
Question Answering Based on Semantic StructuresSrini NarayananInternational Computer Science Institute1947 Center StreetBerkeley, CA 94704snarayan@icsi.berkeley.edu Sanda HarabagiuDepartment of Computer ScienceUniversity of Texas at DallasRichardson, TX 75083sanda@hlt.utdallas.eduAbstractThe ability to answer complex questions posed in Natu-ral Language depends on (1) the depth of the availablesemantic representations and (2) the inferential mecha-nisms they support. In this paper we describe a QA ar-chitecture where questions are analyzed and candidateanswers generated by 1) identifying predicate argumentstructures and semantic frames from the input and 2)performing structured probabilistic inference using theextracted relations in the context of a domain and sce-nario model. A novel aspect of our system is a scal-able and expressive representation of actions and eventsbased on Coordinated Probabilistic Relational Models(CPRM). In this paper we report on the ability of theimplemented system to perform several forms of prob-abilistic and temporal inferences to extract answers tocomplex questions. The results indicate enhanced accu-racy over current state-of-the-art Q/A systems.1 IntroductionCurrent Question Answering (QA) systems extractanswers from large text collections by (1) classify-ing the answer type they expect; (2) using questionkeywords or patterns associated with questions toidentify candidate answer passages; and (3) rankingthe candidate answers to decide which passage con-tains the exact answer. Few systems also justify theanswer by performing abduction in �rst-order pred-icate logic (Moldovan et al., 2003). This paradigmis limited by the assumption that the answer canbe found because it uses the question words. Al-though this may happen sometimes, this assump-tion does not cover the common case where an in-formative answer is missed because its identi�cationrequires more sophisticated processing than namedentity recognition and the identi�cation of an answertype. Therefore we argue that access to rich seman-tic structures derived from domain models as well asfrom questions and answers enables the retrieval ofmore accurate answers as well as inference processesthat explain the validity and contextual coverage ofanswers.We consider several stages of deeper semantic pro-cessing for answering complex questions. A �rststep in this direction is the incorporation of \se-mantic parsers" that recognize predicate-argumentstructures or semantic frames when processing bothquestions and documents. A second step is the iden-ti�cation of a topic model that contributes to the

interpretation of the question and generates a pos-sible index in an o�-line battery of ontologies. Thethird step consists of building a scalable and expres-sive model of actions and events which allows thesophisticated reasoning imposed by QA within com-plex scenarios. We embed the three forms of seman-tic representations and the inference they enable ina novel, 
exible QA architecture that allows us toevaluate the impact of each new form of semanticinformation on the accuracy of answering complexquestions.The remainder of this paper is organized as fol-lows. In Section 2 we present the semantic knowl-edge that we extract from questions and answersas well as our novel QA architecture. In Section3 we detail our model of event structure. Section4 presents the types of inference that are associatedwith the event structure. Section 5 details the resultsof our initial evaluations. Section 6 summarizes theconclusions.2 Semantic Structures for QAProcessing complex questions involves the identi�ca-tion of several forms of complex semantic structures.First we need to recognize the answer type that isexpected, which is a rich semantic structure, in thecase of a complex question, or a mere concept inthe case of a factual question. Second, we need toidentify the question class or the question pattern.Third, in the case of a complex question, which ispart of a scenario, we need to model the topic of thescenario.At least three forms of information are needed fordetecting the answer type: (1) question classes andnamed entity classes; (2) syntactic dependency in-formation; and (3) semantic information taking theform of (i) predicate-argument structures or seman-tic frames and (ii) the representation of the questiontopic. The following question illustrated the signi�-cance of each of the three forms of information:Q1: \What stimulated India's missile program ?"The question stem \what" is ambiguous, as multipleanswer types could be associated with a questionpattern \What stimulated X?". To �nd candidateanswers, the recognition of \India" and other relatednamed entities, e.g. \Indian", as well as the nameof the \Prithvi missile" or its related program is im-portant. To better process question Q1, the syntac-
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DocumentsFigure 1: QA architecture based on several forms of semantic structures.tic dependencies enable the recognition of predicate-argument structures. The predicate-argument struc-ture of Q1 is:
PREDICATE: Stimulate

ARG0 (role = agent) ANSWER (part 1)

ARG2 (role = instrument) : ANSWER (part 2)
ARG1 (role = thing increasing): India’s missile progamThe predicate-argument structure was built basedon the de�nitions of the PropBank project (Kings-bury et al., 2002). The structure indicates that theanswer may have the role of agent or even the roleof instrument. When additional information fromFrameNet (Baker et al., 1998) is used, we �nd thatthe answer may have four other semantic roles, de-rived as frame elements of two distinct frames:

FRAME: Stimulate

Frame element CIRCUMSTANCES:  ANSWER (part 1)
Frame Element EXPERIENCER: India’s missile progam
Frame Element STIMULUS : ANSWER (part 2)

