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Abstract
We present a hybrid approach for scaling distributed training of
neural networks by combining Gradient Threshold Compression
(GTC) algorithm - a variant of stochastic gradient descent (SGD)
- which compresses gradients with thresholding and quantization
techniques and Blockwise Model Update Filtering (BMUF) al-
gorithm - a variant of model averaging (MA). In this proposed
method, we divide total number of workers into smaller sub-
groups in a hierarchical manner and limit frequent communi-
cation across subgroups. We update local model using GTC
within a subgroup and global model using BMUF across dif-
ferent subgroups. We evaluate this approach in an Automatic
Speech Recognition (ASR) task, by training deep long short-
term memory (LSTM) acoustic models on 2000 hours of speech.
Experiments show that, for a wide range in the number of GPUs
used for distributed training, the proposed approach achieves a
better trade-off between accuracy and scalability compared to
GTC and BMUF.
Index Terms: Speech Recognition, Distributed Stochastic Gra-
dient Descent, Gradient Threshold Compression, BMUF

1. Introduction
Recent trend has shown that accuracy of deep learning models
can be improved significantly by increasing the size of training
data or by increasing the capacity of the model [1–3]. But as
the model size or data size increase, it also causes an increase in
training time. SGD is the most widely used training algorithm
for training neural networks (e.g. [4, 5]). Although other tech-
niques have been proposed such as alternating direction method
of multipliers (ADMM) [6, 7] or 2nd order Hessian free opti-
mization [8, 9], SGD is still an important part of the recipe and
consumes most of the time[10]. Hence, much efforts have been
put into improving its efficiency and speed.

It is common practice to improve training efficiency using
mini-batch SGD and using multiple compute nodes (CPUs or
GPUs) to obtain further training speed up. However, several chal-
lenges still remain in scaling SGD to large number of compute
nodes: increasing number of compute nodes linearly increases
effective (aggregated) mini-batch size, which has shown to pro-
duce lower accuracy on test data [11, 12]. Techniques such as
adjusting learning rate [11, 13] and using a warm-up phase can
be employed to mitigate issues with large batch size. However
these techniques increase the upper bound on workable mini-
batch sizes, but do not remove it. Also, increasing mini-batch
size may not be possible due to limited GPU memory. Secondly,
communicating gradients or model weights among workers is an
expensive operation and its time increases rapidly as a function
of the model size and the number of workers.

Several techniques have been proposed which address these
fundamental limitations of increased communication time. For
example, gradient sparsification with thresholding and compres-

sion techniques [14–17] reduces the amount of data communi-
cated between workers. Furthermore, efficient communication
algorithms have been proposed such as ring-allreduce [18], hi-
erarchical ring-allreduce [19] to utilize bandwidth efficiently.
Asynchronous variants of SGD [10, 20] have been used which
mask communication latency and improve throughput. In this
paper, we will focus on synchronous variants of SGD which of-
fers reproducibility of results. Gradient Threshold Compression
(GTC) algorithm [15], in particular, has been effective in scal-
ing up SGD; however, it does not scale well beyond few tens of
GPUs [21].

Model Averaging (MA) [22] is another promising technique
that has been used to scale distributed training. In this approach
each worker updates their local model independently using a sub-
set of the dataset and then computes the global model by averag-
ing independent local models. This approach can scale almost
linearly to a large number of workers. However, this tends to
yield lower accuracy on test data, especially when using a large
number of workers [23, 24]. There have been variants of MA
proposed such as natural gradient SGD [25] and BMUF [23];
the latter improves model accuracy over simple MA. BMUF, in
particular, has been shown to achieve near linear scaling; some
accuracy loss, however, was noticed when trained on large num-
ber of workers [26].

In this paper, we introduce a hybrid algorithm which com-
bines GTC and BMUF in a two-tiered architecture. Experiments
show that, for a wide range in the number of GPUs used for dis-
tributed training, the proposed approach achieves a better trade-
off between accuracy and scalability compared to GTC and
BMUF. The rest of the paper is organized as follows: the train-
ing algorithms are described in section 2; experimental setup
including infrastructure, datasets, and models are presented in
section 3. We then discuss the results of the proposed method
and contrast them against GTC and BMUF in section 4. Finally,
we conclude the paper in section 5.

