
Learning All Optimal Policies with Multiple Criteria

Leon Barrett barrett@icsi.berkeley.edu

1947 Center St. Ste. 600, Berkeley, CA 94704

Srini Narayanan snarayan@icsi.berkeley.edu

1947 Center St. Ste. 600, Berkeley, CA 94704

Keywords: reinforcement learning, convex hull, multi-criterion learning

Abstract

We describe an algorithm for learn-
ing in the presence of multiple criteria.
Our technique generalizes previous ap-
proaches in that it can learn optimal poli-
cies for all linear preference assignments
over the multiple reward criteria at once.
The algorithm can be viewed as an ex-
tension to standard reinforcement learn-
ing for MDPs where instead of repeatedly
backing up maximal expected rewards,
we back up the set of expected rewards
that are maximal for some set of linear
preferences (given by a weight vector, −→w).
We present the algorithm along with a
proof of correctness showing that our so-
lution gives the optimal policy for any lin-
ear preference function. The solution re-
duces to the standard value iteration al-
gorithm for a specific weight vector, −→w .

1. Introduction

In Reinforcement Learning (RL), an agent inter-
acts with the environment to learn optimal behav-
ior. (Sutton & Barto, 1998) Most RL techniques
are based on a scalar reward, i.e., they aim to op-
timize an objective that is expressed as a func-
tion of a scalar reinforcement. A natural exten-
sion to traditional RL techniques is thus the case

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

where there are multiple rewards. In many real-
istic domains, actions depend on satisfying mul-
tiple objectives simultaneously (such as achieving
performance while keeping costs low, a robot mov-
ing efficiently toward a goal while being close to a
recharging station, or a government funding both
military and social programs). Learning optimal
policies in many real-world domains thus depends
on the ability to learn in the presence of multiple
rewards. However, the resulting policies depend
heavily on the preferences over these rewards, and
they may change swiftly as preferences vary. We
present both an algorithm for the general case of
learning all optimal policies under all assignments
of linear priorities for the reward components, and
a proof showing the correctness of our algorithm.

We start with a motivating example of a simple
task with multiple rewards in Section 2. The paper
then proceeds to the main algorithm in Section 3.
We address related work in Section 4, and then
Section 5 discusses the complexity of our algorithm
including realistic and tractable specializations of
our algorithm. Section 6 describes the application
of this algorithm to an example domain, and Sec-
tion 7 discusses extensions to this technique, such
as implementations using other RL methods (such
as temporal difference methods) and applications
of our algorithm to infer another agent’s prefer-
ences based on observing their behavior. Section 8
outlines the proof of the algorithm’s correctness.

Learning All Optimal Policies with Multiple Criteria

2. Explanation and motivating

example

We assume that instead of getting a single re-
ward signal, the agent gets a reward divided up
into several components, a reward vector. That
is, we decompose the reward signal r(s, a) (where
s is a state and a is an action) into a vector
−→r (s, a) = [r1(s, a), r2(s, a), . . . , rn(s, a)]. An agent
could potentially optimize many different functions
of these rewards, but the simplest function is a
weighted sum: for every fixed weight vector −→w we
obtain a total reward scalar r−→w (s, a) = −→w ·−→r (s, a).
There is thus an optimal policy π∗

−→w
for each weight

vector −→w .

Consider, for example, a lab guinea pig running a
familiar maze, shown in Figure 1. The guinea pig
runs through the maze to one of four stashes of
food. Once it has reached a stash and eaten the
food, the experimenter takes it out of the maze
and returns it to its cage, so it can only hope to
eat one of the stashes per run of the maze. As-
sume that there are only 2 types of food provided
(hay and carrot), so reward vectors take the form
[hay,carrot]. Location 1 contains hay (−→r = [1, 0]),
location 2 contains carrot (−→r = [0, 1]), and loca-
tions 3 and 4 contain a little of both (−→r = [0.6, 0.6]
and [0.7, 0.4], respectively). Because the maze is
familiar, the animal knows where the food is placed
and what sort of food is in each location.

3 1

2

r=[0.6, 0.6] r=[1, 0]

r=[0, 1]4 r=[0.7, 0.4]

Figure 1. An example maze with rewards, split into 2
components, at 3 different locations

The experimenter has several different guinea pigs
and has discovered that each has different tastes.
For instance, Chester likes only hay (−→w = [1, 0]),
and Milo likes only carrot (−→w = [0, 1]), but greedy

Louis likes both equally (−→w = [0.5, 0.5]). (Without
loss of generality, assume that all animals’ weight
vectors satisfy

∑

i wi = 1: they describe relative
preferences, not absolute utilities.) So, if Chester
goes to location 4 (−→r = [0.7, 0.4]), then he gets
reward r = −→w · −→r = 0.7. Milo would get 0.4, and
Louis would get a reward of 0.55.

