of parameters and 82% of
computation cost, TiedResNeSt-50-S obtains better perfor-
mance than ResNeSt-50-S on ImageNet-1k.


