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Abstract

This paper describes a method of estimating the locations of syllable onsets in speech. While

controversy exists on the precise de�nition of a syllable for American English, enough regularities

exist in spoken discourse such that an operational de�nition will be correct a signi�cant portion

of the time. Exploiting these regularities, signal processing procedures extract indicative features

from the acoustic waveform. A classi�er uses these features to produce a measure of the syllable

onset probability. Applying signal detection techniques to these probabilities yields segmentations

that contain a large number of correct matches with true syllabic onsets while introducing an ac-

ceptable number of insertions. Higher level grammatical and linguistic knowledge is absent from

the onset detection presented here. Reporting collaborative work with others in our research group,

we show that the resulting segmentations can constrain and improve automatic speech recognition

performance.
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1 Introduction

The incorporation of syllabic and slow modulation information into speech recognition is a current

research direction at the International Computer Science Institute (ICSI). Some researchers, such

as Greenberg [9], have suggested the syllable as a basic unit of lexical access and stability in hu-

mans, particularly for informal, spontaneous speech. Some work has been done which considers

modeling syllable-like units in lieu of phones for recognition [22, 18, 19, 21]. Various suprasegmental

information such as prosodics is carried at the syllable level. Work by Wu and others continues to

explore the use of syllable segmentation information to improve automatic speech recognition (ASR)

[24, 14, 23]. Segmentation is a non-trivial source of information for pattern recognition tasks such

as image scene analysis and speech recognition. Segmental information is one of the many potential

information sources carried via the syllable.

Much of the previous research that estimates locations of syllables concentrates on detecting

syllable nuclei, as in [17, 20]. The work described here attempts to directly estimate the location

of the syllable onsets. Some ambiguity in the precise de�nition of a syllable provides an obstacle

towards the use of a syllable in ASR, particularly for American English. The syllable structure of

American English is considered by many to be complex. Rule-based de�nitions fail to account for

all possible syllable realizations. Di�erences also exist between lexically canonical syllabi�cation of

words and the acoustic realizations of them, as noted in [16] for German. Greenberg de�nes a syllable

as \a unitary articulatory speech gesture whose energy and fundamental frequency contour form a

coherent entity" [8]. For practical reasons, syllables are typically described in terms of consonant-

vowel structures such as CVC for \cat" and CCCVCCCC for \strengths", with a vowel or diphthong

typically constituting the syllable nucleus. Though the structure of an American English syllable

can be complex, recent statistical analysis of a spontaneous speech corpus reveals that the most

frequently used words consisted of simple CV, CVC, VC, or V structures [10]. Similar observations

were observed in telephone speech by Fletcher [7]. Whereas the syllable nuclei remain commonly
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identi�able, the precise onsets become obscured in the presence of long strings of consonants. The

common use of simple structures, however, provides regularities that may be exploited for syllable

detection and segmentation. A set of methods developed for onset detection is described in this

paper.

2 Overview

The onset detection technique reported here is adapted from the standard phoneme-based recognition

system in use at ICSI. Signal processing schemes extract features from the acoustic speech signal. A

Multi-Layer-Perceptron (MLP) uses these features as inputs for classi�cation. The MLP is trained

to distinguish between onset and non-onset frames. The system retains the same input features that

we have used for phoneme classi�cation. Additionally, a second set of acoustic features are used to

provide additional indications of syllabic onsets. The MLP produces the probability that a given

frame is a syllabic onset given the input acoustic features. A signal detection procedure uses these

probabilities to determine the placements of the syllable onsets. This process operates directly on

the acoustic waveform and incorporates no linguistic or grammatical knowledge (See Figure 1).

2.1 Test Corpus

A subset of the Numbers95 corpus [2] supplies a testbed for the experiments described here. The

complete corpus comprises over 7000 continuous naturally spoken utterances excised from telephone

conversations. The 92 words of the original corpus are numbers such as \twenty-seven" and \�fty".