Looking at the maze, we see that although there
are 4 possible strategies (with rewards shown in
Figure 2, only 3 of them are optimal for any values
of −→w . One strategy occurs when the weight vector
has w0 > 0.6 (and hence w1 = 1−w0 < 0.4): then
the guinea pig should head straight for location 1,
because the reward elsewhere will be no more than
0.6. By the exact same logic, when the weight vec-
tor has w1 > 0.6 (and w0 < 0.4), then the an-
imal should go to location 2. In all other cases
(0.4 ≤ w0 ≤ 0.6), it will optimize its reward by go-
ing to location 3. Under no circumstances would
an optimal agent go to location 4! No matter what
its weight vector, some other location dominates
location 4. We would like to determine exactly
this: which policies are viable and which are not
(even without knowing −→w).

R1

R2

0

1

1

1

2

3

4

Figure 2. The potential reward vectors in the guinea
pig example

Our method learns the set of optimal policies for
all
−→w at the same time. Once the agent has learned

all these policies, it can change reward weights at
runtime to get a new optimal behavior, without
having to do any relearning. For a fixed priority
scheme (fixed weight vector −→w) over the multiple
reward components, our algorithm results in the
standard recurrence for Q-values that is analogous
to the equation for the average weighted reward

Learning All Optimal Policies with Multiple Criteria

case as in (Natarajan & Tadepalli, 2005):

Q∗
−→w (s, a) = E

[

−→w · −→r (s, a) + γ max
a′

Q∗
−→w (s′, a′)|s, a

]

In the general case, where we do not know the rel-
ative priorities over the reward components, our
algorithm exploits the fact that the extrema of the
set of Q-values vectors (Q vectors that are maximal
for some weight setting) is the same as the convex

hull of the Q-value vectors. (The convex hull is
defined as the smallest convex set that contains all
of a set of points. In this case, we mean the points
that lie on the boundary of this convex set, which
are of course the extreme points–the ones that are
maximal in some direction. This is somewhat sim-
ilar to the Pareto curve, since both are maxima
over trade-offs in linear domains.) Now we can
rewrite the general RL recurrence in terms of op-
erations on the convex hull of Q-values, and we
show this recurrence to be correct and convergent
to the value iteration algorithm in the fixed weight
vector case. Many standard RL algorithms in the
literature can be seen as limiting cases of our more
general algorithm. While the worst-case complex-
ity of our general algorithm is exponentially higher
than that of fixed-−→w cases, it not only solves all the
fixed-−→w cases but also determines which cases are
worth solving. We also give some constraints and
techniques that can help reduce the complexity.

3. Convex Hull Value Iteration

In this section, we introduce the problem definition
in the context of a traditional MDP setting and our
approach and algorithm.

3.1. Preliminaries and Notation

Our approach is based on an MDP which is a tu-
ple (S, A, T, γ,−→r), where S is a finite set of N

states, A = {a1, . . . , ak} is a set of k actions,
T = {Psa(s′)} is the set of state transition proba-
bilities (Psa(s′) is the transition probability of go-
ing to state s′ ∈ S by taking action a ∈ A from
state s ∈ S), γ ∈ [0, 1) is the discount factor, and
−→r : S × A 7→ R

d is the reward function giving
d-component reward vector −→r (s, a). This differs
from the standard formulation only in that reward
now comes as a vector.

A policy, π, is the map S 7→ A, and the value

function for any policy π, evaluated at some state
si is the vector

−→
V

π
(si) = E[−→r (si, ai) + γ−→r (si+1, ai+1) + . . . |π]

(1)
where the expectation is over the distri-
bution of the state and reward sequence
(si,
−→r i, si+1,

−→r i+1, . . .), that is obtained on
executing the policy π starting from the state si.
The Q-function is the vector

−→
Q

π
(s, a) = E−→r (s,a),s′∼Psa

[

−→r (s, a) + γ
−→
V

π
(s′)

]

(2)

where −→r (s, a), s′ ∼ Psa means that the expec-
tation with respect to s′ and −→r (s, a) distributed
according to Psa. The optimal Q function for a

weight −→w is Q∗
−→w

(s, a) = supπ
−→w ·
−→
Q

π
(s, a).

