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ABSTRACT

Temporal processing and filtering in speech feature extraction
are commonly used to aid in performance and robustness in au-
tomatic speech recognition. Among the techniques successfully
employed are RASTA filtering, delta calculation, and cepstral
mean subtraction. The work here explores the use of temporal
filter design using LDA to further enhance performance using
a few preprocessing configurations. In addition to RASTA fil-
tering, we apply the filters to modulation-spectral features and
cepstra while making sure that the assumptions of LDA are ob-
served. We additionally test the use of filters that have been
trained in different reverberation conditions, noting from previ-
ous work that the presence of reverberation alters the preferred
frequency range of the derived filters. Our tests indicate a con-
sistent advantage in phone classification. Word recognition tests,
in contrast, reveal that the LDA filters often do not improve upon
the existing filters previously used. They can also be made less
effectual by allowing contextual frames to a trained probability
estimator.

1. INTRODUCTION

Temporal processing and filtering in speech feature extraction
are commonly used to enhance performance and robustness in
automatic speech recognition. Techniques such as cepstral mean
subtraction (CMS) [1], delta calculation [8], and RASTA filter-
ing [13] are some examples of temporal processing that have
been successfully applied. In each of these techniques, the tra-
jectories of spectral or spectrally related values are temporally
processed to enhance or preserve the speech carrying modula-
tions or to add speech dynamics information to the recognition
system. Sometimes neglected is the implicit temporal processing
when training a probability estimator with a context of several
adjacent frames of acoustic features. The precise implementa-
tion of the explicit temporal filtering techniques was often from
insight and repeated empirical testing. Van Vuuren and Her-
mansky introduced a data-driven technique for direct derivation
of temporal basis functions through linear discriminant analysis
(LDA) [20]. Their work concerned the derivation of RASTA-
style filters from log-critical-band spectral values of a phoneti-
cally labeled corpus; phonetic classes were assigned to the log-
spectral temporal trajectories. Recent efforts have observed the
effects of additive noise and reverberation on these filters [19].
Lieb and Haeb-Umbach have also recently applied the technique
to trajectories of Mel-Frequency Cepstral Coefficients (MFCC)
[17]. When applied to the feature trajectories, the filter compo-
nents can be seen as a replacement of the delta calculation.

The original work with temporal LDA typically involved replac-
ing the filters in log-RASTA-PLP with these data-derived filters.

Though originally applied to log-spectral values, we find that the
results of this method may, with some care, be applied in alter-
nate settings. In this work we make some further observations
on the use of LDA for temporal filtering in feature extraction
in our recognition system. We apply the temporal LDA tech-
nique to a few preprocessing configurations wherein other imple-
mentations of temporal filtering were replaced by filters derived
through LDA. In addition to log-RASTA-PLP [13], we apply
the LDA filters to the modulation-filtered Spectrogram (MFSG)
[16, 15] and the original PLP [11] as a postprocess.

2. EXPERIMENTAL SYSTEM

Our experimentation of the use of temporal LDA was within the
framework of a hybrid artificial neural network - hidden Markov
model (ANN-HMM) automatic speech recognitions system [18,
3]. In this system, a simple three-layer feed-forward multi-layer
perceptron (MLP) is discriminatively trained to estimate the pos-
terior probabilities of context-independent mono-phone classes
given the acoustic features. In previous systems, particularly
those using Gaussian mixture models, LDA was applied to the
feature vectors. In other words, discriminative training was ap-
plied to the spectrally related dimension. In the ANN-HMM
context, LDA applied in this manner is redundant to the non-
linear discrimination inherent in the MLP training. LDA how-
ever, when applied temporally, adds a layer of discriminative
training along the temporal dimension. In effect, we achieve a
discriminative training that covers the time-frequency plane.

Temporal filter derivation begins by capturing windows of ap-
proximately one seconds worth of spectrally-related trajectories.
These trajectories are of the logarithm of filter-bank envelopes
or cepstral trajectories. Each window is assigned a phonetic
class label that corresponds to the center. The average covari-
ance matrix of the classesSW and the covariance of the means
of the classesSB are subsequently computed. The eigenvectors
of S�1

W
SB that have the corresponding largest eigenvectors are

taken as the discriminatively trained filters [2, 20, 7].