RASTA-PLP Multi-Layer

Perceptron

Classifier
Speech

Onset
Probability

Spectral Features

Figure 1: Overview of syllable onset detection.
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The subset contains 33 words after eliminating ordinals such as \�fth" and most non-number words

such as \dash." The selected subset utterances also have phonetic hand-transcribed labels; tran-

scriptions are needed to provide a baseline for comparison. This subset is further divided into a

training set, a cross-validation set, and a development set. The training subset contains 3590 ut-

terances, the cross-validation subset contains 357 utterances, and the development subset contains

1206 utterances. The MLP training procedure uses frame classi�cation performance on the cross-

validation subset as an early stopping criterion. It computes an error score for the cross-validation

set after each epoch of MLP weight training. Training stops when the error for this set reached

its �rst local minimum. Early stopping prevents MLP parameters from over-�tting to the training

data. The cross-validation set is also used for parameter tuning and for �nding suitable thresholds

for evaluation. The evaluation scores for the syllable onset detection use the cross-validation and

development sets. The training, cross-validation, and development subsets contain utterances from

di�erent speakers.

Each utterance of the subsets has corresponding phonetic transcriptions hand-labeled by trained

phonetic labelers at the Oregon Graduate Institute. The phone transcriptions are grouped into

syllables using tsylb2, an automatic phoneme-based syllabi�cation algorithm written by Bill Fisher

at NIST [6]. An informal comparison with human syllabi�cations of spoken utterances suggest

that tsylb2 is a competent syllabi�er [5]. For practical reasons, the tsylb2 syllabi�cation algorithm

functions as the de�nition of a syllable. The frame corresponding to the start of the �rst phoneme

of a given syllable phoneme group denotes a syllable onset. The hand-label derived segmentations

serve as the ground truth for training and evaluation.

3 Feature Extraction

Syllable onsets are associated with synchronized rises in sub-band energy over adjacent sub-bands.

Furthermore, the duration of the changes in energy is on the order of a syllable length. Figure 3
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shows an example of the frequency-band energy envelopes for the utterance \seven seven oh four

�ve" from the Numbers95 corpus. The envelopes are compressed to enhance where the envelope rises

occur. We use features that emphasize these band energy changes for syllable onset detection. This

contrasts with syllable segmentation algorithms such as those from Mermelstein [16] and P�tzinger

et. al. [17], which utilize local loudness and energy maxima and minima of the speech for demarking

syllables.

The lengths of syllables vary with both stress and speaking rate, but are generally between 100

ms and 250 ms for an \average" speaker. This coincides with evidence that slow modulations in

the range of 4 to 8 Hz are important for speech intelligibility [11, 4]. Figure 2 shows a histogram

of syllable durations taken from the Numbers95 corpus subset. Here, the mode of the distribution

is about 200 ms and the mean syllable duration is roughly 280 ms. The high mean is largely due

to the nature and purpose of spoken numbers. Relatively important words tend to be spoken with

more clarity and longer duration. Furthermore, the corpus has a restricted vocabulary with no short

functional words which are commonly spoken very quickly.

Two sets of features derived solely from the sampled speech are used to detect syllable onsets.

The MLP uses these features to produce the probability that a given frame corresponds to a syllable

onset. Both features are described below.

3.1 Log-RASTA features

The �rst set of features used in detecting syllable onsets are the RASTA-PLP features [13]. Per-

ceptual Linear Prediction (PLP) and RelAtive SpecTrAl (RASTA) analysis are front end feature

extraction techniques used at ICSI and at other research facilities for standard phone-based speech

recognition. PLP computes an auto-regressive spectral estimate of speech processed by an audi-

tory model. RASTA performs bandpass �ltering of the logarithm of the critical band trajectories.

Figure 4 depicts the major processing steps for RASTA-PLP. First, spectral analysis separates

the speech into critical-bands and the power spectrum is computed. The critical band values are
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Figure 3: Compressed frequency band envelopes of the utterance \seven seven oh four �ve".
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compressed with a logarithm and subsequently �ltered with an IIR band-pass �lter. The �ltered

values are then exponentiated and scaled with an approximation to the loudness curve and power

law of human hearing. The resultant auditory power spectrum is modeled with an autoregressive

(AR) model. Finally, cepstral coe�cients are computed from the AR model.

