Progressive Multigrid Eigensolvers for Multiscale Spectral Segmentation

Michael Maire\(^1\) and Stella X. Yu\(^2\)

\(^1\)California Institute of Technology - Pasadena, CA
\(^2\)University of California at Berkeley / JPL - Berkeley, CA

Overview

System Comparison

Multiscale

Progressive Multigrid Multiscale

Multilevel Eigensolvers with Applications to Segmentation of Parts and Pixels.

\[\text{Eigenvector Convergence Comparison} \]

\[\text{Multiscale Spectral Pb} \]

\[\text{Runtime} \]

Let \((C, M)\) define a constrained Angular Embedding (AE) problem by specifying relationships between graph nodes:

\[v \rightarrow v \rightarrow \text{pairwise relative ordering matrix} \]

\[C \rightarrow C \rightarrow \text{pairwise confidence matrix} \]

\[U \rightarrow U \rightarrow \text{matrix of linear constraints} \]

\[M \rightarrow M \rightarrow \text{matrix of non-lin. constraints} \]

Multiscale:

- Upgrade \(C, U\) to arrays \(C_i, U_i\) indexed by level \(s\).
- Pairwise relationships constrained to be within-level:

\[v_s \rightarrow v_s \rightarrow \text{pairwise relative ordering matrix} \]

\[C_s \rightarrow C_s \rightarrow \text{pairwise confidence matrix} \]

\[U_s \rightarrow U_s \rightarrow \text{matrix of linear constraints} \]

\[M_s \rightarrow M_s \rightarrow \text{matrix of non-lin. constraints} \]

Multigrid:

- Relax to generalized eigenproblem

\[\text{Minimize:} \quad \sum_{l=1}^{L} \| \mathbf{Q}_l \mathbf{z}_l - \mathbf{P}_l \mathbf{z}_l \|^2 \quad \text{subject to:} \quad \mathbf{z}_l \in \mathcal{C}_l \]

- Multilevel Eigensolvers with Applications to Segmentation of Parts and Pixels.

\[\text{Eigenvector Convergence Comparison} \]

\[\text{Multiscale Spectral Pb} \]

\[\text{Runtime} \]

One active problem instance in 0.001 sec. Baseline: \(6000 \times 4000\) pixels, 8 levels, 10000 eigenvalues.

Reference:

In this paper, we present a new approach for solving large-scale eigenspectrum problems arising from multiscale spectral segmentation. Our method, Progressive Multigrid Eigensolvers, leverages the hierarchical nature of the problem to significantly reduce computational cost. We demonstrate its effectiveness on a variety of real-world datasets, showing substantial speedup compared to traditional methods while maintaining comparable segmentation accuracy.