FRAME: Subject_stimulus

Frame element CIRCUMSTANCES:  ANSWER (part 3)
Frame element COMPARISON SET:  ANSWER (part 4)
Frame element EXPERIENCER:  India’s missile program
Frame element PARAMETER:  nuclear proliferationNone of these semantic roles are fully speci�ed.To interpret the semantic information constrainedby the thematic roles, we need to also have access toa topic model of the scenario in which the questionis being asked. For example. for the question: Q2:\How can a biological weapons program be detected?" the topic model consists of (a) a set of typicalrelations between topic concepts; and (b) a set ofpossible paths of actions. As it is illustrated in Fig-ure 1, the identi�cation of (a) predicate-argumentstructures and (b) semantic frames contributes tothe recognition of the expected answer as well as tothe formation of the topic model.Question Q2 is mapped into its pattern and itsfocus, which has the role of the topic of the ques-tion. The document passages retrieved for the spe-ci�c topic can be used to extract the most relevanttopic relations with the method detailed in Section 2.The event structure, detailed in Section 3 enablesthe recognition of possible paths of action in theformat of chains between the events lexicalized inthe topic relations. The set of possible paths of ac-tions generate di�erent interpretations of the ques-tions focus, which facilitate the mapping of the orig-

Question PATTERN: How can X be detected?

Question FOCUS: X = biological weapons program

TOPIC MODEL

[stockpile −− weapons], [deliver −− missiles]

Topic relations: [develop −− program], [produce −− bilogical agents]

Possible paths of action

Predicate−argument structure

PREDICATE: = detect
Arg0 (detector) : Answer (1)
Arg1 (detected): biological weapons program
Arg2 (instrument) ; Answer (2)

2) development −−> acquisition −−> stockpiling −−> delivery
1) development −−> production −−> stockpiling −−> delivery

   1) program for producing biological weapons     
   2) program for acquiring biological weapons

FOCUS Interpretation

PREDICATE: = produce
Arg0 (producer) : Answer 
Arg1 (product): biological weapons

PREDICATE: = acquire
Arg0 (buyer) : Answer 
Arg1 (object): biological weaponsFigure 2: Question processing based on topic models.inal predicate-argument structure in other predicatestructures in which the semantic type of the answerhas less ambiguity. Figure 2 illustrates the mappingof the predicate detect in the predicates produce andacquire that can be extracted in parallel. This map-ping enabled by the topic model corresponds to thedecomposition of the original complex questions intoa set of less complex questions.Because the model for event structure has the ca-pability of (1) incorporating domain knowledge inOWL-based representations1; and (2) performs sev-eral forms on inference on this knowledge, it can beused to extract candidate answers from the passagesretrieved by the topic relations. The QA architec-ture that takes advantage of these semantic struc-tures and the inference they enable is illustratedin Figure 1. The syntactic parse is produced bythe Collins parser (Collins, 1996), the Named En-tity Recognizer (NER) is an implementation of theNER reported in (Bikel et al., 1999) whereas the1OWL is a markup language for the semantic web(http://www.semanticweb.org) which allows for the speci�-cation of ontologies and the semantic markup of documentsin an xml format on the web



predicate-argument structures and the frame ele-ments are parsed with the techniques described inSection 2.1. All these four operations are performedboth in the question processing module and in thedocument processing module. The topic model, gen-erated at question processing, has three roles: (1) itprovides an index for the event structures to �ndontological information; (2) it re�nes the de�nitionof the answer type; and (3) it improves the qualityof the retrieved answer passages because it makestopic-relevant relations available. The derivationof the topic model is based on the predicate argu-ment structures derived from the question, whereasthe answer type and the event structures rely onthe frame semantics available from questions andrelevant passages. Because PropBank has higherlexical coverage than FrameNet, whenever the se-mantic frames cannot be recognized, the QA sys-tem falls back on the predicate-argument structureidenti�ed in questions and documents. This back-o�mechanism enables (1) indexing and retrieving rel-evant passages from document collections by usinglexico-semantic knowledge; and (2) the recognitionof the event structure referred by questions and an-swers. The Probabilistic Inference Networks (PINs)described in Section 5.2 select the answer structuresand identify the answers to be returned.2.1 Predicate and Frame StructuresProposition Bank or PropBank is a one millionword corpus annotated with predicate-argumentstructures, which were described in (Kingsburyet al., 2002). The corpus consists of thePenn Treebank 2 Wall Street Journal texts(www.cis.upenn.edu/�treebank). For every givenpredicate lexicalized by a verb, a set of arguments se-quentially numbered from Arg0 to Arg5 were anno-tated. The general procedure was to select for eachverb the roles that seem to occur most frequentlyand use these roles as mnemonics for the predi-cate arguments. Generally, Arg0 would stand foragent, Arg1 for direct object or theme whereas Arg2represents indirect object, benefactive or instrument,but mnemonics tend to be verb speci�c. For exam-ple, the argument structure for the verb-predicatesteal has Arg0:agent, Arg1:theme, Arg2:source, andArg3:bene�ciary. Additionally, the argument mayinclude functional tags from Treebank, e.g. ArgM-DIR indicates a directional, ArgM-LOC indicates alocative, and ArgM-TMP stands for a temporal.The FrameNet project annotates roles de�ned foreach semantic frame. A frame is a schematic rep-resentation of situations involving various partici-pants, props and other conceptual roles, all calledFrame Elements (FEs). For example the frameTHEFT describes situations in which a Perpetra-tor takes Goods that belong to the Victim . TheMeans by which this is accomplished may be alsoexpressed. The British National Corpus is used forannotations.(Gildea and Jurafsky, 2002) and (Gildea and

