Mooney Faces from Photos

Tsung-Wei Ke Stella X. Yu David Whitney

UC Berkeley / ICSI

VSS 2017
Faces are everywhere

[Miller, etc., 2007]
Source Photos are usually not available
[Ng, and Winkler, ICIP2014]
[Ng, and Winkler, ICIP2014]
Generate Large Scale Mooney Face Dataset

[Ng, and Winkler, ICIP2014]
Generate Large Scale Mooney Face Dataset

Predict Source Photos from Mooney Faces

[Ng, and Winkler, ICIP2014]
Generate Large Scale Mooney Face Dataset

Predict Source Photos from Mooney Faces

[Ng, and Winkler, ICIP2014]
Train a Mooney Face Classifier
Train a Mooney Face Classifier

Mooney face classifier
Train a Mooney Face Classifier
Generate Mooney Candidates
Generate Mooney Candidates

two-tone candidates
Generate Large Scale Mooney Dataset

two-tone candidates ➔ Mooney face classifier
two-tone candidates → Mooney face classifier
Mooney Face Classifier: Architecture

[Krizhevsky, Sutskever, and Hinton, NIPS 2012]

[Szegedy, etc., CVPR 2015]
Mooney Face Classifier: Negative Samples

original (✓)
Mooney Face Classifier: Negative Samples

original (✓) dilated (✓)
Mooney Face Classifier: Negative Samples

original (✓) dilated (✓) eroded (✓)
Mooney Face Classifier: Negative Samples

original (✓) dilated (✓) eroded (✓)

inverted (✗)
Mooney Face Classifier: Negative Samples

original (✓) dilated (✓) eroded (✓)

inverted (✗) negative (✗)
Mooney Face Classifier: Negative Samples

original (✓) dilated (✓) eroded (✓)

inverted (✗) negative (✗) neg.+inv. (✗)
Mooney Face Classifier: Negative ImageNet Samples
two-tone candidates -> Mooney face classifier
Mooney Candidates
Mooney Candidates
Mooney Candidates
Mooney Candidates
Mooney Candidates
Generate Large Scale Mooney Dataset

two-tone candidates

Mooney face classifier

[Diagram showing the process of generating a large scale Mooney dataset, including two-tone candidates and a Mooney face classifier.]
Images of Most Mooneyness
[Ng, and Winkler, ICIP2014]

Machine Learning

Generate Large Scale Mooney Face Dataset

([✓])

Predict Source Photos from Mooney Faces
We have a Large-Scale Mooney Face Dataset
Can We Predict GrayScale Face from Mooney Images?
Generative Adversarial Network (GAN)

x sampled from data

[Goodfellow, etc., NIPS2016]
Generative Adversarial Network (GAN)

D(x) tries to be 1

differentiable function D

x sampled from data

x

[Goodfellow, etc., NIPS2016]
Generative Adversarial Network (GAN)

D(x) tries to be 1

Differentiable function D

x sampled from data

input noise z

[Goodfellow, etc., NIPS2016]
Generative Adversarial Network (GAN)

- $D(x)$ tries to be 1
- Differentiable function D
- x sampled from data
- Input noise z

[Goodfellow, etc., NIPS2016]
Generative Adversarial Network (GAN)

D(x) tries to be 1

differentiable function D

x sampled from data

G(z) sampled from model

differentiable function G

input noise z

[Goodfellow, etc., NIPS2016]
Generative Adversarial Network (GAN)

[Goodfellow, etc., NIPS2016]

\[D(x) \] tries to be 1

\[D \] tries to make \(D(G(z)) \) near 0;
\[G \] tries to make \(D(G(z)) \) near 1

\[x \] sampled from data

\[G(z) \] sampled from model

\[G(z) \] are playing games:
\[G \] tries to generate fake images that fool \[D \]
\[D \] tries to identify the fakes

\[x \]

\[G(z) \]
Generative Adversarial Network (GAN)

[Goodfellow, etc., NIPS2016]

- $D(x)$ tries to be 1
- Differentiable function D
- x sampled from data

- $G(z)$ sampled from model
- Differentiable function G
- Input noise z

D tries to make $D(G(z))$ near 0; G tries to make $D(G(z))$ near 1

G and D are playing games:
- G tries to generate fake images that fool D
- D tries to identify the fakes
Predict GrayScale Face by GAN

Positive Examples

Real or fake pair?

Negative Examples

Real or fake pair?

Split dataset into training and testing set by identity
Faces in testing are never seen to G and D

[Isola, etc., CVPR2017]
Prediction Results
Prediction Results

<table>
<thead>
<tr>
<th>input</th>
<th>CCA-1600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prediction Results

input CCA-1600 CGAN
Prediction Results

![Image of prediction results with input, CCA-1600, CGAN, and Source columns]
<table>
<thead>
<tr>
<th>input</th>
<th>CGAN</th>
<th>input</th>
<th>CGAN</th>
<th>input</th>
<th>CGAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prediction Results
Generate Large Scale Mooney Face Dataset

Predict Source Photos from Mooney Faces

[Ng, and Winkler, ICIP2014]
Now We can predict source photos
Use our code and download dataset from

https://mooney.icsi.berkeley.edu