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Why segmentation needs recognition?

Why recognition needs segmentation?
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Image segmentation is often object-blind

1. Do not know which regions make up an object.

2. Easily miss object boundaries due to lighting and clutter.
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Object detection is often overwhelmed

(Schneiderman, 02): vasc.ri.cmu.edu/demos/faceindex

1. Tradeoff between false positives and detection rate.

2. Constraints in reducing false detection: increase in classi�er complexity and training size.
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Characteristics of false positives

Arm-1 Leg-1 Head Arm-2 Leg-2

1. Lack of high-level part label compatibility.

2. Lack of low-level image feature saliency.
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Overview of our object segmentation
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Representation

Graph: G = ( V; E; W) = (nodes, edges, weights)

Node set: V = Vpixels [ Vpatches

Edge set: E = Epixel� pixel [ Epatch� patch [ Epixel� patch

Weights: W =

"
A CT

C B

#

A: pixel-pixel similarity matrix
B : patch-patch compatibility matrix
C: pixel-patch association matrix
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patches

image pixel-patch association object

edges segmentation

evaluation

integration
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Computing pixel-pixel similarity A

A(1; 3) � 1

A(1; 2) � 0
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Computing patch compatibility and competition

B (1; 2) � 1

B (10; 5) � 0

7 and 8 cannot both be
parts of the object

 1

 2

 3

 4

 5

 6

 7  8

 9

10

11

 1

 2

 3

 4

 5

 6

 7  8

 9

10

11

 1

 2

 3

 4

 5

 6

 7  8

 9

10

11

compatibility patches competition

B (p; q) is small if p, q form rare con�gurations for part labels �p, �q:
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Computing pixel-patch associationC
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Head detector !

Patch 1

Arm detector !

Patch 2

Leg detector !

Patch 11
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patches expected local segmentation association

C(i; p ) =

8
<

:
1; if i is an object pixel of patch p

0; otherwise
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Find low-cost cuts subject to patch competition
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Encoding graph cuts

Segmentation: V = V1 [ V2 = object nodes [ the rest.

Indicators: X = [ X 1; X 2] = [is-object, is-nonobject].

Degree: D = diag(W � 1).

Cuts criterion: maxNCuts(X ) =
X T

1 WX 1

X T
1 DX 1

+
X T

2 WX 2

X T
2 DX 2

:

(Shi and Malik, 97)
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Encoding patch competition
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Competing nodes: pairs of patches of the same label.

S = N + ff 2; 9g; f 3; 10g; f 4; 11g; f 7; 8g; f 1; 12gg

e.g. X 1 (N + 2) + X 1 (N + 9) = 1 :

N = total number of pixels

Exclusion condition: one winner only
X

k2 Sm

X 1(k) = 1 ; m = 1 : jSj:

Sm = a set of nodes in competition.
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Computational solution

Change of variable:

x = X 1 �
X T

1 DX 1

1T D1
;

we have constrained eigenvalue problem:

x � = arg max
xT Wx
xT Dx

; subject to LT x = 0:

Eigensolution in the relaxed continuous domain:

QD � 1Wx� = �x � ;

Q = I � D � 1L(LT D � 1L)� 1LT :
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Results I
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Results II

segmentation alone: 68s

segmentation-recognition: 58s
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