Palmer, 2002) report on the same statistical methodthat labels argument roles from PropBank or FEsfrom FrameNet on any English sentence that is syn-tactically parsed. Their method consists of two clas-si�cation tasks: (1) identifying the parse tree con-stituents corresponding to the predicate argumentsor the FEs; and (2) recognizing the role of theargument or FE. They have introduced seven fea-tures that (a) were used for training both classi�ers;and (b) worked both for PropBank and FrameNet.In (Surdeanu et al., 2003) seven additional fea-tures were proposed, that enhanced the performanceof the classi�ers. By using both sets of featuresin our implementation using the SVM-light soft-ware available from http://svmlight.joachims.org, weautomatically transformed the Question Q3 intothe predicate-argument structure PAS(Q3) and theFrame Structure FS(Q3):
[Arg2: from the Russian navy]?

Q3: What kind of nuclear materials were stolen from the Russian navy ?

FS(Q3): What [GOODS: kind of nuclear materials] were 

PAS(Q3): What [Arg1: kind of nuclear materials] were [Predicate: stolen]

[target−Predicate: stolen] [VICTIM: from the Russian navy]?The expected answer, as predicted by PAS(Q3)is the Arg1 of the predicate 'steal', when the Arg2has the head 'Russian navy'. Additionally, the an-swer needs to be in the same semantic class as 'nu-clear materials'. The FEs from FS(Q3) show that weshould search for an FE with the role Goods when-ever we �nd a target word of the frame STEAL. Theparagraphs containing candidate answers are parsedsimilarly. For example, the correct answer A(Q3) istransformed into the predicate-argument structurePAS((A(Q3)) and the Frame Structure FS(A(Q3)):
A(Q3): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,

approximately 7 kg of HEU was reportedly stolen from a naval
base in Sovetskaya Gavan .

PAS(A(Q3)): [Arg1(P1) Russia’s Pacific Fleet] has [ArgM−DIS(P1) also] 

[ArgM−TMP(P2): in 1/96], [Arg1(P2): approximately 7 kg of HEU]
[Predicate(P1): fallen] [Arg1(P1): prey to nuclear theft];

was [ArgM−ADV(P2) reportedly] [Predicate(P2): stolen]
[Arg2(P2): from a naval base] [Arg3(P2): in Sovetskaya Gavan]

FS(A(Q3)): [VICTIM: Russia’s Pacific Fleet] has also fallen prey to
[GOODS: nuclear] [target−Predicate(P1): theft]; in 1/96,

[target−Predicate(P2): stolen] [VICTIM(P2): from a naval base]
[GOODS(P2): approximately 7 kg of HEU] was reportedly

[SOURCE(P2): in Sovetskaya Gavan]In PAS(A(Q3)) we identify two predicates, in-dexed P1 and P2. P2 is lexicalized with the sameword-lemma as the predicate from Q3, thus itsArg1(P2): 'approximately 7 kg of HEU' provides theexact answer. It is to be noted that its Arg2(P2)is 'a naval base' which has a meronym relationwith the previously mentioned NP 'Russia's Paci�cFleet', a meronym of 'Russian navy'. The samemeronymy needs to be resolved between the FEVic-tim of stolen' and the FE of Victim of theft in theFS(A(Q3)). In the second case the meronymy isidenti�ed since the second frame identi�es an eventwhich is an example of the event identi�ed by the�rst frame.