3.2. Approach: convex hulls

Given some −→w , the resulting reward for taking an
action is r(s, a) = −→w · −→r (s, a). This gives us the
following recurrence for optimal Q-values, which
is exactly equivalent to the equation for a single
reward component:

Q−→w (s, a) = E

[

−→w · −→r (s, a) + γ max
a′

Q−→w (s′, a′)|s, a
]

We can solve this recurrence directly, or we can
use it to get converging approximations to the op-
timal value function—this gives rise to the value
iteration method, Q-learning, and so on.

An alternative view is that each possible policy

gives a different expected reward
−→
Q(s, a), and we

simply want to select a policy by maximizing the
dot product of this with −→w . For a fixed −→w , only

one such
−→
Q(s, a) can be optimal, but in general

we might care about any
−→
Qs that are maximal for

some −→w . But this set of Q-values that are extrema
is exactly the convex hull of the Q-values! This
allows us to use standard convex hull operations
to pare down the set of points we consider and
gives rise to the following proposition.

Proposition 1. The convex hull over Q-values

contains the optimal policy over the average ex-

pected reward r(s, a) = −→w · −→r (s, a) for any −→w .

To make this operational and derive an algorithm
that maintains all optimal policies for any weight

Learning All Optimal Policies with Multiple Criteria

vector −→w , we need a few definitions for relevant
operations on the convex hull.

We write
◦

Q(s, a) to represent the vertices of the
convex hull of possible Q-value vectors for taking
action a at state s. We then define the following
operations on convex hulls which will be used to
construct our learning algorithm.

Definition 1. Translation and scaling opera-

tions

−→u + b
◦

Q ≡ {−→u + b−→q : −→q ∈
◦

Q} (3)

Definition 2. Summing two convex hulls

◦

Q +
◦

U ≡ hull{−→q +−→u : −→q ∈
◦

Q,−→u ∈
◦

U} (4)

Definition 3. Extracting the Q-value To ex-

tract the best Q-value for a given −→w , we perform a

simple maximum:

Q−→w (s, a) ≡ max
−→q ∈

◦

Q(s,a)

−→w · −→q (5)

Given these definitions, we are now ready to illus-
trate the basic algorithm.

3.3. Convex hull value iteration algorithm

Our algorithm extends the single-−→w case (which is
the standard expected discounted reward frame-
work (Bellman, 1957)) into the following recur-
rence:

◦

Q(s, a) = E

[

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)|s, a

]

(6)
That is, instead of repeatedly backing up maximal
expected rewards, we back up the set of expected
rewards that are maximal for some −→w . While the
expectation over hulls looks awkward, it is the nat-
ural equivalent of an expectation of maxima, and
it arises for the same reason. We must take an
expectation over s′, but once in s′, we can choose
the best action, no matter what our −→w . The ex-
pectation’s computation can be broken down, in
the usual way, into the scalings and sums we have
already defined.

This leads us to define Algorithm 1, which extends
the value iteration algorithm (Bellman, 1957) to
learn optimal Q-values for all possible −→w . A proof
of its correctness is given in Section 8.

Algorithm 1 Value iteration algorithm modified
from that of Bellman (1957)

Initialize
◦

Q(s, a) arbitrarily ∀s, a
while not converged do

for all s ∈ S, a ∈ A do
◦

Q(s, a)← E[−→r (s, a)

+γ hull
⋃

a′

◦

Q(s′, a′)|s, a]
end for

end while

return
◦

Q

4. Related work

There is now a body of work addressing multi-
reward reinforcement learning. There have been
algorithms that assume a fixed ordering between
different rewards, such as staying alive and not
losing food (Gabor et al., 1998), techniques based
on formulating the multiple reward problem as
optimizing a weighted sum of the discounted to-
tal rewards for multiple reward types (Feinberg
& Schwartz, 1995), and techniques that decom-
pose the reward function into multiple components
which are learned independently (with a single pol-
icy) (Russell & Zimdars, 2003). In all these cases,
the preference over rewards is assumed to be fixed
and time-invariant. In a slightly more flexible for-
mulation, Mannor and Shimkin (2004) take multi-
ple reward components and perform learning that
results in expected rewards lying in a particular
region of reward space.