In our experiments, temporal filters and recognition tests were
performed using separate corpora to promote generality. The
filter design used the English portion of the Oregon Graduate
Institute (OGI) Multi-Lingual Database [4] that included hand-
labeled and segmented phonetic transcriptions. We additionally
designed filters with the speech corpus artificially reverberated
with two room impulse responses. The first impulse, labeled
“light”, had the quality of a small office with a reverberation time
(T60) of 0.6 seconds and a direct-to-reverberant ratio (DTRR) of
-1.9 dB. The second, labeled “heavy”, was recorded in a concrete
basement hallway having aT60 of 2.5 seconds and of DTRR
of -8 dB. Subsequent recognition tests were conducted with a
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Figure 1: RASTA filters replaced by LDA filters.

MLP environ. LDA training environment
train test clean light heavy

clean clean 9.10 9.00 12.00 -
light light 18.90 16.40 + 18.30
heavy heavy 45.50 42.10 + 38.90 +

Table 1: WER using LDA filters derived with reverberant data
and MLP with single frame of features.

MLP environ. LDA training environment
train test clean light heavy

clean clean 5.20 5.30 7.00 -
light light 11.10 10.70 12.40 -
heavy heavy 30.70 30.10 30.30

Table 2: WER using LDA filters derived with reverberant data
and MLP context window of 9 feature frames (10 ms stepping
rate).

subset of the OGI Numbers corpus [5] that also had phonetic
transcriptions.

3. RASTA-LDA

In previous work we had noted that increasingly severe reverber-
ation resulted in LDA filters that preferred the lower frequency
ranges [19]. For example, the first discriminant filter for the
clean, light, and heavy reverberation environments used here had
upper half-power points at 13 Hz, 9 Hz, and 5 Hz respectively.
When the original single-pole RASTA filter was replaced with
these LDA filters within RASTA-PLP (figure 1), we observed
performance improvements in recognition tests, particularly in
cases of reverberation. In these previous experiments, the MLP
probability estimator was allowed approximately 100 ms of con-
textual feature frames. As the bulk of the filter impulse response
resided within this range, it is possible for the MLP training to
learn and mimic some of the temporal filtering characteristics.
To better observe the appropriateness of each filter to the en-
vironment with which it was trained, we conducted additional
tests comparing the three sets of LDA filters. In the first, we
eliminated the contextual frames allowed to an MLP probabil-
ity estimator with 800 hidden units. Table 1 contains word error
rates (WER) of matched training and testing experiments. The
“+” (“-”) postfixes mark where improvement (degradation) over
the clean LDA filters was statistically significant (p=0.05, 4673
words). Boldface signifies matched training, testing, and filter
design environments. We observe here that when the probabil-
ity estimator is not allowed contextual frames, the recognition is
best when using the filters trained in the same environment. The
only exception appears to be in the clean case, where the light
filters perform better by 1% relative, though this is not signifi-
cant.
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Figure 2: MFSG envelope filters replaced by LDA filters.

Train Test MFSG MFSG-LDA

clean clean 6.50 7.00
light light 12.10 12.40
heavy heavy 31.60 32.80

Table 3: WER comparison of original MFSG and MFSG with
LDA-derived filters. MLP trained on acoustic context of 9
frames.

Train Test MFSG MFSG-LDA

clean clean 76.96 78.40 +
light light 70.95 72.82 +
heavy heavy 55.66 57.89 +

Table 4: Frame accuracy comparison of original MFSG and
MFSG with LDA-derived filters. MLP trained on acoustic con-
text of 9 frames.

Table 2 contains WER scores when we re-introduced contextual
frames to the 800 hidden unit MLP. In this configuration, we
no longer see a consistent advantage in using the alternate filter
in each training and testing environment; using the light filter
seems to produce the best scores in the reverberation tests but
the differences are not significant. The heavy filter set, which
smoothes the most, appears to be less useful overall since it pro-
duces the worst scores in all but the matched testing environ-
ment.