2.2 Topic ModelsIn question processing two objects need to be identi-�ed: (1) the expected answer type and (2) the focus ofthe question. For example, in question Q2: How cana biological weapons program be detected ?", the ex-pected answer type isManner(of detection) and thefocus is 'biological weapons program'. When process-ing complex question the role of the focus becomesmore important, since it guides the recognition ofthe topic model associated with the question, whichin turn enables the identi�cation of partial answersand the relations between them. To identify the ex-pected answer type, we can rely on the question stem(e.g. \How") and its associated semantic classes orwe can determine the answer type by using a combi-nation of features associated with the question stemand one or more of the question words. For exam-ple, the question \How long does it take to produceweapons of mass destruction ?" has the answer typeTime Span determined by the combination of thestem 'how' and the adverb 'long'. This informationis much more relevant for identifying the expectedanswer type than the fact that the predicate 'take'has ArgM='how long' and Arg2='produce weaponsof mass destruction', which represents the focus ofthe question.Complex questions rely on topic models for �ndingthe answer since it is unlikely that in a text collec-tion the exact answer to a complex questions can befound, but it is more likely that partial answers canbe detected, and then they may be combined forgenerating the most informative answer. We usedan incremental topic representation that was intro-duced in (Harabagiu, 2004). Information about atopic is modeled through two incremental enhance-ments of the topic signatures introduced in (Lin andHovy, 2000). The �rst enhancement determines aset of seed relations. The methodology considers:(1) �ltering out outliers of the terms identi�ed asrelevant with the statistical method based on likeli-hood ratio reported in (Lin and Hovy, 2000)(2) morphological expansion of the nouns and verbsfrom the topic signature;(3) semantic normalization through the NER and ano�-line ontology of 22,000 words; and(4) selection of the topic seeds with the same like-lihood ratio method applied for acquiring the topicconcepts. The seeds are the most relevant [Verb-Noun] pairs which have a predicate-argument rela-tionship.For question Q3 words like 'say', 'have' or 'identify'were �ltered out, living words like 'weapons', 'sarin'and 'produce' as the most relevant topic concepts.The morphological expansion added words like 'pro-duction' whereas the semantic normalization uni�ed'Russian' and 'Iraqi' into Nationality and ' bomb'or 'building' into Artifact.The seed relations that was selected for ques-tion Q3 is [develop - program]. The relation is fur-ther used to produce a corpus of paragraphs re-

lated to the corpus, from which new topic relationscan be extracted. Two types of relations are tar-geted: (1) syntax-based relations (e.g. Verb - Sub-ject, Verb - Object and Verb - Prepositional Attach-ment) and (2) salience-based relations, which modellong-dependency relations to a seed concept. Therelations are ranked based on a methodology intro-duced in (Rilo�, 1996) each relation is ranked basedon its Relevance-Rate and its Frequency. The Fre-quency of an extracted relation counts the number oftimes the relation is identi�ed in the relevant para-graphs. The Relevance-Rate = Frequency / Count,where Count measures the number of times an ex-tracted relation is recognized in any paragraph con-sidered.This ranking allows us to select a new topic rela-tion, and to resume the topic modeling procedure,this time on a new corpus generated by the mostrecently discovered relation. We stop the discoveryprocess when we have identi�ed 20 topic relations.Some of the topic relations discovered for questionQ2 are illustrated in Figure 2.The second enhancement of topic representationsreported in (Harabagiu, 2004) considers the notionof topic theme that associates clusters of topic rela-tion with text segments. The segmentation is pro-duced by the TextTiling algorithm (Hearst, 1997).The nominalization of the verb corresponding to themost relevant topic relation in a segment is consid-ered to be linked to the nominalization from the fol-lowing topic-relevant segment. Such segments arecalled themes and the chains of nominalizations rep-resent possible paths of actions. Two such paths arerepresented in Figure 23 From Semantic Extraction toInference for QASemantic extraction allows us to identify predica-tions in the input text. For processing complexquestions we further identify the question class orthe question pattern as well as relevant parts of thescenario which we refer to as the topic model. Asigni�cant gap remains between a) the unstructuredand intuitively chosen tag sets used in FrameNet orPropBank and the relation names and clusters inthe topic model and b) a formal characterization ofthe interrelated events, actions, states and relationsholding among them. The explicit representation ofsuch frame semantic and event structure informationis needed for for the potential use of such resourcesfor question answering.In previous work (Chang et al., 2002), we bridgedthe gap by de�ning a formalism that unpacks theshorthand of frames into structured event represen-tations. This allows annotated FrameNet data toparameterize event simulations (Narayanan, 1999)that produce �ne-grained, context-sensitive infer-ences. We have extended this work to further incor-porate the topic model and theme described earlier.Currently, the list of extracted predicate-argument



structures, the topic model and the answer typepredicate are used to index into a set of parame-terized event representations instantiated to speci�cvalues based on the extracted predicate-argumentbindings (see Figure 3). The answer type predicatetranslates to a speci�c inference procedure.Figure 3 (middle) shows the representation of ex-tracted predicate-argument bindings in our param-eterized event formalism, Embodied ConstructionGrammar (ECG)(Bergen and Chang, in press), thatmaps annotations to event simulations. ECG is aconstraint-based formalism similar in many respectsto other uni�cation based linguistic formalisms suchas HPSG or LFG (features, roles, constraints, simpleand complex slots, subcasing, and a self reference).ECG di�ers from other linguistically motivated pro-posals in 1) the use of an evokes relation that mod-els the priming of a background schema (role inher-itance is lazy and explicitly speci�ed) and 2) thecomplex network of conceptual schemas in ECG aredesigned to map utterances to mental simulationsin context to produce a rich set of inferences. It isthus ideally suited for our current goal of translat-ing frames to conceptual representations. Figure 3(middle left) shows the theft schema instantiatedto the bindings extracted from the answer passage.Figure 3 (middle right) shows the schema instanceenhanced with inferentially derived additional bind-ings.
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Evokes: FN:Crime_Scenario as FNC
Subcase_of: FN:Take
Subcase_of: FN:Committing_Crime