Although primarily used for phone classi�cation, RASTA-PLP incorporates desirable properties

for syllable classi�cation. The band-pass �lter has the e�ect of emphasizing spectral change. In

essence, it di�erentiates and re-integrates each band over time. Band-pass �ltering helps capture

the changes in band energy which we assume indicates boundaries of a syllable. Since the band-pass

�lter operates on the logarithm of the power, the �lter also functions as a type of automatic gain

control that can increase the relative strength of the energy in the consonants with respect to the

typically stronger vowels. The emphasis helps reduce the e�ect of vowel onsets from dominating

the response characteristics. The cepstral representation from a low-order AR model together with

the critical band integration introduce a smoothing operation across the frequency axis. This helps

capture the synchrony in neighboring frequency energies. For onset detection, we employ the energy

and 8 RASTA-PLP cepstral coe�cients with their derivatives as syllable onset features. The features

are computed over a Hamming window of 25 ms of speech intervaled in 10 ms increments.

3.2 Spectral Features

Spectral onset features supplement RASTA-PLP. The spectral features attempt to locate gross re-

gions of syllabic onsets by temporal processing in the power spectral domain. Our signal processing

method, depicted in Figure 5, enhances and extracts the syllable onset properties described pre-

viously. The speech waveform is �rst decomposed into a spectrogram. Each time frame of the

spectrogram is the squared magnitude of the 512 point Discrete Fourier Transform taken over a

Hamming window of 25 ms of speech. The power spectrum is computed every 10 ms achieving the

local frequency power spectrum versus time image. Fourth root compression and scaling yield the

spectrogram image. An example of a spectrogram is shown in Figure 6.
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Figure 5: Major processing steps for the spectral onset features.
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Figure 7: Temporal �lter and channel �lter.

The spectrogram is convolved with a temporal �lter and a channel �lter, e�ectively a two

dimensional �lter. The temporal �lter, based on a Gaussian derivative, smoothes and di�erentiates

along the temporal axis. The �lter enhances changes in energy on the order of 150 ms, i.e. a short

syllable length. The channel �lter, a Gaussian, performs smoothing across the frequency channels,

giving weight to regions of the spectrogram where adjacent channels are changing simultaneously.

Figure 7 contains plots of the temporal and channel �lters. The temporal and channel �lters are

similar to vertical edge detection �lters in image processing. The �lters have �nite impulse responses

and the channels are adjusted temporally to account for the average group delay.

Onsets are indicated by positive changes in energy. Half-wave recti�cation of the �ltered spec-
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trogram keeps only these positive changes. The frequency bands are subsequently averaged over

nine critical band-like regions which have a frequency spacing derived from Greenwood's equation

of the ear's frequency-position map [12]. The frequency band edges are shown in Table 1. The nine

channels function as a set of syllable onset features. Figure 8 shows an example of the utterance

\seven seven oh four �ve" after processing. Large values in the output correspond to possible syllabic

onsets. The responses tend to peak in the regions prior to syllabic nuclei, which consist principally

of vowels.

Edge 1 2 3 4 5 6 7 8 9 10

Freq (Hz) 203.1 312.5 437.5 609.4 812.5 1109.4 1484.4 1968.8 2625 3484.4

Table 1: Band Edges for Onset Feature Process.

The signal processing here bears many similarities to the RASTA-PLP processing. The di�er-

ences reside principally in the temporal �ltering and the threshold operation, which is absent in

RASTA-PLP. The temporal �lters for both processes have similar frequency responses but di�erent

temporal characteristics. Furthermore, they operate on di�erent domains; RASTA-PLP operates in

the log-power spectral domain. Finally, the spectral feature process lacks the human auditory-model

scaling, such as equal loudness and power law, done in RASTA-PLP. In practice we have found

that both sets of features complement one another for this application. In a pilot experiment, the

combination of the two sets provided better results than either individually.