2. Distributed Training Algorithms
This section provides a review of GTC and BMUF. It then de-
scribes the proposed distributed training algorithm.

2.1. Gradient Threshold Compression (GTC)

This method leverages SGD with gradient thresholding and
gradient quantization algorithm proposed in [15]. In this ap-
proach, instead of sending entire gradient tensor for each train-
able weight, only gradients whose absolute magnitude is greater
than a predefined value, here referred as gradient-threshold (τ )
are sent to other workers. This results in a sparse gradient update
reducing total update size by a couple of orders of magnitude.
Each worker sends its sparse update to rest of the workers and re-
ceives their sparse updates. The received sparse gradient updates
are aggregated and weights are updated with these gradients. The



gradients which are not sent to other workers are stored for later
iterations. In naive implementation, sparse update can be repre-
sented by two numbers, an integer element index and a floating
point number which is either +τ or −τ . However this can be
further compressed by quantizing the gradient, and packing the
quantized gradient and the integer index into a single 32-bit in-
teger field. In this work, we use 1-bit quantization. Each worker
simply sends gradient deltas of ±τ and the remaining 31-bits
are used for element index. It achieves further 2x compression of
the data to be sent. The gradient thresholding as well as quantiza-
tion technique can be further finetuned to achieve better trade-off
between accuracy and scalability. While this technique can be
applied to synchronous as well as asynchronous variants, we
focus on the synchronous variant.

2.2. Blockwise Model Update Filtering (BMUF)

The BMUF algorithm [23] is a variant of MA where simple
model averaging is augmented by considering the model from
previous step. This algorithm is split into two steps. Before the
first step, the initial global model (Wg) is broadcasted to each
worker. In the first step, each worker updates its local model
(W ) in parallel with its portion of data for a specified number of
mini-batches, here referred as block-size. This step is referred as
intra-block parallel optimization. In this implementation, each
worker simply updates its local model using mini-batch SGD
independently. In the second step, the global model is updated
using following procedure which is referred as BMUF step.

W (t) =
1

N

N∑
i=1

W (t)i (1)

G(t) = W (t)−Wg(t− 1) (2)

∆(t) = ηt∆(t− 1) + ζtG(t) (3)

Wg(t) = Wg(t− 1) + ∆(t) + ηt+1∆(t) (4)

where hyper-parameters η and ζ are called block momentum
and block learning rate respectively. We used following formula

ζ

N(1− η)
= C (5)

to set η and ζ hyper-parameters, where C ≥ 1 is constant and
N is number of workers. We use Nesterov block momentum
(NBM) scheme proposed in [23].

2.3. Proposed Two Tiered Training Algorithm

The synchronous GTC described in 2.1 suffers from scal-
ability issues when the number of workers are increased.
This is especially evident in cases where ratio of compute-to-
communication time is low. The primary bottleneck in this
method is increasing amount of time spent in communicating
gradient updates at every mini-batch. On the other hand, BMUF
can scale almost linearly, at least in terms of throughput, with
adjustment of block-size. However, the global model needs to
be updated more frequently to achieve acceptable accuracy with
large number of workers, which then affects the scalability of
the algorithm. One of the reasons for reduced accuracy is the
mismatch in optimization introduced from simple averaging of
model weights in eq. (1). This mismatch then increases with
more number of distinct models as well as with larger block-size
(less frequent communication among workers). To address this
issue, we propose a hybrid two-tiered training algorithm which
combines GTC with BMUF. We refer to this algorithm as Hybrid
Two-Tier Method (HTM) for brevity.

Figure 1: Hybrid Two-Tier Method where N=16, P=4.
1(a) workers within each sub-group updates model using GTC.
1(b) one worker from each group participates in BMUF step
and updates global model. 1(c) The updated global model is
broadcasted to rest of the workers in each subgroup.