Roles
Evokes: FN:Crime_Scenario as FNC
Subcase_of: FN:Take
Subcase_of: FN:Committing_Crime

THEFT(?MEANS)

OWN(?PERPETRATOR, "approx. 7KG HEU")
MEANS: ?m
SOURCE: "in Sovetskaya Gavan"
GOODS: "approx. 7 KG of HEU"
VICTIM: "Russian Navy, Pacific Fleet,Naval Base"
PERPETRATOR: ?x:AGENT

SOURCE: "in Sovetskaya Gavan"
GOODS: "approx. 7 KG of HEU"

A(Q3): Russia’s Pacific Fleet has also fallen prey to nuclear theft; in 1/96,
approximately 7 kg of HEU was reportedly stolen from a naval
base in Sovetskaya Gavan .

[GOODS(P2): approximately 7 kg of HEU] was reportedly

FS(A(Q3)): [VICTIM: Russia’s Pacific Fleet] has also fallen prey to

[target-Predicate(P2): stolen] [VICTIM(P2): from a naval base]
[SOURCE(P2): in Sovetskaya Gavan]

[GOODS: nuclear] [target-Predicate(P1): theft]; in 1/96,

Figure 3: From Semantic Extraction to InferenceFigure 3 (bottom) shows a fragment of the eventsimulation for the theft frame (all the informa-tion in this simulation is generated from informa-tion in the FrameNet database).2 Preconditions2In general, as we argued in (Chang et al., 2002), there is aconsiderable gap between FrameNet representations and com-putational models capable of inference. Our current e�ortsinvolve mainly manual translations from FrameNet frames toECG representations. As FrameNet matures and the variousFrame and FE relations grow and become systematized, wemay be able to automate the process of going from Event

and world states that obtain before the event in-clude a) victim owns the goods, b) the perpe-trator is at the source and c) the goods are atthe source. The theft event can be a simple tran-sition or can zoom-in to a complex event with phases(such as start, ongoing, �nish, interrupt, cancel, re-sume, stop). Complex events can include monitoringand detection conditions as well as resource produc-tion, consumption and locking. The completion oftheft results in a) the perpetrator owning thegoods and b) the evocation of the crime scenarioschema, which gets simulated if other conditions ob-tain (such as authorities notice the crime). Thee�ect of one action may probabilistically enable, dis-able, interrupt, or terminate other possible events(such as own provides evidence for the future sellevent). The result of running the inference processfor this example results in 1) identi�cation of rele-vant unbound roles (perpetrator and means) and2) highly probable new assertions and bindings (theperpetrator owns the goods after the theft). 1) sug-gests new scenario-based query expansion strategiesand is a result of updating the state variables afterthe new evidence (extracted predicate-arguments) isasserted as this process is called �ltering. 2) isthe resultant state after executing the action andis computed by a) executing the action and identi-fying reachable states and b) updating the stateafter the action to �nd the Maximum A Poste-riori (MAP) probabilities. These procedures areamongst the important inference methods for struc-tured stochastic processes and are directly supportedby our implementation.Technically, the event structure implementationuses a factorized model of states based on Tempo-rally Extended (aka Dynamic) Probabilistic Rela-tional Models (Murphy, 2002; Pfe�er, 2000; Getooret al., 2001) that enable a variety of inferences thatupdate and revise the state variables (forward andbackward in time). Central to the representationof actions and events is an event model called ex-ecuting schemas (or x-schemas), motivated byresearch in both sensorimotor control and cognitivesemantics (Narayanan, 1997). X-schemas are ac-tive structures based on Stochastic Petri Nets (Cia-rdo et al., 1994) that cleanly capture sequentiality,concurrency and event-based asynchronous control3.Our implementation integrates the PRM based statemodel with the x-schema based action model and iscalled Coordinated Probabilistic Relational Modelsor CPRM. Our CPRM implementation, KarmaSIM,is linked to existing linguistic resources (FrameNetand WordNet) and to ontologies on the semanticFrames in FrameNet to event simulations. But that issue re-mains open.3X-schemas have been shown to provide a cognitivelymotivated basis for modeling diverse event-structure re-lated linguistic phenomena, including aspectual inference(Chang et al., 2002), metaphoric inference (Narayanan,1997) and event-based reasoning in narrative understanding(Narayanan, 1999).