4. MFSG-LDA

LDA provided an automatic statistical means of generating RAS-
TA-style filters. These filters demonstrated frequency selectiv-
ity in agreement with previous perceptual and empirical data
[12, 14, 9]. In an effort to test the general usefulness of these
RASTA-style filters, we sought to apply them in other feature
processing strategies. The MFSG process was developed by
Kingsbury and has demonstrated utility in cases of reverberation
[16, 15]. Here we replace the temporal envelope filters included
in that processing with RASTA filters derived using LDA, as in
figure 2. In contrast to the LDA employment in RASTA-PLP,
we do not tap and analyze the trajectories of the amplitude spec-
tra after the square root operation, but rather continue to use the
logarithm. The reason for this is that the amplitude spectrum
provides a poor domain with which to apply LDA. An assump-
tion of LDA is that the underlying class distributions are normal.
Applying a logarithm to the energy envelopes produces distribu-
tions that are closer to the normal distribution than the amplitude
spectrum. Employing a logarithm is a common technique in nor-
malizing data in statistics as well as speech and has the advan-
tage of being “shape-invariant” to scaling and powers of the raw
data. That is, a scaling of the data appears as an offset after a
logarithm while a power merely adjusts the spread and domain
of the data distribution. We reconcile using filters derived from
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Figure 3: PLP and delta features replaced by LDA filtered fea-
tures.

Train Test PLP+�s PLP-LDA

clean clean 7.80 8.80 -
light light 16.20 17.60 -
heavy heavy 46.10 40.40 +

Table 5: WER comparison of original PLP and PLP with LDA-
derived filters. MLP trained on a single frame of acoustic fea-
tures.

Train Test PLP+�s PLP-LDA

clean clean 70.75 74.65 +
light light 62.05 67.74 +
heavy heavy 45.59 53.48 +

Table 6: Frame accuracy comparison of original PLP and PLP
with LDA-derived filters. MLP trained a single frame of acoustic
features.

logarithm data in the situation where the square root is used by
noting that a main effect of memoryless nonlinearities of this
type is the creation of harmonics; the fundamental modulations
remain. What arguably remains essential is the preservation of
modulation rates that are important to discrimination.

The original envelope filters used were 0-8 Hz and 2-16 Hz IIR
filters and were arrived at through repeated recognition tests. Ta-
bles 3 and 4 show the WER and frame accuracy results when
these filters were replaced by the first two LDA components de-
rived from the matched training environment. The frame accu-
racy is consistently better by between 1% and 4% relative when
using the LDA filters. This was also observed in almost all mis-
matched training and testing conditions not shown here. How-
ever, we do not see an improvement in WER; the use of LDA fil-
ters yields degraded performance though not statistically signifi-
cant here. The paradoxical improvement in frame accuracy with
an accompanying penalty in WER was consistent in all of our
tests with MFSG, including those where we removed the con-
textual frames to the MLP. The fact that the LDA filters were de-
signed for phone discrimination rather than word recognition, as
the original filters were arrived at, may contribute to the discrep-
ancy. This may be further complicated by added non-linear tem-
poral processing inherent in the automatic gain control (AGC)
stages in MFSG. It is not uncommon to witness positive gains in
frame accuracy leading to negative ones in word recognition and
vice versa. An investigation of confusion matrices reveals, inter-
estingly, that MFSG-LDA results in silence being misclassified
more often than the original while the correct classification for
the phone classes increased. Unfortunately, the direct relation
between phone classification and word recognition is difficult to
analyze.

5. PLP-LDA

As previously noted, the logarithm of the spectral energies pro-
vides an adequate domain with which to successfully apply tem-
poral LDA. Cepstral computation implicitly includes a logarithm
followed by a decorrelating linear transformation across frequen-
cy bands. The resulting feature components also exhibit class
distributions that are approximately normal and thus potentially
suitable for LDA. In lieu of frequency-band RASTA filtering we
applied the temporal LDA technique to PLP cepstral coefficients.
When used in this fashion, the filters are a data-derived replace-
ment of the delta calculations commonly used in ASR systems
(figure 3). This manner of LDA use was also recently done
by Lieb and Haeb-Umbach using MFCCs in phone recognition
tasks [17]. We use this in conjunction with local normalization
where the features of each utterance is offset and scaled to zero
mean and unit variance. This can be interpreted as a combination
of CMS and automatic gain control.

