Grouping with Bias

Stella X. Yu 1,2
Jianbo Shi 1

Robotics Institute1
Carnegie Mellon University
Center for the Neural Basis of Cognition2
What Is It About?

- Incorporating prior knowledge into grouping
 - Unitary generative model
 - Global configurations: partially labelled data and object models
 - Attention

- Computation
 - Efficient solution in a graph partitioning framework

- Goals
 - Bridge the gap between generative models and discriminative models
 - Bridge the gap between formulation and computation
Grouping with Markov Random Fields

MRF: data structure = data generation model + segmentation model

\[\min E(X; f) = -\log p(f \mid X) - \log p(X) \]

Segmentation is to find a partitioning of an image, with generative models explaining each partition.

Generative models constrain the continuous observation data, the segmentation model constrains the discrete states.

The solution sought is the most probable state, or the state of the lowest energy.

[Geman & Geman, 84, ...]
Grouping with Spectral Graph Partitioning

SGP: data structure = a weighted graph, weights describing data affinity

\[
\min Ncut(V_1, V_2) = \frac{cut(V_1, V_2)}{\deg(V_1) \cdot \deg(V_2)}
\]

\[
cut(V_1, V_2) = \sum_{p \in V_1, q \in V_2} W(p, q)
\]

\[
\deg(V_1) = \sum_{p \in V_1, q \in V} W(p, q)
\]

Segmentation is to find a node partitioning of a relational graph, with minimum total cut-off affinity.

Discriminative models are used to evaluate the weights between nodes.

The solution sought is the cuts of the minimum energy.

[Shi & Malik, 97; Perona & Freeman, 98; Malik et al, 01, ...]
Solving MRF by Graph Partitioning

Some simple MRF models can be translated into graph partitioning

$$\text{min } E(X; f) = \sum_{p} \sum_{q \in N(p)} W_{p,q}(X_p, X_q) + \sum_{p} U_p(X_p, f_p)$$

[Greig et al, 89; Ferrari et al, 95; Boykov et al, 98; Roy & Cox, 98; Ishikawa & Geiger, 98, ...]
Comparison of Two Approaches

<table>
<thead>
<tr>
<th>Pros \ Cons</th>
<th>Formulation</th>
<th>Computation</th>
</tr>
</thead>
</table>
| Markov Random Fields | Generative models
 Bayesian interpretation
 General local interaction
 Sensitive to model mismatch | Simulation: e.g. Gibbs sampler
 Parameter estimation is hard
 Difficult to compute probability
 Convergence is very slow
 Only local optimum |
| Graph Partitioning | Discriminative models
 No models required
 Lack prior to guide grouping | Spectral decomposition
 Fast and robust
 Global optimum |
Prior Knowledge in Grouping

Local Constraints

Unitary generative models

Global Configuration Constraints

Object models: What to look for

Attention: Where to look for

- Red foreground
- Partial grouping
- Spatial attention

→ How to encode them in discriminative models, e.g. SGP?
Review: Segmentation on Relational Graphs

\[G = (V, E, A, R) \]

- **V**: each node denotes a pixel
- **E**: each edge denotes a pixel-pixel relationship
- **A**: each weight measures pairwise similarity
- **R**: each weight measures pairwise dissimilarity

Dual criteria on dual measures

- Maximize within-group A and between-group R
- Minimize between-group A and within-group R

Segmentation = node partitioning

break V into disjoint sets \(V_1, V_2 \); so that cut-off attraction is small, cut-off repulsion is large
Review: Energy Function Formulation

\[X_I(u) = \begin{cases}
1, & u \in V_I \\
0, & u \notin V_I
\end{cases} \]

Group indicators

\[W = A - R + D_R \]

Weight matrix

\[D = D_A + D_R \]

Degree matrix

\[y = (1 - \alpha)X_1 - \alpha X_2, \quad \alpha = \frac{\deg(V_1)}{\deg(V)} \]

Change of variables

\[\text{Nassoc}(X_1, X_2) = \sum_{t=1}^{2} \frac{X_t^T WX_t}{X_t^T DX_t} = \frac{y^T W y}{y^T D y} \]

Energy function as a Rayleigh quotient

\[\max \frac{y^T W y}{y^T D y} \Rightarrow W \ y = \lambda_1 \ D \ y \]

Eigenvector as solution
Review: Eigenvector as a Solution

The derivation holds so long as \(X_1 + X_2 = 1 \)

\[y = (1 - \alpha)X_1 - \alpha X_2 = X_1 - \alpha \]

The eigenvector solution is a linear transformation, scaled and offset version of the probabilistic membership indicator for one group.