web. To address the vexing issue of domain spe-ci�c Knowledge Acquisition (KA), in past work wehave constructed automatic translators from OWL-based event and process ontologies (such as OWL-S) to the CPRM modeling framework, KarmaSIM(Narayanan and McIlraith, 2003). WordNet, Open-CYC, and SUMO are also available in OWL. Forthe experiments reported here, we used the OWL-based Teknowledge WMD ontology4 to instantiatethe general frames obtained from FrameNet5. TheCPRM model populated with domain knowledge tofunctions as a QA system component for answer ex-traction (see Figure 2).We have developed a protocol that allows us totake predicates and frames extracted from the inputtext and perform a variety of causal and event struc-ture related inferences for QA. Currently, the mainAPI between the semantic extraction and inferencecomponents makes use of 1) extracted predicate-argument structures, 2) extracted topic models and3) a set of extracted answertype predicates. Thetopic models provide an index into the CPRMmodeldatabase (compiled from existing FrameNet and Se-mantic Web (OWL-based) databases). CPRMMod-els matching the topic model are retrieved and in-stantiated by the predicate argument bindings spec-i�ed by the semantic parse output. The answertypepredicates are mapped to speci�c structured proba-bilistic inference procedures a�orded by the CPRMmodels. The next section outlines the currently im-plemented CPRM inference algorithms and their usefor question and answer processing.4 Inference With CPRMs for QAInference in structured probabilistic models of dy-namic systems (as in the CPRM model) consists ofthe following kinds of computations. Here Xt is astate variable at time t (lowercase xt is a value as-signment), and yt is an observation value at time t.Filtering:Compute P (Xtjyi:::t). State update basedon the observation sequence.Prediction: Compute P (Xt+hjy1:::t). Predict thestate at some future time t+ h based on the obser-vation sequence up to time t.Smoothing: Compute P (Xt�mjy1:::t). Recomputepreviously estimated states in the present of currentevidence.MAP: Compute argmaxx1:::t(P (x1:::tjy1:::t). Com-pute the best assignment of state values given theobservation sequence.Reachability:Given a CPRM S with an initial stateXt and a �nal state Xf , is Xf 2 R(S; Xt)?We compiled a list of complex, semantically rich,4http://www.reliant.teknowledge.com/DAML/WMD.owl5The compilation process is not completely automated,since none of the owl ontologies were rich enough to coverour event structure model. For the experiment, we restrictedany information added to the OWL-based ontologies to theclass documentation strings provided in the ontology. We arecurrently trying to use semantic extraction to automaticallygenerate this information from the documentation.

high frequency answer types for questions in theAQUAINT CNS data.6 The top four categories wereto 1) Support/Justi�cation for a proposition, 2) theability of an agent to perform a speci�c act, 3) tem-poral projection or predictions from a state, and 4)hypothetical situations (including counterfactuals).In our model, these map straightforwardly into therunning of various inference procedures (includingtheir sequential application) described in Section 3.For counterfactuals, we use the idea of model inter-vention (proposed by (Pearl, 2000)). The exact de-tails of the algorithm for counterfactuals is outsidethe scope of this paper. Table 4 summarizes thevarious query types and the corresponding inferencealgorithms. We don't know of any previously im-plemented QA system (going from text to inference)capable of handling these kinds of questions.Answer Type Inference TypeJust(Proposition) MAPAbility(Agt,Act) F;SPrediction(State) P;R;MAPHypothetical(I,State) F;RITable 1: The type of answer required and the inferencealgorithm used in the CPRM model. HereMAP standsfor Maximum A Posteriori estimation, F for �ltering, Sfor smoothing, R for reachability, and P for predictiveinference. , indicates sequential application. The symbolI represents a speci�c intervention into the CPRM net-work (Pearl 2000) as speci�ed by the hypothetical con-dition. Computing reachability after the intervention isgiven by RI .5 Evaluating Semantically based QAThe previous sections described techniques to incor-porate semantic components at increasing levels ofdepth and complexity. We now report on experi-ments conducted to evaluate the utility of these dif-fering We report on results pertaining to the impactof (1) the identi�cation of semantic structures and(2) inference through CPRMs on a baseline state-of-the-art Q/A system that emerged after �ve years ofTREC evaluations.5.1 Evaluating semantic informationTo evaluate our novel QA architecture we have useda set of 400 questions pertaining to four di�erenttopics: (T1) UN inspections; (T2) Thefts in Russia'snuclear navy, (T3) Status of India's Prithvi ballisticmissile project and (T4) China's participation in non-proliferation regimes. For each topic we have createda gold standard consisting of (1) 100 questions; (2)one or several text spans considered correct answersby two independent judges; (3) the syntactic parseproduced by the Collins parser (Collins, 1996) whichwas manually corrected; (4) the predicate argumentstructures of the questions and its corresponding6AQUAINT is an ARDA sponsored QA program. TheCenter for Non-Proliferation (CNS) data is a data source re-leased to the AQUAINT project.