More recently, (Natarajan & Tadepalli, 2005) for-
mulate the multiple reward RL problem as we
do, using a weighted expected discounted reward
framework, and they store both the currently best
policy and its Q-values as vectors. When priorities
change dynamically (as reflected in changes in the
weight vector), the agent can calculate new reward
scalars from the vectors and thus start from the Q-
values of the best policy learned so far rather than
resetting entirely. As far as we are aware, none of
the techniques proposed tackle the general case of
learning optimal policies for all linear preference
assignments over the multiple reward components.

Learning All Optimal Policies with Multiple Criteria

4.1. Relation to POMDPs

Our problem, and hence its solution, is closely re-
lated to the standard partially observable Markov
decision process (POMDP) formulation. In a
POMDP, we have a model of both observed and
unobserved variables and use Bayesian reasoning
to infer a joint distribution over the hidden vari-
ables. Then, we must choose an optimal action
based on both the observed state and the continu-
ous beliefs. (Kaelbling et al., 1998)

Consider the POMDP shown in Figure 3; here,
the reward depends on an unobserved multinomial
random variable, so E[r] =

∑

i P(w = i)ri. If we
define P(wt|wt−1) to be the identity, the distribu-
tion of w will not change with t. Then, the ex-
pected reward depends linearly on our prior distri-
bution over w, and the dual of the usual POMDP
maximum-hyperplane algorithm corresponds to a
convex hull operation over reward components. It
is thus possible to write our multiple-reward prob-
lem as a POMDP problem. This suggests a nat-
ural route to extend our algorithm to operate on
POMDPs. It remains future work, however, to see
if the approximation algorithms used for solving
POMDPs can yield useful results in our domain.

Figure 3. A POMDP formulation of multiple reward
components

5. Complexity

This algorithm relies on four convex hull opera-
tions, whose complexity we will analyze in terms
of the number of points on the hull, n; in the limit,
this number converges to the number of optimal
policies in the environment. We must both scale
(by probabilities and discounts) and translate (by
rewards) our convex hulls; these operations only
require touching every point once, resulting in a
complexity of O(n). We must also merge two

or more convex hulls. This takes time at most
O((kn)⌊d/2⌋) if d > 3, where k is the number of
hulls involved, n is the number of points in each
hull, and d is the dimension (number of reward
components) (Clarkson & Shor, 1989). Finally, we
must add two convex hulls. If done naively by
adding all pairs of points and taking a hull, this
takes time at most O(n2⌊d/2⌋). All these opera-
tions must be performed whenever we back up Q-
values, so we multiply the complexity of ordinary
reinforcement learning by O(n2⌊d/2⌋). (However,
in the d = 2 and d = 3 cases, there are efficient
ways to perform these operations.)

In the long run, the number of points on each con-
vex hull, n, must converge to a limit as the Q-
values converge to their optimal values. Eventu-
ally, there will be exactly one point on each convex
hull for each optimal policy. However, in the short
term, the number of short-range policies we might
have to track might be much lower or even higher.
Also, the number of optimal policies n depends on
the environment in a complicated way, with the
worst case being that all policies (|A||S| of them)
may be optimal for some weight vector.

5.1. Reducing the complexity

The complexity result of our algorithmic modifica-
tions is an exponential blowup with the number of
reward components. There are a few main ways
of tackling this. The first is to simply restrict the
number of reward components; with only, say, 5
or fewer, this additional computation is likely not
to be an undue burden. In practice, there are cur-
rently very few problems studied with more reward
components than this.

When we must handle a high-dimensional prob-
lem, we can reduce the complexity by applying
constraints on the weight vectors that we might
optimize for. Given the geometric nature of our
approach, if we have knowledge about the direc-
tions of allowable vectors, such as −→a ·−→w > 0, then
we can simply take a partial convex hull. This will,
on average, reduce the complexity of the convex
hull computation by half. So, if we know that all d

elements of −→w must be positive, then we can write
that as d such constraints to divide the convex hull
complexity by 2d.

Learning All Optimal Policies with Multiple Criteria

In addition, the convergence of Q-values means
that we are essentially performing the same convex
hull operations again and again; this means that
we might be able to reuse the information from the
last iteration. The idea is to annotate each point
with a “witness”, or proof of its status: if a point
is not on the convex hull, then we note down a
set of faces that enclose it, and if it is on the hull,
we note down a direction in which it is the ex-
tremum. Then, on the next iteration, when these
points have moved slightly and we must compute a
convex hull again, we can simply check these proofs
(in at most O(n2) time). If all the proofs are cor-
rect, then our convex hull remains correct and the
locations of the points have moved only slightly.
On the other hand, if any proof is violated, we
can simply rebuild the convex hull in the ordinary,
expensive way. In the limit as the Q-values and
policy converge, the policy must stop changing, so
this trick may greatly reduce the complexity of re-
fining Q-values.