4 Syllable Onset Classi�cation

A neural network classi�er estimates the probability that a given frame of speech corresponds to

a syllable onset. A three layer Multi-Layer-Perceptron (MLP) uses the features described above

as input. A variant of the Error Back-Propagation Algorithm, commonly used at ICSI, trains the
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Figure 8: Example of utterance \seven seven oh four �ve" after processing.

weights of the MLP; weights are iteratively adjusted using a steepest descent procedure to minimize

the relative entropy between the MLP output and the desired output. The input layer of the MLP

consists of vectors of input features. To account for contextual e�ects, the input layer uses features

from the current frame as well as the vectors of features for the four preceding and four following

frames. With 27 features per frame, there are a total of 243 input nodes. The hidden layer contains

400 nodes. The output layer consists of 2 nodes corresponding to a syllable onset and a syllable

non-onset.

The MLP is trained with a syllable onset tolerance window instead of the true syllable onset

frame (Figure 9). The frame of the true onset and the ensuing four frames de�ne a syllable onset

window. The tolerance window broadens the single frame syllable onset to �ve frames. E�ectively,

the MLP is trained to recognize regions where a syllable onset can occur. De�ning a region instead

of a single frame helps correct possible variability of phonetic boundaries due to hand-labeling.

Additionally, it increases the number of examples of the syllable onset target, thereby improving

training and increasing output activation for the onsets.

The MLP training regimen uses features exclusively from the training subset of the NUMBERS95

corpus to adjust the MLP weights. Each epoch of training consists of iteratively updating the MLP

connection weights for each training example. Training examples are presented in a random order
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to improve convergence. After each epoch, the training procedure computes the frame error rate for

the cross-validation set. A frame error signi�es that the MLP output is not closest to the correct

target for the correct output. Target outputs are represented as a `1' or `0' depending on whether the

corresponding frame is or is not in the syllable onset window. Training stops when the frame error

rate reaches the �rst local minimum. Once trained, the MLP produces the probability estimate of

a frame being an onset given the features for each frame of an input utterance. Figure 10 shows an

example of the MLP output for the utterance \seven seven oh four �ve." The vertical lines denote

the true syllable onsets for the utterance. This example shows peaks in the MLP probability output

near where the true onsets occur. It also shows some extra peaks and high probability regions which

do not correspond to true onsets. These other regions would count as false positive responses.

5 Evaluation

A signal detection procedure uses the MLP output probabilities to declare which frames are syllable

onsets. For evaluation, frames are compared with the placement of the true syllable onsets derived

from the hand-transcriptions. The procedure declares a match or hit if a true onset has at least

one declared onset frame in its corresponding onset window. Again, the onset window consists of

the frame containing the true onset and the four subsequent frames, as in Figure 9. The procedure

counts a miss if there are no declared onset frames within four frames after a true onset. It counts
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an insertion for declared onset frames which do not match with a true onset.

5.1 Detection by Threshold

A simple approach to signal detection is to apply a threshold to the MLP outputs and perform

a hit/miss analysis. Frames whose MLP outputs are above threshold are treated as onsets and

those below are treated as non-onsets. Varying the threshold varies the number of true syllables

which are matched and the number of false insertions which are introduced. The solid line in

Figure 11 depicts a Receiver Operating Characteristic (ROC) curve for varying thresholds on the

cross-validation set. Here the insertions are reported as an average number of false alarms per

second. The number of hits and insertions are both inversely related to the threshold. An approach

similar to a Neymann-Pearson formulation can determine a proper threshold for the development

set. On the cross-validation set, the threshold is adjusted until a speci�ed number of syllables are

matched. This threshold is then applied to the development set to determine the number of hits,
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misses and insertions.

Table 2 shows frame level scores for a threshold of 0.1291. This threshold is marked with an

'x' in Figure 11. Frame hits (misses) signify the number of declared onset (non-onset) frames which

correspond to a syllable onset tolerance window frame. Insertions denote the number of declared

onset frames which do not fall within a tolerance window. Non-onset matches correspond to the

number of non-tolerance window frames which do not have declared onsets within them. The cross-

validation set contains 1,739 syllables with 62,173MLP output frames. The development set contains

5,975 syllables with 216,518 MLP output frames. Table 3 shows the percentage of syllables that

have at least one declared onset within their respective tolerance windows.