Corpus P(Arg) R(Arg) F1(Arg)PropBank 85.4 85.6 85.5AnswerBank 89.4 89.5 89.4Corpus P(Role) R(Role) F1(Role)PropBank 88.5 92.7 90.5AnswerBank 86.8 95 90.7Table 2: Identi�cation of predicate-argument struc-tures.Corpus P(FE) R(FE) F1(FE)FrameNet 75.2 77 76.08AnswerBank 73.5 74 73.74Corpus P(Role) R(Role) F1(Role)FrameNet 91.57 89.13 90.33AnswerBank 90.2 88.5 89.34Table 3: Identi�cation of frame structures.answer, produced automatically and then correctedmanually; (5) the semantic frames whenever theycould be identi�ed. The answers were extractedfrom the AQUAINT CNS corpus. The gold standardwas used for evaluating the precision (P(Arg)) andrecall (R(Arg)) of identifying the correct boundariesof predicate arguments. We have also computed andF1-score as F1(Arg)= 2P (Arg)�R(Arg)P (Arg)+R(Arg) . Table 2 liststhe results. The Table also lists the precision of clas-sifying the arguments (P(Role)), the recall for argu-ment classi�cation (R(Role)) and the correspondingF1-score. The results are presented for two corpora:the PropBank section 23; and AnswerBank, whichrepresents our gold standard. Table 3 presents sim-ilar results for recognizing the boundaries of frameelements (FEs) from FrameNet and for classifyingtheir semantic roles.5.2 Evaluating the CPRM model for QAWe experimented with the QA system on theAQUAINT CNS data. Since there are no imple-mented QA systems that perform the kinds of com-plex inferences described above, our evaluation withrespect to the current state-of-the-art baseline re-lates to the enhanced set of questions and answertypes our system can handle. We wanted to calibrateto extent and type of inferences needed for di�erentquestions in the CNS scenario data as well as the ex-tent to which such inferences require manual domainmodel building. To this end, we created a set of 400hand-annotated question answer passages for thegold standard. We measured the performance of oursystem with along the following dimensions. 1) Howwell did the automatically constructed CPRM do-main models (from the OWL ontologies) fare whencompared to the manually constructed (from gold-standard CNS data) CPRM model? 2) How capa-ble was our CPRM event model in performing a setof complex event-structure based inferences required

for QA?To test (1), we manually compiled CPRM domainmodels based on our core theory of events and onthe gold standard annotations (we used a 60-20-20 build-validate-test dataset). We compared thisto the semi-automatically generated from the OWLdatabases of WMD processes. For our �rst exper-iment, we looked at how many of the complex, se-mantically rich inference types could be made byour system for the two models. Figure 4 shows the
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OWL-based Domain Model Manually generated from CNS dataFigure 4: Performance of the CNS-based (gold stan-dard) and OWL-derived CPRM models based on infer-ence typeperformance of the two systems on the CNS gold-standard annotations (the results are for the testdata of 80 questions). Note that both the manuallybuilt and the OWL-based models perform reason-ably well for the di�erent inference types we lookedat. This is somewhat encouraging given that this isthe �rst inference based QA system (that we areaware of) that goes from textual input to infer-ence. The main shortcoming of the OWL-derivedmodels was that they lacked detailed speci�cationsof the processes, their resource requirements, anda detailed list of agent abilities, preconditions, ef-fects and maintenance conditions. We are seeking toovercome this de�ciency through a variety of auto-matic techniques, semantic web resources, and Sub-ject Matter Expert (SME) input using the CPRMGUI to bootstrap and enhance the acquisition ofdomain speci�c knowledge. However, results fromthese e�orts remains future work.To test (2), we looked at the percentage of in-ferences by di�erent types of event-structure infer-ences that had to be made to generate the answerfor the questions in the 400 gold standard anno-tations. The categories we looked at were aspec-tual inferences (Phases of events, viewpoints (zoom-in, zoom-out)), action and process-feature infer-ences (Preconditions, E�ect, Resources (produced,consumed, locked)), metaphoric inferences (we onlylooked at Event Structure Metaphors (Lako� 1999).We counted the number of inferences made by thehuman and by the model (the CNS-based manually