6. Example application: resource

gathering

In order to demonstrate the application of this
method, we have tested it on a resource-collecting
problem similar to that of many strategy games.
We model this as a resource-collecting agent mov-
ing (in the 4 cardinal directions) around in a grid
environment shown in Figure 4, starting from the
home base, labelled H. Its goal is to gather re-
sources and take them back to the home base. If
it reaches location R1, it then picks up resource 1,
and at R2 it gets resource 2; it can carry both at
the same time. When the agent returns to H, it
receives a reward for each resource it brings back.
Also, if it steps on one of the two enemy spaces,
labeled E1 and E2, with a 10% probability it will
be attacked, receiving a penalty and resetting to
the home space, losing all it carries. Its reward
space is then [enemy, resource1, resource2], so it
can get a penalty of [-1,0,0] for being attacked, or
a reward of [0,1,0], [0,0,1], or [0,1,1] for bringing
back one or both resources. We use a discounting
rate of γ = 0.9.

Depending on the relative values of the resources
and attack, the agent may find different policies

R2

R1

E1

E2

H

Figure 4. A resource-collection domain

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

0 E

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

R1

0

0.1

0.2

0.3

0.4

0.5

0.6

R2

1

2

3

4

5 6

Figure 5. Optimal rewards in the resource-collection
domain

to be valuable. The convex hull of values starting

at H,
◦

V (H), is shown in Figure 5. The points on
the hull correspond to optimal policies, described
in Table 1; each policy is valid for some range of
preferences −→w , which are shown in Figure 6.1

policy

1 Go directly to R2, dodging Es
2 Go to both Rs, through both Es
3 Go to R1, through E1 both ways
4 Go to both Rs, dodging E1 but through E2
5 Go to R1, dodging all Es
6 Go to R1, going through E1 only once

Table 1. The optimal policies for the example domain

1We do not show the ranges of policies optimal
where the values of the rewards are less than 0 (wi <

0); these policies, while sometimes interesting, are not
valuable for the task.

Learning All Optimal Policies with Multiple Criteria

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R1

R2

1
2

3

4

5 6

(E)

Figure 6. Regions of preference space in which policies
are optimal. Axes are reward components R1 and R2;
the enemy weight is E = 1 − R1 − R2.

7. Extensions and current work

This same convex-hull technique can be used with
other RL algorithms, such as the temporal differ-
ence learning algorithm. The critical thing to re-
call is that because we are learning more than one
policy at once, we can use only off-policy learning
algorithms.

Our solution can also be used for inferring the
preference function from observation data. This is
closely related to the inverse reinforcement learn-
ing problem (Ng & Russell, 2000; Abeel & Ng,
2004). The basic idea behind inverse reinforce-
ment learning is to use observed behavior to infer
weights from a user that can then be used to find
optimal policies. In our case, the method for learn-
ing all policies at once can also be used in reverse
to learn the range of reward weights that an agent
must have. If we assume that an agent we observe
is rational and uses a policy that is optimal for its
reward weights, then we can use our observations
of the agent to infer its reward weights. We sim-
ply repeatedly observe its choice of action a and

use our knowledge of
◦

Q(s, a) to identify which val-
ues of −→w are consistent with that action. Then,
we take the intersection of the constraints.

The multi-criterion RL approach also allows us to
examine reward at different time scales. Instead of
having a single discounting factor γ, we could have
a discounting factor γi for each component. This
allows us to use a sum of exponentials with differ-

ent time constants to approximate non-exponential
discounting rates, which are helpful in explaining
the preferences of humans (Ainslie, 2001). With
our convex hull method, we can find what policies
are optimal for a whole range of discounting rates.

8. Appendix: Proof of correctness

We prove that ∀−→w Algorithm 1 gives the optimal
policy by reducing the recurrence to the standard
value iteration recurrence for any −→w . First, recall
the basic recurrence of our algorithm, Equation 6.