5.2 Adding Minimum Duration Constraint

The MLP output varies smoothly over time. The threshold criterion therefore typically declares

clusters of frames as onsets. This causes the average number of false alarms per second to increase.

Requiring a minimum number of non-onset frames between any two onsets can reduce the number

13



Subset Frame Frame Insertions Non-onset

Hits Misses Matches

Cross Validation Frames 7313 1332 7768 45760

Thresh = 0.1291 Percent 84.59% 15.41% 14.51% 85.49%

Development Frames 24986 4884 26373 160275

Thresh = 0.1291 Percent 83.65% 16.35% 14.13% 85.87%

Table 2: Frame-level Hits, Misses, and Insertions.

Subset Percent Hits PercentFrame Insertions

Cross Validation 95.28% 14.51%

Development 94.21% 14.13%

Table 3: Syllable onset hits and frame insertions.
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of false insertion frames. For example, among the true onsets, there are no examples of two distinct

onsets being in adjacent frames. Disallowing a multiple number of detected onsets from occupying

the same minimum duration window reduces the number of detected onset frames, and hence the

number of frame insertions.

One method of imposing the minimumduration constraint is with a Viterbi search using a Hidden

Markov Model formulation [3, 1]. Here, dynamic programming �nds the path which best matches or

produces the least cost path with a syllable model, such as the one in Figure 12. The syllable model

consists of a sequence of states with permissible transitions and transition costs between the states.

States correspond to syllable onsets or non-onsets. For each utterance, a lattice is generated with the

abscissa corresponding to the frames of the utterance and the ordinate corresponding to the states

of the syllable model. Each frame/state pair in the lattice has associated with it a local cost and

a transition cost. The local cost consists of the negative logarithm probability of the MLP output

for that state. The two MLP outputs are divided by their respective training prior probabilities

before computing the cost. The syllable model constrains the allowed frame/state transitions and

speci�es the cost associated with making each transition. The transition costs consist of the negative

logarithm of the transition probabilities. The Viterbi algorithm �nds the least cost path for each

utterance. Figure 13 illustrates a sample where the least cost path depicts two syllable onsets.

To satisfy minimum duration constraints, a chosen syllable model requires syllable onsets to

be separated by a minimum number of frames. For the syllable model depicted in Figure 12, the

minimum separation between syllables is �ve frames (50 ms). The out-going transition probabilities

were arbitrarily chosen to be 0.5 for all states except for the state corresponding to the onset

and the �nal right-most state. Table 4 shows evaluation scores for the model depicted in Figure 12.

Modi�cation of the transition probabilities changes the sensitivity and frequency with which syllable

onsets are declared. The dashed line in Figure 11 shows the ROC curve for the cross-validation set

using the previous syllable model. Varying the transition probabilities for the right-most states

traces the curve.
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Subset Percent Hits Percent Frame Insertions

Cross Validation 95.17% 6.38%

Development 94.53% 6.28%

Table 4: Dynamic programming duration constraint results.
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System Error Rate

sub./ins./del.

Single pronunciation lexicon 10.8%

no onset information 5.8%/3.1%/1.8%

Single pronunciation lexicon 7.3%

Viterbi onset information 4.9%/0.9%/1.5%

Table 5: Comparison of systems using a single pronunciation lexicon with and without cheating

onset boundaries.

5.3 Application to Speech Decoding

The syllable onset information obtained via the threshold criterion was incorporated into a syllable-

based speech decoder developed by Wu [24]. This decoder incorporated a syllable lexicon and used

the onset information to constrain the regions where a syllable may begin. The decoder showed

statistically signi�cant improvement in word recognition over a baseline decoder which did not use

cheating syllable onset information. The cheating boundaries were obtained from forced Viterbi

alignment with the word transcriptions. Using a single-pronunciation lexicon, word error reduced

38% relative to a baseline decoder which did not use cheating syllable onset information (Table 5).