If \(y \) is well separated, then two groups are well defined; otherwise, the separation is ambiguous
Interaction: from Gaussian to Mexican Hat

\[W = A - R + D_R \]

\[W_{ij} = e^{-\frac{(f_i - f_j)^2}{2\sigma^2}} - e^{-\frac{(f_i - f_j)^2}{2\sigma_1^2}} \left(\frac{\sigma_1}{\sigma_2}\right)^2 \]

With repulsion, negative correlations in MRF formulations can be translated into graph partitioning formulations directly.
Encoding Bias: Unitary Preference

- Introduce dummy nodes
- Expand the node set
- Soft Constraints

Preference of red pixels to be foreground, black pixels to be background

\[A := \begin{bmatrix} (1 - \gamma)A & \gamma B_a \\ \gamma B_a^T & 0 & 0 \end{bmatrix} \]

\[R := \begin{bmatrix} (1 - \gamma)R & \gamma B_r \\ \gamma B_r^T & 0 & r \end{bmatrix} \]

- \(\gamma \) controls the relative weighting between data and preference.
Encoding Bias: Partial Grouping

- Introduce partial grouping solution
- Assign a particular group label using dummy nodes
- Hard Constraints

\[X_1(p) = X_1(q), \quad X_2(p) = X_2(q) \]

\[y(p) - y(q) = 0 \]

\[m^T y = 0 \]

\[m^T = [0, \cdots, 0, 1, 0, \cdots, 0, -1, 0, \cdots, 0] \]

Linear:

\[M^T y = 0 \quad \text{or} \quad y = Qz \]

- \(M\) is the constraint space
- \(Q\) is the reduced solution space.

\[M \perp Q, \quad M \oplus Q = \text{All} \]
Encoding Bias: Constraining Solution Space

Clustering with Partially labelled data

\[M^T y = 0 \]

Segmentation with object models

\[y = Q z \]

S: translated versions of a shape

→ Find the eigenshape Q of S
→ Constraining \(y = Q z \) allows us to segment out this particular shape in an image.

General form of constraints:

\[\Psi(y) = 0 \]
Encoding Bias: Attention

Spatial Attention: center region is analyzed w/ more discrimination

- Modulation
- Connections for some nodes are enhanced / weakened
- Weights at attentional hotspot are less distorted
Representations of Bias

- Partial grouping
 - {3, 4}, {6, 7}
 - {9, G}

- Preference
 - {F, 1, 2, 4}
 - {G, 5, 7, 8}

- Attention
 - {5, 6}
 - {8, 9}

Hard constraints
Soft constraints
Modulation
Constrained Optimization

\[N_{assoc} (y) = \frac{y^T W y}{y^T D y} \quad \text{s.t.} \quad M^T y = 0 \]

- Constrained optimization

\[M = U \Sigma V^T \]
\[Q = I - U U^T \]
\[y = Q z \]

- Constraint space
- Feasible solution space

\[N_{assoc} (z) = \frac{z^T (Q^T W Q) z}{z^T (Q^T D Q) z} \]

- Unconstrained optimization
- Eigensolution available

\[Q^T D^{-1} W \ y = \lambda \ y \]

- \(\text{Rank}(Q) = \# \text{ of nodes} - \# \text{ of independent constraints} \)
- Problem: Unconstrained affinity matrix becomes denser
Results: Preference and Partial Grouping

Data: three stripes

M: Hard constraints

Grouping w/o bias:
Each is one group

O : hard constraints
Δ : soft constraints
F/G : Filled / empty

U: Basis of constraint space
\[M = U \Sigma V^T \]

Grouping w/ bias:
Left and right are one group
Results: Preference and Partial Grouping

Hard constraints

Soft constraints

Data

Prior
Results: Partial Grouping

First row: Grouping w/o bias
Second row: Grouping w/ bias

The pumpkin starts to emerge as a whole from the background regardless of its surface markings.
Results: Figure Detection with Soft Constraints

- Background
- Foreground
- Difference
- Difference Thresholded used as soft constraints
- Grouping of foreground
- Grouping of foreground with bias
Results: Spatial Attention

Attraction + Repulsion + Bias

Bias for A Bias for R