◦

Q(s, a)← E

[

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)|s, a

]

Now apply Equation 5 to the both sides (to extract
the optimal value for −→w):

Q−→w (s, a) ← max{−→w · −→q : −→q ∈ E

[

−→r (s, a)

+γ hull
⋃

a′

◦

Q(s′, a′)|s, a

]

}.

Next, apply the definition of an expectation

← max {−→w · −→q : −→q ∈
∑

s′,−→r (s,a) P(s′,−→r (s, a)|s, a)

·

(

−→r (s, a) + γ hull
⋃

a′

◦

Q(s′, a′)

)

},

then use Equations 3 and 4 and rewrite

← max{−→w · −→q : −→q ∈ hull

{

∑

i,−→r (s,a)

P(s′i,
−→r (s, a)|s, a)

(

−→r (s, a) + γ−→q
′
s′

i

)

: −→q
′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

}.

← max

{

−→w ·
∑

i,−→r (s,a)

P(s′i,
−→r (s, a)|s, a)

·

(

−→r (s, a) + γ−→q
′
s′

i

)

:

−→q
′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

Learning All Optimal Policies with Multiple Criteria

← max

{

E

[

−→w · −→r (s, a)

∣

∣

∣

∣

s, a

]

+γ
∑

i

P(s′i|s, a)−→w · −→q
′
s′

i

:

−→q
′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

.

Pull −→r (s, a) (added independently to the entire
set) and γ (non-negative) out of the maximum.

← E[−→w · −→r (s, a)|s, a]

+γ max

{

∑

i

P(s′i|s, a)−→w · −→q
′
s′

i

:

−→q
′
s′

1

∈ hull
⋃

a′

◦

Q(s′1, a
′), . . .

}

But the max of a sum over different sets is the sum
of the sets’ maxima, which we simplify.

← E[−→w · −→r (s, a)|s, a] +

γ
∑

i

P(s′i|s, a)max

{

−→w · −→q
′
s′

i

:

−→q
′
s′

i

∈ hull
⋃

a′

◦

Q(s′i, a
′)

}

← E[−→w · −→r (s, a)|s, a]

+γ
∑

i

P(s′i|s, a)max

{

−→w · −→q
′
s′

i

:

−→q
′
s′

i

∈
◦

Q(s′i, a
′), a′ ∈ A(s′i)

}

← E[−→w · −→r (s, a)|s, a]

+γ
∑

i

P(s′i|s, a)max
a′

max
q′

s′
i

∈
◦

Q(s′

i
,a′)

−→w · −→q
′
s′

i

But we re-order the maxima and rewrite an ex-
pectation, and so we recover our recurrence for a
single −→w .

Q−→w (s, a)← E

[

−→w · −→r (s, a) + γ max
a′

◦

Q−→w (s′, a′)

∣

∣

∣

∣

s, a

]

.

Given a −→w , at any point in the algorithm, this
gives the same Q-value as ordinary value iteration.
Therefore, the proof of convergence for the value
iteration algorithm applies to our method, and our
method converges exactly as quickly as ordinary
value iteration (for every −→w).

References

Abeel, P., & Ng, A. (2004). Apprentice learning via
inverse reinforcement learning. Proc. ICML-04.

Ainslie, G. (2001). Breakdown of will. Cambridge,
Massachusetts: Cambridge University Press.

Bellman, R. E. (1957). Dynamic programming.
Princeton: Princeton University Press.

Clarkson, K. L., & Shor, P. W. (1989). Applica-
tions of random sampling in computational ge-
ometry, II. Discrete and Computational Geom-

etry, 4, 387–421.

Feinberg, E., & Schwartz, A. (1995). Con-
strained markov decision models with weighted
discounted rewards. Mathematics of Operations

Research, 20, 302–320.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998).
Multi-criteria reinforcement learning. Proc.

ICML-98.

Kaelbling, L. P., Littman, M. L., & Cassandra,
A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelli-

gence.

Mannor, S., & Shimkin, N. (2004). A geometric ap-
proach to multi-criterion reinforcement learning.
Journal of Machine Learning Research, 325–360.

Natarajan, S., & Tadepalli, P. (2005). Dynamic
preferences in mult-criteria reinforcement learn-
ing. Proc. ICML-05. Bonn, Germany.

Ng, A., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML-00.

Russell, S., & Zimdars, A. (2003). Q-
decomposition for reinforcement learning agents.
Proc. ICML-03. Washington, DC.

Sutton, R., & Barto, A. (1998). Reinforcement

learning: An introduction. Cambridge, Mas-
sachusetts: The MIT Press.