Tables 5 and 6 show WER and frame accuracy results using PLP
with no contextual frames available to the MLP probability esti-
mator and 400 hidden units. The direct, delta, and double delta
features were replaced with filtering by the first three discrim-
inant components from LDA. We see a similar pattern to our
tests with MFSG where we obtain significant improvements in
phone classification at the frame level ranging from 5.5% to 17%
relative. We also uniformly obtained such frame accuracy im-
provements in many mismatched training and testing conditions
as well. Word recognition improvements unfortunately were not
as forthcoming and appeared only in some heavy reverberation
tests where the recognition errors remained high.

6. DISCUSSION

Our experiments with a few styles of preprocessing reveal a con-
sistent improvement in phone classification when using temporal
LDA. This supports phone recognition results reported in [17].
We also obtained similar results in pilot phone recognition exper-
iments using an unconstrained grammar and two-state minimum
duration monophone models. Our MFSG tests with a 100 ms
input context to the MLP yielded between 1% and 6% relative
phone error reduction when substituting in the LDA filters. Like-
wise, using LDA in lieu of delta features in our PLP tests with a
single frame input to the MLP yielded between 4% and 7% rela-
tive improvement. Word recognition tests indicated mixed ben-
efit. Our tests with RASTA-PLP and LDA filters suggest that
there is benefit in using temporal filters tuned to the reverber-
ant environment in which the ASR system is trained and tested.
This is most apparent in our tests where the MLP probability
estimator had access to only a single frame of acoustic features.
This advantage is mitigated when we train the MLP with a larger
context of adjacent acoustic frames. With 100 ms of acoustic
features, the MLP implicitly performs non-linear temporal filter-
ing, the parameters of which are learned through discriminative
training. We can effectively consider this a duplication of ef-
fort with the discriminative linear filters derived through LDA,
though other factors probably exist. One of the motivations for
our use of temporal LDA was to insert another level of discrim-
inative training along the temporal dimension in addition to the
spectrally related dimension; in a sense, discriminatively span-
ning the time-frequency plane. With a wide enough sequence
of acoustic features, our MLP may already provide an effective
coverage. Judicious use of tuned temporal filters may still ben-
efit ASR systems where the allowing a wider acoustic context
to the probability estimator becomes prohibitively expensive or
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undesirable due to insufficient training data.

In our MFSG and PLP tests, the improved frame accuracy does
not produce consistent WER improvements, more frequently the
opposite. As the temporal filters were derived through phone
discrimination on data, it is not too surprising to witness the
improved frame accuracy. Arguably, a good frame accuracy is
needed for a good WER, though any further minor improve-
ments through tuning guarantees nothing. It is difficult to an-
alyze how a minor change in phone classification affects the re-
sulting word recognition. Temporal LDA has verified that the
modulation frequencies of importance to speech lie in the lower
frequencies [6, 10]. It also provides an automatic data-driven
means of obtaining relevant filters for phone classification. Di-
rectly obtaining filters optimal for word recognition remains elu-
sive and of speculative importance considering the complexity
and variety of ASR system implementations and constraints.

7. CONCLUSION

RASTA filtering, CMS, and delta features are forms of temporal
processing that have enhanced ASR systems. LDA provides a
convenient mechanism for deriving temporal filters that can be
used in these processing steps. Further, these filters can be tuned
to environments such as reverberation. Our tests show that LDA
filters, being designed to discriminate between phones, can con-
sistently improve phone classification. Tests with RASTA-PLP
also indicate that this can lead to improvements in word recog-
nition. However, such improvements may be mitigated or made
redundant by other means. For example, training an MLP prob-
ability estimator with a sufficient acoustic context in reverber-
ation yields comparable results among differently trained LDA
filters. Further, word recognition improvements were not forth-
coming in tests using alternate preprocessing configurations such
as MSFG and PLP-cepstra even while frame accuracy was main-
tained or improved upon. A common theme with temporal filter-
ing is the enhancement and preservation of the lower modulation
frequencies up to about 16 Hz. The further specific parsing of
this range, whether by LDA or other means, offers minor trade-
offs among phone classification, word recognition, and perfor-
mance in reverberant environments.
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