(a) (b) (c)

In HTM algorithm, we update local model using GTC in
intra-block parallel optimization step and update global model
using BMUF-NBM procedure. We divide the total number of
workers into M subgroups where each group contains P = N

M
workers, here referred as group-size. We refer to these subgroups
as lower-tier. We then select one worker from each subgroup and
form another subgroup, thus forming a 2-tiered hierarchy. We
refer to this new subgroup as an upper-tier and it will contain M
workers. All workers are initialized with the same global model;
however, each worker processes non-overlapping subset of the
training dataset. Training is performed in three steps. In the first
step, workers from each subgroup from lower-tier update their
model using GTC for specified number of mini-batches, here
referred as block-size. Each subgroup updates their model inde-
pendent to other subgroups, and the communication is restricted
within each subgroup. This step is also called as intra-block par-
allel optimization[23]. This is shown in fig. 1(a). At the end
of this step workers will have updated their local models and
will result in M different models, one from each sub-group. In
the second step, the workers in upper tier perform BMUF step
with these M models and compute the new global model using
BMUF-NBM procedure (described in section 2.2). This step
is shown in fig. 1(b). And finally in the last step, the updated
global model is then broadcasted to rest of the workers in each
sub-group in lower tier as shown in fig. 1(c). These steps are
repeated until a final model is obtained. This proposed method
generalizes BMUF which is a special case when group-size is
set to 1.

Usually workers in the same sub-group in lower tier reside
on the same host to utilize faster communication channels such
as shared memory (for CPUs) or peer-to-peer communication
(for GPUs) needed for frequent synchronization of gradients for
GTC which is done every mini-batch. Workers in upper tier usu-
ally reside on separate hosts which only synchronize at end of
the block (after block-size number of mini-batches). This ap-
proach drastically reduces the overall communication time by
restricting communication to subgroups instead of all workers.
This is especially noticeable on clusters which do not provide
high bandwidth interconnects such as Infiniband.

3. Experimental Setup
3.1. Hardware and Infrastructure

The experiments are carried out on Amazon Web Services
(AWS) cloud infrastructure. The compute nodes used are of
p3.16xlarge instance type provided by AWS Elastic Compute
Cloud (EC2) service. Each compute node is equipped with 8
NVIDIA Tesla V100 GPUs and each of these GPUs offer 5,120



Table 1: Effect of scaling workers (GPUs) with respect to 1-
GPU SGD in terms of (a) relative WERR (in %) (b) relative
speedup (as a factor) achieved in total frames/second; and (c)
total training time until convergence. Note: block-size 50 is used
for BMUF and HTM.

Training
Method

Number
of

GPUs

Speedup
in

Frames/Sec

Speedup
in Conver-

gence
Time

Relative
WERR

(%)

GTC

16 12.5 21 0.4
32 23.5 26.3 -1.4
64 21.7 17.4 -2.8
128 10.9 10.8 -15.6

BMUF

16 15.7 20.5 -0.8
32 28.1 36.6 -3.5
64 58.2 56.9 -8.9
128 101.5 80.4 -9.6

HTM

16 13.9 18.2 -0.5
32 24.2 31 0.1
64 49.2 42.3 -3.2
128 97.8 97.4 -4.7

CUDA cores and 16 GB of device memory. The Amazon AWS
EC2 P3 instances also include NVLink for ultra-fast GPU to
GPU communication. Standard 25 Gbps network bandwidth is
available between two compute nodes. AWS Simple Storage
Service (S3) is used as data storage for external data, such as
feature vectors and supervision targets.

We implemented these algorithms on in-house deep learning
toolkit written in C++. The toolkit uses MPI[27] and NCCL[28]
libraries for performing communication among workers. It
also leverages CUDA and CuDNN libraries when running on
NVIDIA devices. The 2-tiered hierarchy of workers is achieved
by using communicator abstraction provided by MPI library.
The datasets are pre-partitioned into multiple files and each
worker fetches its portion of dataset directly from S3 in parallel.
We adopt one GPU per worker strategy and spin up number of
workers equivalent to total number of GPUs in the cluster.

3.2. Evaluation, Datasets and Models

We benchmark proposed method on automatic speech recogni-
tion (ASR), however it can also be applied to other areas as
well. We report accuracy as relative word error rate reduction
(WERR) (cf. [21, 26, 29–32]). Negative WERR values represent
degradation in word error rate.