This represents an upper bound indication of how much onset information can improve recognition

performance. Incorporation of the acoustically derived syllable onsets from a threshold detection cri-

terion resulted in some improvement in recognition results. Using a multiple-pronunciation lexicon,

errors were reduced by 10% relative to the baseline (Table 6).

The baseline decoders were allowed to hypothesize a syllable onset at every frame of an utterance.

The syllable-based decoder was allowed to hypothesize syllable onsets if the separate onset detection

scheme declared an onset within the tolerance window of 5 frames. Using the threshold criterion with

17



System Error Rate

sub./ins./del.

Multiple pronunciation lexicon 9.1%

no onset information 5.3%1.3%2.4%

Multiple pronunciation lexicon 8.2%

acoustic onsets information 4.8%1.3%2.1%

Table 6: Comparison of systems using multiple pronunciation lexicon with and without acoustic

onsets from syllable detection.

a threshold of 0.12 on the MLP output, 58% of the frames in the development set were eliminated

from consideration as a potential syllable onset.

The experiment with the cheating boundaries and the experiment with the acoustic boundaries

used di�erent syllable lexical for practical reasons. The principal reason was that the acoustic onsets

did not align adequately with the canonical single-pronunciation lexicon. Additionally, applying

the multiple-pronunciation lexicon to the Viterbi procedure to produce aligned onsets would have

signi�cantly increased the complexity of decoding. The results are therefore not directly comparable.

Both experiments do, however, provide an indication of the improvement from adding syllable onset

constraints to decoding.

6 Conclusion

The syllable onset detection method presented here seeks to estimate the locations of syllabic onsets

from acoustic information alone. It does not directly incorporate lexical or grammatical knowl-

edge. The basic premise of the method is to exploit the relationship between syllable onsets and

rises in energy in adjacent frequency channels. Using various signal detection criterion, the analysis
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demonstrates that an acoustic criterion alone can achieve a strong number of hits with an accept-

able number of insertions. Furthermore, insertions can be decreased by the addition of duration

constraints. While maintaining roughly 94% hits, a dynamic programming method for constraining

inter-syllable occurance reduces the number of insertions by as much as 60%. Additional measures

such as region matching with syllable nuclei or other onset detection techniques are likely to improve

performance.

The major impetus for locating syllable onsets is to add constraints to a speech recognition sys-

tem by limiting where syllable onsets can be hypothesized. Experiments with such onset constraints

demonstrate improvement in speech decoding. Further, even simple threshold criterion detection

can eliminate roughly 60% of speech frames from consideration as an onset. This is with a widen-

ing tolerance window of 50ms and without bene�t of duration constraints. Incorporation of the

acoustic-derived segmentation into the decoding process has illuminated some discrepancy between

concepts of acoustic-phonetic and phonological representations of syllables. This discrepancy is often

apparent in word sequences where the coda of the �rst word is consonantal and the onset of the fol-

lowing word is vocalic. For example, the word sequence \�ve eight" has a phonological or canonical

representation of /fayv/ /eyt/ while the phonetic realization is more typically [fay][veyt]; here the

/v/ in the �rst syllable appears as part of the second.1 Di�culties also arise from ambisyllabicity

where the precise boundary between two adjacent syllables is ambiguous. This occurs frequently

where the same phone appears in both the coda of the �rst syllable and the onset of the second,

as in \four eight" ([foh[r]eyt]) and \nine nine" ([nay[n]ayn]). Consequently, the boundary of the

syllables is within the phone and di�cult to locate with precision. The ground-truth segmentations

do not explicitly reconcile ambisyllabicity in the experiments here. This might have introduced

shortcomings in the MLP training. Regardless, the onset detection technique shows promise as an

additional information stream to a speech recognition system.

1Many such coarticulation e�ects are chronicled within the Sandhi framework by Panini. A

treatment can be found in [15].
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