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Why segmentation needs recognition?

Why recognition needs segmentation?
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Image segmentation is often object-blind

1. Do not know which regions make up an object.

2. Easily miss object boundaries due to lighting and clutter.
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Object detection Is often overwhelmed

(Schneiderman, 02): vasc.ri.cmu.edu/demos/faceindex

1. Tradeoff between false positives and detection rate.
2. Constraints in reducing false detection: increase in classi er complexity and training size.
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Characteristics of false positives

1. Lack of high-level part label compatibility

2. Lack of low-level image feature saliency.
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Overview of our object segmentation
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Graph:

Representation

G=(V;E W) = (nodes, edges, weights)

V = Vpixels | Vpatches

E= Epixel pixel[ Epatch patch[ Epixel patch

Node set:

Edge set:

Weights: W =
A: pixe
B: patc
C: pixe

" #
A CT
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-pixel similarity matrix
n-patch compatibility matrix

-patch association matrix
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Computing pixel-pixel similarity A
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Computing patch compatibility and competition
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B (p; q) is small if p, g form rare con gurations for part labels p, q:

(P a pq)T pl(r_i d pgq) ; P= location of p:
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B(p;0) = exp
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Computing pixel-patch associationC
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- Patch 1
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0: otherwise
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Find low-cost cuts subject to patch competition
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Encoding graph cuts
Segmentation: V= V[ V2 =object nodes [ the rest.
Indicators: X =[X1;X>2] = [is-0bject, is-nonobject].

Degree: D = diag(W 1).

x{wx1+ XIWX,

Cuts criterion: maxNCuts(X) = —= - ;
XIDX1 XJIDX>

(Shi and Malik, 97)
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Encoding patch competition

Competing nodes: pairs of patches of the same label.
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Exclusion condition: one winner only
X

eg. X1(N+2)+ X3(N+9)=1":

N = total number of pixels

Xi(k)=1; m=1:]Sj:
K2 Sm

Sy = a set of nodes in competition.
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Computational solution

Change of variable:

XTDX
1'D1 °

X = X1

we have constrained eigenvalue problem:

XTW x
XT DX

X = argmax . subjecttoL"x =0:

Eigensolution in the relaxed continuous domain:

OD ‘wWx = x :
Q =1 DNL'™D L) L™
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Results |

1 3 5 7 9 11

segmentation alone segmentation-recognition

44 seconds 17 seconds
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Results |l

segmentation alone: 68s

segmentation-recognition: 58s
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