For training data, we use 2000 hours of transcribed in-house
Amazon Speech data. The average training utterance length is
about 2 seconds. We extract 64 dimensional log filter bank en-
ergy (LFBE) feature with 10ms time shift. We then stack 3 adja-
cent frames to form 192 dimensional features and then subsam-
ple it by factor of 3 to form low frame rate feature setup. Frame
error rates after every epoch is calculated on a validation dataset
consisting of 1 hour of speech data. For evaluating the models,
we use an additional test data of 24 hours. For decoding, we use
a 4-gram statistical language model with an acoustic model scale
factor that was tuned on the test set.

Our experiments were conducted with hybrid LSTM-HMM
system, where the LSTM models senone posterior probabilities
given a feature vector. The model used in current experiments
consists of 5 layers of LSTM where each hidden layer is of 768

dimensions, followed by an affine transform layer and a softmax
layer of 3183 dimensions for predicting senone posterior prob-
abilities. The neural network consists of approximately 24M
trainable parameters which translates to approximately 93 MB
model size. For training, we use cross-entropy loss function. We
do a look ahead of three frames to predict current output label
which we found empirically to give best WERR on training data.
In this paper, since the focus is on distributed training algorithms,
we do not perform sequence discriminative training.

Experiment time includes time taken for fetching data from
S3, staging mini-batch data to device along with training. Single-
GPU SGD baseline does not perform any gradient thresholding
and quantization where as distributed version performs these
extra computations and it’s time is included in total training
time along with cost of communication.

To initialize model, pre-training is done on smaller dataset
of 250 hours of audio data on single-GPU SGD until reason-
able accuracy is achieved. For consistency, we used same pre-
trained model for each experiment. We experimented with dif-
ferent mini-batch sizes and found that mini-batch size of 2048
frames to be optimal in terms of accuracy and GPU utilization.
For learning rate scheduler, we use “min-rate newbob” scheduler
in which fairly large learning rate is used initially, and model is
trained until reduction in loss between two consecutive epochs
is less than 5%. The learning rate is then halved for every epoch
thereafter and training is stopped when learning rate reaches min-
imum set value. The learning rate and other hyper-parameters
are carefully tuned to give the best accuracy and best results have
been presented here.
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Figure 2: Convergence of GTC, BMUF and HTM relative to 1-
GPU SGD on 64 and 128 GPUs. Note: block-size of 50 is used
for BMUF as well as HTM, process-group-size of 8 is used for
HTM.

For GTC trainer, we used gradient-threshold of 8 along with
1-bit quantization which achieved best trade-off between scal-
ability and accuracy. For standalone BMUF as well as BMUF
used in proposed method, we used Nesterov block momentum
scheme for all the experiments. For hyper-parameters related to
BMUF, we set ζ and C to 1.0 and calculate η as per eq. (5). In
proposed method, N is equated to number of subgroups (M ) in
eq. (5), gradient-threshold of 2 is used along with 1-bit quantiza-
tion. In all experiments group-size of 8 is used except in section
4.3 where effect of group-size is studied.



Table 2: Effect of varying block-size on relative WER reduction
(in %) and training speedup (as a factor) for BMUF and HTM
compared to 1-GPU SGD trainer on 128 GPUs.

Training
Method

Block
Size

Speedup
in

Frames/Sec

Speedup
in Conver-

gence
Time

Relative
WERR

(%)

BMUF

25 91.3 91.2 -8.1
50 101.5 80.4 -9.6
100 106.5 64.5 -13.7
200 110.3 57.4 -16.6

HTM

25 77.9 101.3 -4.4
50 97.8 97.4 -4.7
100 99.6 80.5 -6.4
200 105.5 73.5 -7.5

4. Results
In this paper, since we are comparing distributed training algo-
rithms (for training LSTM AM), our baseline model is trained
using the single threaded SGD algorithm executed on the same
hardware and infrastructure. For the baseline model, the elapsed
training time for the first epoch was 290 minutes. The WER
achieved by this model serves as the reference against which we
measure relative WER reduction for all other results.