built model) for each category in the annotated data.We looked at the precision (number of correct infer-ences) and recall (number of total made) .7Component Number M1f M2fAspectual 375 .74 .65Action-feature 459 .62 .45Metaphor 149 .70 .62Table 4: Inferences broken by Event Structure compo-nent. M1f refers to the f-score of the manually con-structed CNS gold-standard model, M2f to the modelderived from OWL.Table 4 shows our initial results. Note that allthree of the categories of inferences are fairly com-mon in the data, and our initial results are quite en-couraging. The more domain general inference typesregarding the aspectual and metaphoric inferencesabout events seem to fair reasonably well (recall thatall these inferences are impossible in the state-of-the-art baseline QA system). The lower score theaction-feature inference seems to tied to the lack ofdomain knowledge in our model regarding domainspeci�c process details (such as the speci�c resourcesfor the production (or dispersal) of WMD). We ex-pect this number to increase considerably with moredomain speci�c knowledge using the techniques de-scribed earlier. We are also conducting a detailedstudy of other important categories of event relatedcausal inferences.5.3 Evaluating the AnswersThe focus of our experiments was to measure the im-pact of (1) the identi�cation of semantic structuresand (2) inference through CPRMs on state-of-the-art Q/A techniques that emerged after �ve years ofTREC evaluations. As reported in (Moldovan et al.,2002), most of the errors of Q/A systems are de-termined by (a) the incorrect identi�cation of theexpected answer type and (b) the inability to ex-pand question keywords with the ideal words thatenhance the retrieval of the candidate answers.Table 5 lists the results obtained for the identi�ca-tion of correct answer types. The answer hierarchy(AH) comprising more than 8000 WordNet concepts7We computed an f-score based on ( 2PRP+R ) for both theCNS gold-standard based CPRM model and for the OWLderived model.AH PAS FS TM49 (12%) 130 (32%) 78 (19%) 42(10%)PAS+TM FS+TM ES+TM ES+Inf141(35%) 94(23.5%) 203(50%) 294(73.5%)Table 5: Number of correct answer types identi�ed bysemantic information originating in: the Answer Hierar-chy (AH), the predicate-argument structure (PAS); thetopic model (TM); the event structure (ES) and theCPRM inference (Inf) for a set of 400 complex questions.

and mapping into 15 name classes was the source ofonly 12% of the correctly recognized answer types,in contrast with the more than 70% that is cor-rectly identi�ed for factoid questions when process-ing TREC-like data. To evaluate the contributionof predicate-argument structures (PAS), we consid-ered that the answer type can be de�ned not onlyas a semantic class, but also as an argument of aspeci�c predicate. Whenever the answer would berecognized as the same argument of the same predi-cate or of a directly related predicate8 we consideredthat the answer type is recognized correctly. Simi-larly, when the frame structures could be identi�edin the question and the answer, the answer type canbe indicated by the frame element (FE), and its cor-rect identi�cation accounts for our resolution of acorrectly predicted answer type. The topic models(TMs) contribute to the recognition of the answertype if any of the relations they induce pertains tothe expected answer, which may be either the re-lation itself, a more complicated structure that in-cludes any of the topic relations or any concept thattakes part in any topic relation but was not acces-sible directly from the question words. The eventstructure (ES) was considered a valid source for �nd-ing the answer type if any of the schemas that wereinstantiated contained at least a semantic class or re-lation that corresponds even partially to the answerstructure, whereas the combination between ES andthe inference procedures (Inf) determines the answertype either by considering only the semantic infor-mation available from the ES or by adding to it theanswer types determined by inference. The resultslisted in Table 5 show that the schema instantia-tions, through their very general semantic coverageaccount for most of the answer types which are rec-ognized, whereas the addition of answer types deter-mined by inference accounts for almost 73.5% of thecorrect answer types of the evaluated complex ques-tions. When processing the test questions only withthe AH, 8% of the answers were correct. In con-trast, when all the other semantic structures wereavailable and probabilistic inference could be per-formed, 52% of the extracted answers were correct.In future work we plan to investigate ways in whichthe semantic structures presented in this paper couldimprove the quality of paragraph retrieval and key-word selection.6 Issues and DiscussionThe last few years have witnessed a good deal of ac-tivity on predicate extraction (aka semantic parsing(Gildea and Jurafsky, 2002; Kingsbury et al., 2002)).Until now it has been unclear if and how predicateextraction might help in the performance of an ac-tual NLP task. Often the intuitive justi�cation of-8Directly related predicates are those that (a) belong tothe same verb hierarchy in WordNet or (b) are argumentsof the target predicate (either because they are in�nitives orbecause they belong to a relative clause).



fered was that predicate extraction was an interme-diate step toward semantic inference (Gildea and Ju-rafsky, 2002). As far as we know the results reportedin this paper constitute the �rst demonstration thatsophisticated textual analysis including predicate-argument extraction can be combined with deep se-mantic representation and inference models to en-hance a state-of-the-art QA system to answer newquestion types that pertain to causal and tempo-ral aspects of complex events. Importantly, we be-lieve our work demonstrates a 
exible architectureand methodology that harnesses the increasinglywidespread availability of semanticallymotivated re-sources (such as WordNet, FrameNet, and the Se-mantic Web). Our current e�orts are directed atmore e�ective knowledge acquisition and at expand-ing the coverage of system both in terms of the do-main models and question and answer types sup-ported. We believe that our 
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