4.1. Effect of scaling workers

To investigate the scaling properties of HTM and compare it
with other methods, the number of workers were varied from
16 to 128. All other hyper-parameters are kept constant. We
compare the results of the three methods in Table 1 against a
single GPU SGD model in terms of: (a) relative WER reduction;
(b) speedup in frames/second; and (c) speedup in total training
time to achieve final converged model. Please note that different
methods achieved convergence after different number of epochs
and this is factored in the total training time.

GTC stays within 3% relative WERR to baseline till 64
workers; it then degrades significantly when run using 128 work-
ers. The degradation in WER at large number of workers is
mostly due to the increase in effective mini-batch size. This
algorithm scales satisfactorily till 32 GPUs however does not
scale well beyond that. This is largely due to the increased
cost of communication due to the increase in number of work-
ers. The increased communication cost is mainly due to lim-
ited network bandwidth available between two separate hosts
(25Gbps) as compared to high network bandwidth within same
host (300Gbps) on current infrastructure. This bottleneck is mag-
nified even more due to recent advancements in GPUs which
take far less computation time. The scaling of this algorithm is
also affected due to increased cost of decompressing gradient
updates; but that is not a significant factor.

BMUF on the other hand scales almost linearly in terms
of frames/second processed when the number of workers are
increased and when adequate block-size is selected such that
communication time is much lower than computation time. How-
ever, we noticed significant WER degradation beyond 32 GPUs.
HTM algorithm achieves a trade-off between WERR and scal-
ability. The algorithm scales satisfactorily till 64 GPUs, achiev-
ing a WER within 3% to the baseline. It degrades at 128 GPUs
slightly, however; it is observed to be much more stable than
BMUF as well as GTC. Figure 2 shows the frame error rate on
64 and 128 GPUs relative to the single-GPU baseline after every

Table 3: Effect of varying group-size on WER reduction (in %)
relative to 1-GPU SGD on 128 GPUs for block-size 25.

Group Size Relative
WERR (%)

1 -8.1
2 -7.9
4 -5.8
8 -4.4

epoch on the validation dataset until after each model converged.

4.2. Effect of varying block-size

The results in Table 1 and fig. 2 were observed using block-
size 50. To study the effect of different block-sizes on BMUF
and HTM, we ran experiments with different block-sizes on 128
GPUs; the results are tabulated in Table 2. For smaller block-size,
we observe improved WERR which is expected since we are up-
dating global model more frequently. Also it can be seen from
Table 2 that even when small block-size yields lower speedup in
terms of frames/second, the speedup in total time to converge
can be significant. When the block-size increases, we see better
speedup in frames/second but training continues for more num-
ber of epochs to achieve convergence. We notice that BMUF is
more sensitive to block-size parameter when compared to HTM.
The WER achieved by HTM at a block-size of 200 still outper-
forms WER achieved by BMUF at a block-size of 25.

4.3. Effect of varying group-size

In all the previous experiments, a group-size of 8 was used in
the HTM algorithm. To see the effect on varying the group-size
we ran experiments with different group-size on 128 GPUs. The
results are reported in Table 3. When group-size is equal to 1,
the algorithm is equivalent to BMUF. It can be seen that WERR
of HTM increases as group-size is increased. As group-size is
increased, the number of distinct models that needs to be aver-
aged as part of BMUF equation (1) are reduced. This reduces
mismatches introduced due to averaging models. In our imple-
mentation we group together workers equal to number of GPUs
available on the same host and leverage fast GPU-to-GPU data
transfers. This can be extended to multi-host scenario, which
can further improve WERR.

5. Conclusion
We have presented a 2-tiered algorithm which leverages GTC
and BMUF algorithms and showed that proposed method can
indeed achieve a better accuracy and scalability trade-off over
a wide range of GPU workers. Here, the 2-tiered architecture
addresses the communication bottleneck issue as well as the
optimization mismatch issue introduced by the model averaging
step in BMUF. It is found to be useful where high bandwidth
interconnect such as Infiniband is not available. Our experiments
show that, at model convergence, the proposed algorithm can
scale to 128 GPUs with only 4% relative degradation against a
single GPU SGD trained LSTM acoustic model.
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